\\ \\ \\ \\ \\ \section*{\\ \\ \\ \\ \section*{\\ \\ \\ \section*{\\ \\ \\ \\ \\ \section*{\\ \\ \\ \\ \section*{\\ \\ \\ \section*{\\ \\ \\ \\ \\ \section*{\\ \\ \\ \\ \section*{\\ \\ \\ \section*{\\ \\ \\ \\ \\ \section*{\\ \\ \\ \\ \section*{\\ \\ \\ \section*{\\ \\ \\ \\ \\ \section*{\\ \\ \\ \\ \section*{\\ \\ \\ \section*{\\ \\ \\ \\ \\ \section*{\\ \\ \\ \\ \section*{\\ \\ \\ \section*{ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ Vector
Semantics $\&$
Embeddings \\ \\ \\ \\ \\ \\ Vector
Semantics $\&$
Embeddings \\ \\ \\ \\ \\ \\ Vector
Semantics $\&$
Embeddings \\ \\ \\ \\ \\ \\ Vector
Semantics $\&$
Embeddings \\ \\ \\ \\ \\ \\ Vector
Semantics $\&$
Embeddings \\ \\ \\ \\ \\ \\ Vector
Semantics $\&$

Embeddings \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \begin{tabular}{l|l}
Vector \\
Semantics \& \\
Embeddings

\quad Word Meaning \\ \\ \\ \\ \\ \\

Vector \\
Semantics \& \\
Embeddings

\quad Word Meaning \\ \\ \\ \\ \\ \\

Vector \\
Semantics \& \\
Embeddings

\quad Word Meaning \\ \\ \\ \\ \\ \\

Vector \\
Semantics \& \\
Embeddings

\quad Word Meaning \\ \\ \\ \\ \\ \\

Vector \\
Semantics \& \\
Embeddings

\quad Word Meaning \\ \\ \\ \\ \\ \\

Vector \\
Semantics \& \\
Embeddings

\quad Word Meaning \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\

Vector \\
Semantics \& \\
Embeddings

 \\ \\ \\ \\ \\ \\

Vector \\
Semantics \& \\
Embeddings

 \\ \\ \\ \\ \\ \\

Vector \\
Semantics \& \\
Embeddings

 \\ \\ \\ \\ \\ \\

Vector \\
Semantics \& \\
Embeddings

 \\ \\ \\ \\ \\ \\

Vector \\
Semantics \& \\
Embeddings

 \\ \\ \\ \\ \\ \\

Vector \\
Semantics \& \\
Embeddings
\end{tabular} \\ \\ \\ \\ \\ \\ } \\ \\ \\ \\ \\ \\ } \\ \\ \\ \\ \\ \\ } \\ \\ \\ \\ \\ \\ } \\ \\ \\ \\ \\ \\ } \\ \\ \\ \\ \\ \\ }

\square
 $+$
教 \square

[^0]

https://youtu.be/NGQtmnSOv40?t=1333
https://connecting-wall.netlify.app/

What do words mean?

N -gram or text classification methods we've seen so far

- Words are just strings (or indices w_{i} in a vocabulary list)
- That's not very satisfactory!

Formal semantics:

- The meaning of "dog" is DOG; cat is CAT

$$
\forall x \operatorname{DOG}(x) \longrightarrow \operatorname{MAMMAL}(x)
$$

Old linguistics joke by Barbara Partee:

- Q: What's the meaning of life?
- A: LIFE

Desiderata

What should a theory of word meaning do for us?
What wares are similar?
whet words wave opposite meanings?
What wards are related?
what words show op where?

Lemmas and senses

lemma
mouse (N)
sense

1. any of numerous small rodents...
2. a hand-operated device that controls a cursor...

A sense or "concept" is the meaning component of a word Lemmas can be polysemous (have multiple senses)

Relations between senses: Synonymy

Synonyms have the same meaning in some or all contexts.

- filbert / hazelnut
- couch / sofa
- big / large
- automobile / car
- vomit / throw up
- water / $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \text { connotation }=\text { "style" } \\
& \text { denotation }=\text { many }
\end{aligned}
$$

The Linguistic Principle of Contrast:

 Difference in form \rightarrow difference in meaningAbbé Gabriel Girard (1718):
" j e ne crois pas qu'il y air demor fynonime dans aucune Langue te le dis par con-"
[I do not believe that there is a synonymous word in any language]

LA' JUSTESSE DE LA

LANGUE FRANȨOISE.

Ov | LES DFERENTES SIGNIFICATIONS |
| :---: |
| DESMOTS QUIPASSENT |
| DOUR |.

SYNONIMES.
Dar M.l'Albé GIRARD C.D. M. D.D.B.
A. PARIS

Chez I. aurent d'Houry, Imprimeur-L-braire, aú bas de la rue dela Harpe, visà vis la rue S. Scverin!, au Saint Efprir.

Relation: Synonymy?

water/ $/ \mathrm{H}_{2} \mathrm{O}$
" $\mathrm{H}_{2} \mathrm{O}$ " in a surfing guide?
big/large
my big sister != my large sister

Relation: Similarity

Words with similar meanings.
Not synonyms, but sharing some element of meaning:
car, bicycle
cow, horse

Ask humans how similar 2 words are

word1	word2	similarity		
vanish	disappear	10	6.5	9
behave	obey	7	6	5
belief	impression	4	4	5
muscle	bone	3	6	5
modest	flexible	0	5	2
hole	agreement	2	0	0.5

Relation: Word relatedness

Also called "word association"
Words can be related in any way, perhaps via a semantic frame or field

- coffee, tea: similar
- movie, popcorn: related, not similar

Semantic field

Words that

- cover a particular semantic domain
- bear structured relations with each other.
hospitals
surgeon, scalpel, nurse, anaesthetic, hospital
restaurants
waiter, menu, plate, food, menu, chef
houses
door, roof, kitchen, family, bed

Connotation

We usually consider 3 affective dimensions:

- valence: the pleasantness of the stimulus
- arousal: the intensity of emotion provoked by the stimulus
- dominance: the degree of control exerted by the stimulus

	Word	Score		Word	Score
Valence	love	1.000	toxic	0.008	
Arousal	happy	1.000	nightmare	0.005	
	elated	0.960	mellow	0.069	
	frenzy	0.965	napping	0.046	
	powerful	0.991	weak	0.045	
	leadership	0.983	empty	0.081	

Desiderata

Concepts or word senses

- Have a complex many-to-many association with words (homonymy, multiple senses)
Have relations with each other
- Synonymy
- Antonymy
- Similarity
- Relatedness
- Connotation

Vector Semantics

Vector
Semantics \& Embeddings

Computational models of word meaning

Can we build representions of word meanings?
Most common approach: vector semantics
marmot: $\quad[0.3,1,5,-1,-2.5,4,10,15]$

Ludwig Wittgenstein

PI \#43:
"The meaning of a word is its use in the language"

Let's define words by their usages

One way to define "usage":
words are defined by their environments (the words around them)

Zellig Harris (1954):
If A and B have almost identical environments we say that they are synonyms.

What does recent English borrowing ongchoi mean?

Suppose you see these sentences:

- Ong choi is delicious sautéed with garlic.
- Ong choi is superb over rice
- Ong choi leaves with salty sauces

And you've also seen these:

- ...spinach sautéed with garlic over rice
- Chard stems and leaves are delicious
- Collard greens and other salty leafy greens

Conclusion:

- Ongchoi is a leafy green like spinach, chard, or collard greens
- We could conclude this based on words like "leaves" and "delicious" and "sauteed"

Ongchoi：Ipomoea aquatica＂Water Spinach＂

空心菜

kangkong
rau muống

Idea 1: Defining meaning by linguistic distribution
Let's define the meaning of a word by its distribution in language use, meaning its neighboring words or grammatical environments.

Idea 2: Meaning as a point in space (Osgood et al. 1957)

3 affective dimensions for a word

- valence: pleasantness
- arousal: intensity of emotion
- dominance: the degree of control exerted

| | Word | Score | Word | Score |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Valence | love | 1.000 | toxic | 0.008 |
| Arousal | happy | 1.000 | nightmare | 0.005 |
| | elated | 0.960 | mellow | 0.069 |
| Dominance | frenzy | 0.965 | napping | 0.046 |
| | powerful | 0.991 | weak | 0.045 |
| | leadership | 0.983 | empty | 0.081 |

NRC VAD Lexicon
(Mohammad 2018)

Hence the connotation of a word is a vector in 3-space

Idea 1: Defining meaning by linguistic distribution
Idea 2: Meaning as a point in multidimensional space

Defining meaning as a point in space based on distribution

Each word = a vector (not just "good" or " w_{45} ")

Similar words are "nearby in semantic space"
We build this space by seeing which words are nearby in text

very good incredibly good
amazing
terrific
fantastic wonderful

How to represent word meaning numerically?

Idea: represent each word using a vector.
These vectors are called "embeddings" because they are embedded into a space.

The standard way to represent meaning in NLP
Every modern NLP algorithm uses embeddings as the representation of word meaning
Fine-grained model of meaning for similarity

Intuition: why vectors?

Consider sentiment analysis:

- With words, a feature is a word identity
- Feature 5: 'The previous word was "terrible"'
- requires exact same word to be in training and test
- With embeddings:
- Feature is a word vector
- 'The previous word was vector [35,22,17...]
- Now in the test set we might see a similar vector [34,21,14]
- We can generalize to similar but unseen words!!!

We'll discuss 2 kinds of embeddings

tf-idf

- Information Retrieval workhorse!
- A common baseline model
- Sparse vectors
- Words are represented by (a simple function of) the counts of nearby words

Word2vec

- Dense vectors
- Representation is created by training a classifier to predict whether a word is likely to appear nearby
- Later we'll discuss extensions called contextual embeddings

Vector
Semantics \& Embeddings

Words and Vectors

Term-document matrix

Each document is represented by a vector of words

	Emma	Persuasion	Sense \& Sensibility
admiral	0	69	0
dance	49	11	21
admire	31	14	18
horse	40	15	24

Visualizing document vectors

Vectors are the basis of information retrieval

	Emma	Persuasion	Sense \& Sensibility	Paradise Lost
admiral	0	69	0	0
dance	49	11	21	27
admire	31	14	18	11
horse	40	15	24	5

Idea for word meaning: Words can be vectors too!!!

	Emma	Persuasion	Sense \& Sensibility	Paradise Lost
admiral	0	69	0	0
dance	49	11	21	27
admire	31	14	18	11
horse	40	15	24	5

More common: word-word matrix (or "term-context matrix")

Two words are similar in meaning if their context vectors are similar
is traditionally followed by cherry pie, a traditional dessert often mixed, such as strawberry rhubarb pie. Apple pie computer peripherals and personal digital assistants. These devices usually a computer. This includes information available on the internet

	aardvark	\ldots	computer	data	result	pie	sugar	\ldots
cherry	0	\ldots	2	8	9	442	25	\ldots
strawberry	0	\ldots	0	0	1	60	19	\ldots
digital	0	\ldots	1670	1683	85	5	4	\ldots
information	0	\ldots	3325	3982	378	5	13	\ldots

Vector
Semantics \& Embeddings

Computing word similarity

Computing word similarity: Dot product and cosine

The dot product between two vectors is a scalar:

$$
\operatorname{dot} \text { product }(v, w)=v \cdot w=\sum_{i=1}^{N} v_{i} w_{i}=v_{1} w_{1}+\ldots+v_{N} w_{N}
$$

Big when 2 vectors have the same valves in the same dimensions

Problem with raw dot-product

Dot product is higher if a vector is longer (has high values in many dimensions).

Vector length:

$$
|v|=\sqrt{\sum_{i=1}^{N} v_{i}^{2}}
$$

Solution: normalize by vector length

Vector length:

$$
\sqrt{\sum_{i=1}^{N} v_{i}^{2}}
$$

Normalized dot product:

$$
\frac{v \cdot w}{|v||w|}=
$$

$$
\frac{\sum_{i=1}^{N} v_{i} w_{i}}{\sqrt{\sum_{i=1}^{N} v_{i}^{2} \sqrt{\sum_{i=1}^{N} w_{i}^{2}}}}
$$

Surprise!

This is the cosine of the angle between the two vectors!

$$
\operatorname{cosine}(\mathbf{v}, \mathbf{w})=\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|}=\frac{\sum_{i=1}^{N} v_{i} w_{i}}{\sqrt{\sum_{i=1}^{N} v_{i}^{2}} \sqrt{\sum_{i=1}^{N} w_{i}^{2}}}
$$

Cosine as a similarity metric

-1 : vectors point in opposite directions
+1: vectors point in same directions
0: vectors are orthogonal

But since raw frequency values are non-negative, the cosine for term-term matrix vectors ranges from 0-1

Cosine examples

	pie	data	computer
cherry	442	8	2
digital	5	1683	1670
information	5	3982	3325

$\cos ($ cherry ,information $)=$ $\cos ($ digital, information $)=$

Visualizing cosine similarity

500

digital
information
$\begin{array}{llllll}500 & 1000 & 1500 & 2000 & 2500 & 3000\end{array}$
Dimension 2: 'computer'

Vector
 Semantics \& Embeddings

Term Frequency - Inverse Document Frequency (TF-IDF)

Take another look at our Austen word frequencies:

	Emma	Persuasion	Sense \& Sensibility
admiral	0	69	0
dance	49	11	21
admire	31	14	18
horse	40	15	24

Raw frequency is a bad representation

- Word counts for Emma are generally higher because it is a longer novel.
- Another issue: some words are so frequent that they aren't very informative: the, it, or they

Solution 1: tf-idf
tf-idf: Term Frequency - Inverse Document Frequency

Term Frequency:

$$
t f_{t, d}=\operatorname{cosht}(t, d)
$$

Inverse Document Frequency:

$$
\begin{array}{r}
i d f_{t}=\frac{N}{d f_{t}} \quad \begin{array}{c}
N=\# \text { of } \\
\text { documents }
\end{array} \\
d f_{t}=\begin{array}{c}
\text { cont of docurnts } \\
\text { in which } t \\
\text { occurs }
\end{array}
\end{array}
$$

Term Frequency

$$
\mathrm{tf}_{t, d}=\operatorname{count}(t, d)
$$

tf(admiral,Persuasion) $=69$
$\mathrm{tf}($ horse,Persuasion $)=15$

	Emma	Persuasion	Sense \& Sensibility
admiral	0	69	0
dance	49	11	21
admire	31	14	18
horse	40	15	24

Inverse Document Frequency

$$
\operatorname{idf}_{t}=\frac{N}{\operatorname{df}_{t}} \quad \begin{array}{ll}
\operatorname{idf}(\text { admiral })=\frac{3}{1} \\
\operatorname{idf}(\text { horse })=3 / 3
\end{array}
$$

	Emma	Persuasion	Sense \& Sensibility
admiral	0	69	0
dance	49	11	21
admire	31	14	18
horse	40	15	24

TF-IDF

$$
w_{t, d}=\mathrm{tf}_{t, d} \times \mathrm{idf}_{t}
$$

tf-idf(admiral, Persuasion) $=64 \times 3=\begin{gathered}180 \mathrm{flz} \\ 192\end{gathered}$ tf-idf(horse,Persuasion) $=15 \times 1=15$

	Emma	Persuasion	Sense \& Sensibility
admiral	0	69	0
dance	49	11	21
admire	31	14	18
horse	40	15	24

What is a document?

Could be a play or a Wikipedia article
But for the purposes of tf-idf, documents can be anything; we often call each paragraph a document!

Vector
 Semantics \& Embeddings

Positive Pointwise Mutual Information (PPMI)

Pointwise Mutual Information

Do events x and y co-occur more than if they were independent?

$$
\operatorname{PMI}(x, y)=\log _{2}\left(\frac{P(x, y)}{P(x) p(y)} \text { as } \begin{array}{l}
\text { Different it } \\
\text { not corlitionaly } \\
\text { independent }
\end{array}\right.
$$

Pointwise Mutual Information

Do events x and y co-occur more than if they were independent?

$$
\operatorname{PMI}(X, Y)=\log _{2} \frac{P(x, y)}{P(x) P(y)}
$$

PMI between two words: (Church \& Hanks 1989)

Do words x and y co-occur more than if they were independent?

$$
\operatorname{PMI}\left(\text { word }_{1}, \text { word }_{2}\right)=\log _{2} \frac{P\left(\text { wood }_{1}, \text { word }_{2}\right)}{P\left(\text { wad }_{1}\right) P\left(\text { wad }_{2}\right)}
$$

Positive Pointwise Mutual Information

- Issue: PMI ranges from $-\infty$ to $+\infty$
- What do negative values mean?
- Things are co-occurring less than we expect by chance
- Unreliable without enormous corpora
- Imagine w1 and w2 whose probability is each 10-6
- Hard to be sure $\mathrm{p}(\mathrm{w} 1, \mathrm{w} 2)$ is significantly different than 10-12

Computing PPMI on a term-context matrix

Matrix F with W rows (words) and C columns (contexts)
f_{ij} is \# of times w_{i} occurs in context c_{j}

$$
p m i_{i j}=\log _{2} \frac{p_{i j}}{p_{i *} p_{i j}} \quad \text { ppmiij}=\left\{\begin{array}{cc}
p m m_{i j} & \text { if } p m m_{i j}>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

Computing PPMI on a term-context matrix

Matrix F with W rows (words) and C columns (contexts) f_{ij} is \# of times w_{i} occurs in context c_{j}
$p m i_{i j}=\log _{2} \frac{p_{i j}}{p_{i^{*}} p_{* j}}$

$$
p_{i j}=\frac{f_{i j}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{i j}}
$$

$$
p_{i^{*}}=\frac{\sum_{j=1}^{c} f_{i j}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{i j}}
$$

$$
p_{*_{j}}=\frac{\sum_{i=1}^{W} f_{i j}}{\sum_{i=1}^{W} \sum_{j=1}^{W} f_{i j}}
$$

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

Computing PPMI on a term-context matrix

Matrix F with W rows (words) and C columns (contexts) f_{ij} is \# of times w_{i} occurs in context c_{j}

$$
p_{i j}=\frac{f_{i j}}{\sum_{i=1}^{w} \sum_{j=1}^{\delta} f_{i j}}
$$

$$
\mathrm{p}(\mathrm{w}=\text { information }, \mathrm{c}=\mathrm{data})=
$$

$$
\mathrm{p}(\mathrm{w}=\text { information })=
$$

$$
\mathrm{p}(\mathrm{c}=\text { data })=
$$

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

$$
p m_{i j}=\log _{2} \frac{p_{i j}}{p_{i^{*}} p_{* j}}
$$

	p(w,context)					
	computer	data	result	pie	sugar	p(w)
cherry	0.0002	0.0007	0.0008	0.0377	0.0021	0.0415
strawberry	0.0000	0.0000	0.0001	0.0051	0.0016	0.0068
digital	0.1425	0.1436	0.0073	0.0004	0.0003	0.2942
information	0.2838	0.3399	0.0323	0.0004	0.0011	0.6575
p(context)	0.4265	0.4842	0.0404	0.0437	0.0052	

pmi(information,data) $=$
$p m i_{i j}=\log _{2} \frac{p_{i j}}{p_{i^{*}} p_{*_{j}}}$

	$\mathbf{p (w , c o n t e x t)}$							$\mathbf{p (w)}$
	computer	data	result	pie	sugar	$\mathbf{p (w)}$		
cherry	0.0002	0.0007	0.0008	0.0377	0.0021	0.0415		
strawberry	0.0000	0.0000	0.0001	0.0051	0.0016	0.0068		
digital	0.1425	0.1436	0.0073	0.0004	0.0003	0.2942		
information	0.2838	0.3399	0.0323	0.0004	0.0011	0.6575		
p(context)	0.4265	0.4842	0.0404	0.0437	0.0052			

pmi(information,data $)=\log _{2}\left(.3399 /\left(.6575^{*} .4842\right)\right)=.0944$
Resulting PPMI matrix (negatives replaced by 0)

	computer	data	result	pie	sugar
cherry	0	0	0	4.38	3.30
strawberry	0	0	0	4.10	5.51
digital	0.18	0.01	0	0	0
information	0.02	0.09	0.28	0	0

Weighting PMI

PMI is biased toward infrequent events

- Very rare words have very high PMI values

Two solutions:

- Give rare words slightly higher probabilities
- Use add-one smoothing (which has a similar effect)

[^0]: ```
 |l
    ```

