
CS342 Computer Security Handout # 8

Prof. Lyn Turbak Wednesday, Nov. 07, 2012

Wellesley College Revised Nov. 09, 2012

Lab 10: Introduction to x86 Assembly

Revisions: Nov. 9 The sos O3.s file on p. 10 was incorrect and has been fixed.

Reading:

Hacking, 0x250, 0x270

Overview

We will now study low-level programming details that are essential for understanding software vulner-
abilities like buffer overflow attacks and format string exploits. You will get exposure to the following:

• Understanding conventions used by compiler to translate high-level programs to low-level assembly code
(in our case, using Gnu C Compiler (gcc) to compile C programs).

• The ability to read low-level assembly code (in our case, Intel x86).

• Understanding how assembly code instructions are represented as machine code.

• Being able to use gdb (the Gnu Debugger) to read the low-level code produced by gcc and understand
its execution.

In tutorials based on this handout, we will learn about all of the above in the context of some simple
examples.

Intel x86 Assembly Language

Since Intel x86 processors are ubiquitous, it is helpful to know how to read assembly code for these
processors.

We will use the following terms: byte refers to 8-bit quantities; short word refers to 16-bit quantities;
word refers to 32-bit quantities; and long word refers to 64-bit quantities.

There are many registers, but we mostly care about the following:

• EAX, EBX, ECX, EDX are 32-bit registers used for general storage.

• ESI and EDI are 32-bit indexing registers that are sometimes used for general storage.

• ESP is the 32-bit register for the stack pointer, which holds the address of the element currently at the
top of the stack. The stack grows “up” from high addresses to low addresses. So pushing an element
on the stack decrements the stack pointer, and popping an element increments the stack pointer.

• EBP is the 32-bit register for the base pointer, which is the address of the current activation frame on
the stack (more on this below).

• EIP is the 32-bit register for the instruction pointer, which holds the address of the next instruction to
execute.

At the end of this handout is a two-page “Code Table” summarizing Intel x86 instructions. The Code
Table uses the standard Intel conventions for writing instructions. But the GNU assembler in Linux uses
the so-called AT&T conventions, which are different. Some examples:

1

AT&T Format Intel Format Meaning

movl $4, %eax movl eax, 4 Load 4 into EAX.

addl %ebx, %eax addl eax, ebx Put sum of EAX and EBX into EAX.

pushl $X pushl [X] Push the contents of memory location
named X onto the stack.

popl %ebp popl ebp Pop the top element off the stack and put
it in EBP.

movl %ecx, -4(%esp) movl [esp - 4] ecx Store contents of ECX into memory at an
address that is 4 less than the contents of
ESP.

leal 12(%ebp), %eax leal eax [ebp + 12] Load into EAX the address that is 12 more
than the contents of EBP.

movl (%ebx,%esi,4), %eax movl eax [ebx + 4*esi] Load into EAX the contents of the mem-
ory location whose address is the sum of
the contents of EBX and four times the
contents of ESI.

cmpl $0, 8(%ebp) cmpl [ebp + 8] 0 Compare the contents of memory at an
address 8 more than the contents of EBP
with 0. (This comparison sets flags in the
machine that can be tested by later in-
structions.)

jg L1 jg L1 Jump to label L1 if last comparison indi-
cated “greater than”.

jmp L2 jmp L2 Unconditional jump to label L2.

call printf call printf Call the printf subroutine.

We will focus on instructions that operate on 32-bit words (which have the l suffix), but there are ways
to manipulate quantities of other sizes (the b suffix operates indicates byte operations and the w suffix
indicates 16-bit-word operations).

2

Typical Calling Conventions for Compiled C Code

The stack is typically organized into a list of activation frames. Each frame has a base pointer that
points to highest address in the frame; since stacks grow from high to low, this is at the bottom of the
frame:1

<local vars for F>

....

<local vars for F>

<base pointer>: <old base pointer (of previous frame)>

----Bottom of frame for F----

<return address for call to F>

<arg 1 for F>

<arg 2 for F>

...

<arg n for F>

<local vars for caller of F>

...

<local vars for caller of F>

<old base pointer>: <older base pointer>

----Bottom of frame for caller of F----

To maintain this layout, the calling convention is as follows:

1. The caller pushes the subroutine arguments on the stack from last to first.

2. The caller uses the call instruction to call the subroutine. This pushes the return address (address
of the instruction after the call instruction) on the stack and jumps to the entry point of the called
subroutine.

3. In order to create a new frame, the callee pushes the old base pointer and remembers the current stack
address as the new base pointer via the following instructions:

pushl %ebp # \ Standard callee entrance

movl %esp, %ebp # /

4. The callee then allocates local variables and performs its computation.

When the callee is done, it does the following to return:

1. It stores the return value in the EAX register.

2. It pops the current activation frame off the stack via:

movl %ebp, %esp

popl %ebp

This pair of instructions is often written as the leave pseudo-instruction.

3. It returns control to the caller via the ret instruction, which pops the return address off the stack and
jumps there.

4. The caller is responsible for removing arguments to the call from the stack.

1We will follow the convention of displaying memory on the page increasing from low to high addresses.

3

Writing Assembly Code by Hand for the SOS Program

Following the above conventions, we can write assembly code by hand for the sum-of-squares program
we studied last time:

/* Contents of the file sos.c */

#include <stdio.h>

/* Calculates the square of integer x */

int sq (int x) {

return x*x;

}

/* Calculates the sum of squares of a integers y and z */

int sos (int y, int z) {

return sq(y) + sq(z);

}

/* Reads two integer inputs from command line

and displays result of SOS program */

int main (int argn, char** argv) {

int a = atoi(argv[1]);

int b = atoi(argv[2]);

printf("sos(%i,%i)=%i\n", a, b, sos(a,b));

}

HANDWRITTEN ASSEMBLY CODE FOR THE SOS PROGRAM (in the file sos.s)

.section .rodata # Begin read-only data segment

.align 32 # Address of following label will be a multiple of 32

.fmt: # Label of SOS format string

.string "sos(%i,%i)=%i\n" # SOS format string

.text # Begin text segment (where code is stored)

.align 4 # Address of following label will be a multiple of 4

sq: # Label for sq() function

pushl %ebp # \ Standard callee entrance

movl %esp, %ebp # /

movl 8(%ebp), %eax # result <- x

imull 8(%ebp), %eax # result <- x*result

leave # \ Standard callee exit

ret # /

.align 4 # Address of following label will be a multiple of 4

sos: # Label for sos() function

pushl %ebp # \ Standard callee entrance

movl %esp, %ebp # /

pushl 8(%ebp) # push y as arg to sq()

call sq # %eax <- sq(y)

movl %eax, %ebx # save sq(y) in %ebx

addl $4, %esp # pop y off stack (not really necessary)

pushl 12(%ebp) # push z as arg to sq()

call sq # %eax <- sq(z)

addl $4, %esp # pop z off stack (not really necessary)

addl %ebx, %eax # %eax <- %eax + %ebx

leave # \ Standard callee exit

ret # /

.align 4 # Address of following label will be a multiple of 4

4

.globl main # Main entry point is visible to outside world

main: # Label for main() function

pushl %ebp # \ Standard callee entrance

movl %esp, %ebp # /

int a = atoi(argv[1])

subl $8, %esp # Allocate space for local variables a and b

movl 12(%ebp), %eax # %eax <- argv pointer

addl $4, %eax # %eax <- pointer to argv[1]

pushl (%eax) # push string pointer in argv[1] as arg to atoi()

call atoi # %eax <- atoi(argv[1])

movl %eax, -4(%ebp) # a <- %eax

addl $4, %esp # pop arg to atoi off stack

int b = atoi(argv[2])

movl 12(%ebp), %eax # %eax <- argv pointer

addl $8, %eax # %eax <- pointer to argv[2]

pushl (%eax) # push string pointer in argv[2] as arg to atoi()

call atoi # %eax <- atoi(argv[2])

movl %eax, -8(%ebp) # b <- %eax

addl $4, %esp # pop arg to atoi off stack

printf("sos(%i,%i)=%d\n", a, b, sos(a,b))#

First calculate sos(a,b) and push it on stack

pushl -8(%ebp) # push b

pushl -4(%ebp) # push a

call sos # %eax <- sos(a,b)

addl $8, %esp # pop args to sos off stack

pushl %eax # push sos(a,b)

Push remaining args to printf

pushl -8(%ebp) # push b

pushl -4(%ebp) # push a

pushl $.fmt # push format string for printf

Now call printf

call printf

addl $16, %esp # pop args to printf off stack (not really necessary)

leave # \ Standard callee exit

ret # /

END OF ASSEMBLY CODE FILE

Here’s how to compile and run our hand-written code:

lynux@cs342-ubuntu-1:~/assembly-intro$ gcc -o sos-by-hand sos-by-hand.s

lynux@cs342-ubuntu-1:~/assembly-intro$./sos-by-hand 3 4

sos(3,4)=25

lynux@cs342-ubuntu-1:~/assembly-intro$./sos-by-hand 10 5

sos(10,5)=125

5

Exercise 1: Create and test an x86 assembly program max-by-hand.s that acts like the max.c program in
figure 1. Some notes:

• The C programs in today’s lab can be found on puma in ~cs342/download/assembly-intro.

• When doing x86 assembly, work on your CS342 Ubuntu VM or the Linux clients (finch, lark, jay,
etc.) rather than the CTF VM, puma, or tempest. These other machines have a different (64-bit rather
than 32-bit) architecture and generate very different x86 assembly for C programs.

• Start with the template sos-by-hand.s from above and make little changes to massage it to have the
right behavior for max.c.

#include <stdio.h>

int max (int x, int y) {

if (x >= y) {

return x;

} else {

return y;

}

}

int main (int argn, char** argv) {

if (argn == 3) {

int a = atoi(argv[1]);

int b = atoi(argv[2]);

printf("max(%i,%i)=%d\n", a, b, max(a,b));

} else {

printf("Usage: max <int1> <int2>\n");

}

}

Figure 1: A C program max.c for finding the maximum of two command line integers.

6

Compiling sos.c to Assembly Code

Writing assembly code by hand is tedious and error prone. This is why compilers were invented! They
automatically translate code that’s written at a higher level than assembly2 into assembly instructions.
These instructions can be assembled into even lower level machine code – the bits that can actually be
executed on a processor like an x86.

We can use gcc to compile sos.c into assembly code as follows:3

lynux@cs342-ubuntu-1:~/intro-to-c$ gcc -S sos.c

This creates the file sos.s shown below. Note that the code is a bit different than what we generated
by hand.

Contents of the assembly file sos.s created by gcc -S sos.c

.file "sos.c"

.text

.globl sq

.type sq, @function

sq:

.LFB0:

.cfi_startproc

pushl %ebp

.cfi_def_cfa_offset 8

.cfi_offset 5, -8

movl %esp, %ebp

.cfi_def_cfa_register 5

movl 8(%ebp), %eax

imull 8(%ebp), %eax

popl %ebp

.cfi_def_cfa 4, 4

.cfi_restore 5

ret

.cfi_endproc

.LFE0:

.size sq, .-sq

.globl sos

.type sos, @function

sos:

.LFB1:

.cfi_startproc

pushl %ebp

.cfi_def_cfa_offset 8

.cfi_offset 5, -8

movl %esp, %ebp

.cfi_def_cfa_register 5

pushl %ebx

subl $4, %esp

movl 8(%ebp), %eax

movl %eax, (%esp)

.cfi_offset 3, -12

2Of course, we know that C is not at that much higher a level than assembly, but I digress ...
3These are the results we get if we compile the code on a 32-bit machine like those in the Linux microfocus cluster. We

get very different results if we compile the code on a 64-bit machine like puma.

7

call sq

movl %eax, %ebx

movl 12(%ebp), %eax

movl %eax, (%esp)

call sq

addl %ebx, %eax

addl $4, %esp

popl %ebx

.cfi_restore 3

popl %ebp

.cfi_def_cfa 4, 4

.cfi_restore 5

ret

.cfi_endproc

.LFE1:

.size sos, .-sos

.section .rodata

.LC0:

.string "sos(%i,%i)=%d\n"

.text

.globl main

.type main, @function

main:

.LFB2:

.cfi_startproc

pushl %ebp

.cfi_def_cfa_offset 8

.cfi_offset 5, -8

movl %esp, %ebp

.cfi_def_cfa_register 5

andl $-16, %esp

subl $32, %esp

movl 12(%ebp), %eax

addl $4, %eax

movl (%eax), %eax

movl %eax, (%esp)

call atoi

movl %eax, 24(%esp)

movl 12(%ebp), %eax

addl $8, %eax

movl (%eax), %eax

movl %eax, (%esp)

call atoi

movl %eax, 28(%esp)

movl 28(%esp), %eax

movl %eax, 4(%esp)

movl 24(%esp), %eax

movl %eax, (%esp)

call sos

movl $.LC0, %edx

movl %eax, 12(%esp)

movl 28(%esp), %eax

movl %eax, 8(%esp)

8

movl 24(%esp), %eax

movl %eax, 4(%esp)

movl %edx, (%esp)

call printf

leave

.cfi_restore 5

.cfi_def_cfa 4, 4

ret

.cfi_endproc

.LFE2:

.size main, .-main

.ident "GCC: (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3"

.section .note.GNU-stack,"",@progbits

Even though the code looks different, it behaves the same way, as demonstrated by compiling it to
machine code:

lynux@cs342-ubuntu-1:~/assembly-intro$ gcc -o sos-from-assembly sos.s

lynux@cs342-ubuntu-1:~/assembly-intro$./sos-from-assembly 3 4

sos(3,4)=25

9

Optimizing sos.c

Invoking gcc with an optimization flag (-O1, -O2, -O3) can create more compact code by using clever
optimizations.

lynux@cs342-ubuntu-1:~/intro-to-c$ gcc -S -O3 -o sos_03.s sos.c

Part of the contents of sos_03.s created by gcc -S -O3 -o sos_03.s sos.c

sq:

.LFB22:

.cfi_startproc

movl 4(%esp), %eax

imull %eax, %eax

ret

.cfi_endproc

.LFE22:

.size sq, .-sq

.p2align 4,,15

.globl sos

.type sos, @function

sos:

.LFB23:

.cfi_startproc

movl 4(%esp), %edx

movl 8(%esp), %eax

imull %edx, %edx

imull %eax, %eax

addl %edx, %eax

ret

.cfi_endproc

.LFE23:

.size sos, .-sos

.section .rodata.str1.1,"aMS",@progbits,1

.LC0:

.string "sos(%i,%i)=%d\n"

.section .text.startup,"ax",@progbits

.p2align 4,,15

.globl main

.type main, @function

main:

.LFB24:

.cfi_startproc

pushl %ebp

.cfi_def_cfa_offset 8

.cfi_offset 5, -8

movl %esp, %ebp

.cfi_def_cfa_register 5

pushl %esi

pushl %ebx

andl $-16, %esp

subl $32, %esp

movl 12(%ebp), %esi

.cfi_offset 3, -16

10

.cfi_offset 6, -12

movl 4(%esi), %eax

movl %eax, (%esp)

call atoi

movl %eax, %ebx

movl 8(%esi), %eax

movl %eax, (%esp)

call atoi

movl %ebx, %ecx

imull %ebx, %ecx

movl %ebx, 8(%esp)

movl $.LC0, 4(%esp)

movl $1, (%esp)

movl %eax, %edx

imull %eax, %edx

movl %eax, 12(%esp)

addl %ecx, %edx

movl %edx, 16(%esp)

call __printf_chk

leal -8(%ebp), %esp

popl %ebx

.cfi_restore 3

popl %esi

.cfi_restore 6

popl %ebp

.cfi_def_cfa 4, 4

.cfi_restore 5

ret

.cfi_endproc

11

Using GDB to Disassemble Code

What if we don’t have the source code to generate assembly code, but only the binary code? Then we
can use the GNU Debugger (gdb) to disassemble the binary, as shown below:

lynux@cs342-ubuntu-1:~/assembly-intro$ gdb sos-from-assembly

GNU gdb (Ubuntu/Linaro 7.4-2012.04-0ubuntu2) 7.4-2012.04

Copyright (C) 2012 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"

and "show warranty" for details.

This GDB was configured as "i686-linux-gnu".

For bug reporting instructions, please see:

<http://bugs.launchpad.net/gdb-linaro/>...

Reading symbols from /home/lynux/assembly-intro/sos-from-assembly...(no debugging symbols found)...done.

(gdb) disassemble sq

Dump of assembler code for function sq:

0x08048414 <+0>: push %ebp

0x08048415 <+1>: mov %esp,%ebp

0x08048417 <+3>: mov 0x8(%ebp),%eax

0x0804841a <+6>: imul 0x8(%ebp),%eax

0x0804841e <+10>: pop %ebp

0x0804841f <+11>: ret

End of assembler dump.

(gdb) disassemble 0x08048414

Dump of assembler code for function sq:

0x08048414 <+0>: push %ebp

0x08048415 <+1>: mov %esp,%ebp

0x08048417 <+3>: mov 0x8(%ebp),%eax

0x0804841a <+6>: imul 0x8(%ebp),%eax

0x0804841e <+10>: pop %ebp

0x0804841f <+11>: ret

End of assembler dump.

(gdb) disassemble sos

Dump of assembler code for function sos:

0x08048420 <+0>: push %ebp

0x08048421 <+1>: mov %esp,%ebp

0x08048423 <+3>: push %ebx

0x08048424 <+4>: sub $0x4,%esp

0x08048427 <+7>: mov 0x8(%ebp),%eax

0x0804842a <+10>: mov %eax,(%esp)

0x0804842d <+13>: call 0x8048414 <sq>

0x08048432 <+18>: mov %eax,%ebx

0x08048434 <+20>: mov 0xc(%ebp),%eax

0x08048437 <+23>: mov %eax,(%esp)

0x0804843a <+26>: call 0x8048414 <sq>

0x0804843f <+31>: add %ebx,%eax

0x08048441 <+33>: add $0x4,%esp

0x08048444 <+36>: pop %ebx

0x08048445 <+37>: pop %ebp

0x08048446 <+38>: ret

End of assembler dump.(gdb)

12

