
CS342 Computer Security Handout # 8
Prof. Lyn Turbak February 11, 2016
Wellesley College Revised February 20, 2016

Password Cracking Exercises

These are notes from the John the Ripper password cracking exercise we did on our Ubuntu
VMs in lecture on Thu. Feb. 11, 2016. The exercises described here have been modified from those
done in lecture to clarify aspects of the password cracking process.

Introduction

In the wendy account of your Ubuntu VM, the John the Ripper password cracking software has
been installed in the directory ~wendy/john-1.7.9-jumbo-7. It has two subdirectories:

1. The subdirectory ~wendy/john-1.7.9-jumbo-7/run contains executables, password lists, and config-
uration files needed to run the cracker.

2. The subdirectory ~wendy/john-1.7.9-jumbo-7/doc contains detailed documentation on installing
and running the cracker, the various cracking mode, understanding the transformation rules,

The following exercises will assume that you’re logged in as wendy and connected to
~wendy/john-1.7.9-jumbo-7/run:

wendy@cs342 -ubuntu -1:~$ cd ~/john -1.7.9 -jumbo -7/ run

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$

Your Ubuntu VM is preconfigured with three user accounts that have the following passwords:

account name password

wendy Tr0ub4dor&3

guest guest

gdome IAmDome

You might also have an account with your own username. You will be changing the passwords
of the guest and gdome accounts several times in these exercises. I recommend you do not
change the passwords of wendy or your personal account, since losing access to these
by forgetting a password can be catastrophic!

By default, the password cracker runs in three consecutive stages:

1. In single crack mode, it will try an extensive set of transformation rules on the account names
and “real” names of each user to generate candidate passwords.

2. In wordlist mode, it will try a much smaller set of transformation rules on each word in the
wordlist (in this case, password.lst) to generate candidate passwords.

3. In incremental mode, it will will use a “ brute force” algorithm to generate all strings up to
a certain length (by default this is 8) to generate candidate passwords.

We will explore these modes individually before we try them together.

1

Exercise 1: Password Cracking in Wordlist Mode

Step 1: Configure john.conf

We will first experiment with wordlist mode. The transformation rules for wordlist mode are
specified in the run directory in in john.conf, which in our original Ubuntu VMs is a symbolic
link to one of two several possible files:

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ ls -al john.conf*

lrwxrwxrwx 1 wendy wendy 14 Feb 19 13:40 john.conf ->

john.conf.single -rules -in-wordlist

-rw-rw-r-- 1 wendy wendy 41327 Feb 16 12:18 john.conf.orig

-rw-rw-r-- 1 wendy wendy 46296 Feb 10 01:15 john.conf.single -rules -in-wordlist

If john.conf is already a link to john.conf.orig, you’re ready for this exercise. But if not, you’ll
need to change it as follows:

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ rm john.conf

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ ln -s john.conf.orig john.conf

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ ls -al john.conf*

lrwxrwxrwx 1 wendy wendy 14 Feb 19 16:32 john.conf -> john.conf.orig

-rw-rw-r-- 1 wendy wendy 41327 Feb 16 12:18 john.conf.orig

-rw-rw-r-- 1 wendy wendy 46296 Feb 10 01:15 john.conf.single -rules -in-wordlist

Step 2: Save john.pot and john.rec

John stores cracked passwords in the file john.pot and the state of the current cracking process
in john.rec. If you’ve already done some password cracking, you don’t want the state in these
files to influence the results of the experiments in this handout, but you don’t want to lose this
state either. If you have a john.pot and/or john.rec file, rename them as shown below, and later
restore them (as described in the last section of this handout). If you don’t have a john.pot or
john.rec file, go to the next step.

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ ls -al john.pot

-rw------- 1 wendy wendy 436 Feb 18 07:30 john.pot

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ mv john.pot john.pot.saved

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ ls -al john.pot.*

-rw------- 1 wendy wendy 436 Feb 18 07:30 john.pot.saved

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ ls -al john.rec

-rw------- 1 wendy wendy 84 Feb 18 19:14 john.rec

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ mv john.rec john.rec.saved

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ ls -al john.rec*

-rw------- 1 wendy wendy 84 Feb 18 19:14 john.rec.saved

Step 3: Review the word lists

There are several wordlists for password cracking in the run directory:

• tiny.lst is a very small list of 14 words used for exercises like this one. It contains the following
words. Like all the wordlists, it contains one word per line.

password

dog

123

abc123

computer

2

zephyr

8675301

scoobydoo

cat in the hat

Chris

Elizabeth

HARLEY

Tr0ub4dor \&3

"#a@B.c?!"

• password.lst is a list of about 3500 common passwords.

• big.lst is a list with over 5 million entries.

Step 4: Change the passwords of guest and gdome

To begin this exercise, use sudo passwd to change the password of guest and gdome to be very
simple transformations of a word in tiny.list (e.g., capitalizing the first character or all characters,
reversal, adding a 1 a the end of the word). Do not change wendy’s password, which is already one
of the entries in tiny.list.

For concreteness, suppose we change guest’s password to retupmoc and gdome’s password to
Zephyring.

Step 5: Create the unshadowed passwd file

To run the password cracker, it’s necessary to create a single file that has all the relevant information
of both /etc/passwed and /etc/shadow. This is accomplished with the unshadow command:

sudo ./ unshadow /etc/passwd /etc/shadow > unshadowed1

If you get an AVX error when executing the unshadow command, then, as wendy, open a
terminal window and execute the following two commands:

cd ~/john-1.7.9-jumbo-7/src

sudo make clean linux-x86-any

When this completes, you should be able to execute the unshadow command with-
out an error.

Although it’s not necessary to examine the unshadowed1 file, below are some relevant lines. Note
that each account line now includes a salted and hashed password.

root:$6$6BdRbSEX$V6ip72A9tR5vhrKwyAU /8 GQvwtU0/gEpt78diQLM9HGKJIrE35Z8fers9.D99DVb

3E0xGZGH2KQTa2Mv/ViNA /:0:0: root:/root:/bin/bash

wendy:6FoFIUVCi$/FUkEldzfdJXMefmv/s76m4wRpeZPnHjsVdJ9pO.QgKWuZmVcjt5J53lZ8Sifj9

Q3Pm6n6ukR9p8A143mnE2Q0 :1000:1000: Wendy ,,,:/home/wendy:/bin/bash

gdome:6qLRfg4g2$41mUIpCI.UmSDf5Gyr3Hu8yAgvNj5iUZ1aDfHwgpspjWFzC59Wc4xwvwmpBVXEm

4JIq3whqI0ddpiJXI056dB0 :1001:1002: Georgia Dome ,,,:/home/gdome:/bin/bash

guest:6uIJ28SVB$LY .0 b2IbYZgbhrskD1hXqglt6.a6piUWFS1bTPN.XKnT6SJg/B8fux09lK6lSf/

O7oJqDkUFMfLv80lOsmRrN /:1100:1100: guest:/home/guest:/bin/sh

3

Step 6: Run the Password Cracker in Wordlist Mode

Now we run the password cracker in wordlist mode using tiny.lst as our wordlist on the unshad-
owed file:

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$./john --wordlist=tiny.lst --rules

unshadowed1

Warning: detected hash type "sha512crypt", but the string is also recognized as

"crypt"

Use the "--format=crypt" option to force loading these as that type instead

Loaded 4 password hashes with 4 different salts (sha512crypt [32/32])

Tr0ub4dor &3 (wendy)

retupmoc (guest)

guesses: 2 time: 0:00:00:02 78.34% (ETA: Fri Feb 19 19:29:06 2016) c/s: 248

trying: 3harley

Zephyring (gdome)

guesses: 3 time: 0:00:00:03 DONE (Fri Feb 19 19:29:07 2016) c/s: 245 trying:

Harleying

Use the "--show" option to display all of the cracked passwords reliably

As the cracker finds a password, it prints it out. It finds wendy’s and guest’s passwords almost
immediately, and only takes a short while to find gdome’s. The lines that begin with guesses were
printed when I hit the space bar. They show the current candidate password being tried, as well
as how many cracks per second (c/s) the cracker is trying.

In this case it found 3 of 4 passwords (the 4th is for user root, which it did not find).

Exercise 2: Understanding Wordlist Transformation Rules

How did the password cracker transform the words in tiny.list? It used a set of Wordlist mode
rules that are specified in john.conf.orig in a section labeled [List.Rules:Wordlist] (figure 1).

Each of the rules is specified by a line written in an obscure language for describing transfor-
mations on strings. The full details of this language are described in the doc/RULES file. It is not
necessary to understand all the details, but here are a few examples to give you an understanding
of what rules look like:

• The rule : means to make no changes to the word

• The rule -c >3 !?X l Q means

-c: if the hash being used is case-sensitive (and the one Ubuntu uses is)

>3: and the word is has more than 3 characters

!?X: and the word contains only alphanumeric characters

l: then lowercase the word

Q: but only add it to the resulting word list if if isn’t already there.

• The rule -c <* >2 !?A c $1 means

-c: if the hash being used is case-sensitive

(<*: and the word is smaller than the maximum system-specified length

>2: and the word has more than 2 characters

4

Wordlist mode rules

[List.Rules:Wordlist]

Try words as they are

:

Lowercase every pure alphanumeric word

-c >3 !?X l Q

Capitalize every pure alphanumeric word

-c (?a >2 !?X c Q

Lowercase and pluralize pure alphabetic words

<* >2 !?A l p

Lowercase pure alphabetic words and append ’1’

<* >2 !?A l $1

Capitalize pure alphabetic words and append ’1’

-c <* >2 !?A c $1

Duplicate reasonably short pure alphabetic words (fred -> fredfred)

<7 >1 !?A l d

Lowercase and reverse pure alphabetic words

>3 !?A l M r Q

Prefix pure alphabetic words with ’1’

>2 !?A l ^1

Uppercase pure alphanumeric words

-c >2 !?X u Q M c Q u

Lowercase pure alphabetic words and append a digit or simple punctuation

<* >2 !?A l $[2!37954860.?]

Words containing punctuation , which is then squeezed out , lowercase

/?p @?p >3 l

Words with vowels removed , lowercase

/?v @?v >3 l

Words containing whitespace , which is then squeezed out , lowercase

/?w @?w >3 l

Capitalize and duplicate short pure alphabetic words (fred -> FredFred)

-c <7 >1 !?A c d

Capitalize and reverse pure alphabetic words (fred -> derF)

-c <+ >2 !?A c r

Reverse and capitalize pure alphabetic words (fred -> Derf)

-c >2 !?A l M r Q c

Lowercase and reflect pure alphabetic words (fred -> fredderf)

<7 >1 !?A l d M ’l f Q

Uppercase the last letter of pure alphabetic words (fred -> freD)

-c <+ >2 !?A l M r Q c r

Prefix pure alphabetic words with ’2’ or ’4’

>2 !?A l ^[24]

Capitalize pure alphabetic words and append a digit or simple punctuation

-c <* >2 !?A c $[2!3957468.?0]

Prefix pure alphabetic words with digits

>2 !?A l ^[379568]

Capitalize and pluralize pure alphabetic words of reasonable length

-c <* >2 !?A c p

Lowercase/capitalize pure alphabetic words of reasonable length and convert:

crack -> cracked , crack -> cracking

-[:c] <* >2 !?A \p1[lc] M [PI] Q

Try the second half of split passwords

-s x**

-s-c x** M l Q

Figure 1: The default Wordlist mode rules in john.conf.

5

!?A: and the word contains only alphabetic characters

c: then capitalize the word

$1: and append to the end of it the digit 1.

• The rule -c <* >2 !?A c $[2!3957468.?0] is a shorthand for twelve separate rules that result
from choosing one of the twelve characters delimited by the square brackets. For example:

-c <* >2 !?A c $2

-c <* >2 !?A c $!

...

-c <* >2 !?A c $?

-c <* >2 !?A c $0

Thankfully, each of the wordlist rules in figure 1 is preceded by a comment summarizing what it
does. But not all rules (especially the ones for single crack mode, see below) are so well-commented,
so it’s nice to have another way to understand what the rules are doing.

Fortunately, we can gain insight into this process by executing the following command, which
runs all the transformation rules on the words in tiny.lst and writes all the transformed words
to tiny-transformed.txt.

./john --wordlist=tiny.lst --rules --stdout > tiny -transformed.txt

The resulting file has 416 words. You should create and study this file on your Ubunutu VM,
and match up the output to the sequence of rules in figure 1. For example, the first 14 words
in tiny-transformed.txt are the result of the do-nothing rule :, so these are just the 14 words
unchanged from tiny.lst. The next three words

chris

elizabeth

harley

result from the lowercasing rule, which only adds results to the wordlist if they’re not already there.
The next seven words

Password

Dog

Abc123

Computer

Zephyr

Scoobydoo

Harley

result from capitalizing alphanumeric words that begin with a letter. Note that because cat in the

hat includes spaces, it is not alphanumeric, and so is not transformed. Also note that “capitalizing”
HARLEY yields Harley.

You should examine the rest of tiny-transformed.txt to see how it matches up with the rules
in figure 1.

Keep in mind that the rules in figure 1 are all the rules that are applied to words in the word
list. There aren’t many of them! So there are lots of transformations on wordlist words that will
never be attempted by the password cracker with this default rules, such as reversing a word and
adding a digit, or using leetspeak transformations like 3 for e, 4 for a, etc. Of course, nothing
prevents a determine hacker from extending the default wordlist rules with many more.

6

Exercise 3: Password Cracking in Single Crack Mode

Now we’re ready to try password cracking in single-crack mode, which uses transformations on
combinations of the account name and other user information from the /etc/passwd file.

Step 1: Add two users to /etc/passwd

To illustrate the complex behavior of single crack mode, we’ll add the following two lines to
/etc/passwd:

cello:x:1200:1200: Alex Smith:/home/cello:/bin/bash

violin:x:1201:1201: Mary Ruth Jones :/home/violin :/bin/bash

Use sudo emacs -nw to create an Emacs editor with root privileges for making these changes to
/etc/passwd. This editor window will be within the terminal and will not have GUI features. If
you prefer a GUI version of Emacs, execute the following two lines instead:

sudo su -

emacs &

Step 2: Change passwords

Now let’s use sudo passwd to change the passwords of users guest, gdome, cello, and violin to
be related to their account name or real name. Here are some ideas, but you should experiment
with others:

guest password: tseug

gdome password: !domegdome!

cello password: acello97

violin password: jonesmary2019

Step 3: Make a new unshadowed file

We’ll need to make a new unshadowed password file for running the password cracker:

sudo ./ unshadow /etc/passwd /etc/shadow > unshadowed2

Step 4: Remove john.pot

We don’t need the john.pot file that recorded the passwords from our previous experiment, so
delete it from the run directory:

rm john.pot

Step 5: Run the Password Cracker in Single Crack Mode

Now we run the password cracker in single crack mode on unshadowed2.

./john --single unshadowed2

After executing the command, keep hitting the space bar to see candidates that the cracker is
trying, For example, figure 2 shows some candidates from a sample run that is able to crack all
four passwords from above.

7

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$./john --single unshadowed2

Warning: detected hash type "sha512crypt", but the string is also recognized as "crypt"

Use the "--format=crypt" option to force loading these as that type instead

Loaded 6 password hashes with 6 different salts (sha512crypt [32/32])

guesses: 0 time: 0:00:00:00 0.73% (ETA: Sat Feb 20 12:46:18 2016) c/s: 254 trying: Wwend

guesses: 0 time: 0:00:00:01 1.20% (ETA: Sat Feb 20 12:47:41 2016) c/s: 252 trying: asmit

tseug (guest)

guesses: 1 time: 0:00:00:02 1.66% (ETA: Sat Feb 20 12:48:18 2016) c/s: 255 trying: JonesruthJonesruth

guesses: 1 time: 0:00:00:03 2.31% (ETA: Sat Feb 20 12:48:27 2016) c/s: 259 trying: YRAMSENOJ

guesses: 1 time: 0:00:00:04 2.86% (ETA: Sat Feb 20 12:48:37 2016) c/s: 258 trying: elloA

guesses: 1 time: 0:00:00:06 5.45% (ETA: Sat Feb 20 12:48:08 2016) c/s: 261 trying: iolinjones

guesses: 1 time: 0:00:00:07 6.56% (ETA: Sat Feb 20 12:48:04 2016) c/s: 262 trying: gdomegeorgia2

guesses: 1 time: 0:00:00:08 7.02% (ETA: Sat Feb 20 12:48:11 2016) c/s: 263 trying: jmary7

guesses: 1 time: 0:00:00:10 7.85% (ETA: Sat Feb 20 12:48:25 2016) c/s: 264 trying: smithalexd

guesses: 1 time: 0:00:00:15 9.98% (ETA: Sat Feb 20 12:48:48 2016) c/s: 266 trying: jviolin#

guesses: 1 time: 0:00:00:18 11.18% (ETA: Sat Feb 20 12:48:59 2016) c/s: 267 trying: celloalex;

guesses: 1 time: 0:00:00:24 13.67% (ETA: Sat Feb 20 12:49:13 2016) c/s: 268 trying: Celloa

guesses: 1 time: 0:00:00:25 14.04% (ETA: Sat Feb 20 12:49:16 2016) c/s: 267 trying: Gdomedomee

guesses: 1 time: 0:00:00:27 14.97% (ETA: Sat Feb 20 12:49:18 2016) c/s: 268 trying: Jruthn

guesses: 1 time: 0:00:00:28 15.34% (ETA: Sat Feb 20 12:49:20 2016) c/s: 268 trying: Jonest

guesses: 1 time: 0:00:00:31 16.63% (ETA: Sat Feb 20 12:49:24 2016) c/s: 268 trying: Violin)

guesses: 1 time: 0:00:00:36 18.66% (ETA: Sat Feb 20 12:49:30 2016) c/s: 268 trying: Jonesmary}

guesses: 1 time: 0:00:00:38 19.77% (ETA: Sat Feb 20 12:49:30 2016) c/s: 268 trying: emodg7

guesses: 1 time: 0:00:00:40 20.60% (ETA: Sat Feb 20 12:49:32 2016) c/s: 268 trying: CSMITH6

guesses: 1 time: 0:00:00:42 21.44% (ETA: Sat Feb 20 12:49:33 2016) c/s: 268 trying: Georgiadome !!

guesses: 1 time: 0:00:00:45 23.56% (ETA: Sat Feb 20 12:49:29 2016) c/s: 268 trying: 4l3xc3llo

guesses: 1 time: 0:00:00:47 28.55% (ETA: Sat Feb 20 12:49:02 2016) c/s: 268 trying: asmithcello

guesses: 1 time: 0:00:00:53 31.05% (ETA: Sat Feb 20 12:49:08 2016) c/s: 268 trying: 4cello

guesses: 1 time: 0:00:00:54 31.51% (ETA: Sat Feb 20 12:49:09 2016) c/s: 268 trying: 9vjones

guesses: 1 time: 0:00:00:58 33.27% (ETA: Sat Feb 20 12:49:12 2016) c/s: 269 trying: Qjonesruth

guesses: 1 time: 0:00:01:00 34.10% (ETA: Sat Feb 20 12:49:13 2016) c/s: 269 trying: Zsmithalex

guesses: 1 time: 0:00:01:02 34.84% (ETA: Sat Feb 20 12:49:15 2016) c/s: 269 trying: IgGeorgia

guesses: 1 time: 0:00:01:04 35.67% (ETA: Sat Feb 20 12:49:17 2016) c/s: 269 trying: RRuth

guesses: 1 time: 0:00:01:06 36.41% (ETA: Sat Feb 20 12:49:19 2016) c/s: 269 trying: YSAlex

guesses: 1 time: 0:00:01:09 37.61% (ETA: Sat Feb 20 12:49:21 2016) c/s: 269 trying: .georgiagdome

guesses: 1 time: 0:00:01:12 38.90% (ETA: Sat Feb 20 12:49:23 2016) c/s: 269 trying: ‘alexsmith

guesses: 1 time: 0:00:01:13 39.37% (ETA: Sat Feb 20 12:49:23 2016) c/s: 269 trying: themary

guesses: 1 time: 0:00:01:15 40.66% (ETA: Sat Feb 20 12:49:22 2016) c/s: 269 trying: drSmith

guesses: 1 time: 0:00:01:17 41.95% (ETA: Sat Feb 20 12:49:21 2016) c/s: 269 trying: 4jruths

guesses: 1 time: 0:00:01:20 43.25% (ETA: Sat Feb 20 12:49:22 2016) c/s: 269 trying: C_alex

guesses: 1 time: 0:00:01:23 44.82% (ETA: Sat Feb 20 12:49:23 2016) c/s: 269 trying: onesmaryj

guesses: 1 time: 0:00:01:26 46.95% (ETA: Sat Feb 20 12:49:21 2016) c/s: 269 trying: JonesviolIn

guesses: 1 time: 0:00:01:29 49.26% (ETA: Sat Feb 20 12:49:18 2016) c/s: 269 trying: Wendywndy

guesses: 1 time: 0:00:01:32 52.49% (ETA: Sat Feb 20 12:49:13 2016) c/s: 269 trying: a.lexsmith

guesses: 1 time: 0:00:01:35 53.78% (ETA: Sat Feb 20 12:49:14 2016) c/s: 269 trying: jones90

acello97 (cello)

guesses: 2 time: 0:00:01:38 55.26% (ETA: Sat Feb 20 12:49:15 2016) c/s: 269 trying: jonesmary05

guesses: 2 time: 0:00:01:41 56.93% (ETA: Sat Feb 20 12:49:15 2016) c/s: 269 trying: Violinmary94

guesses: 2 time: 0:00:01:44 58.50% (ETA: Sat Feb 20 12:49:15 2016) c/s: 269 trying: dgdome71

guesses: 2 time: 0:00:01:46 59.70% (ETA: Sat Feb 20 12:49:15 2016) c/s: 269 trying: ruthviolin84

guesses: 2 time: 0:00:01:49 61.36% (ETA: Sat Feb 20 12:49:15 2016) c/s: 269 trying: Jviolin72

guesses: 2 time: 0:00:01:55 64.69% (ETA: Sat Feb 20 12:49:15 2016) c/s: 269 trying: jmaryH

guesses: 2 time: 0:00:01:59 66.91% (ETA: Sat Feb 20 12:49:15 2016) c/s: 269 trying: ViolinjonesG

!domegdome! (gdome)

guesses: 3 time: 0:00:02:05 70.51% (ETA: Sat Feb 20 12:49:15 2016) c/s: 269 trying: %wendywendy%

guesses: 3 time: 0:00:02:08 72.82% (ETA: Sat Feb 20 12:49:13 2016) c/s: 269 trying: ruthjones69

guesses: 3 time: 0:00:02:11 75.23% (ETA: Sat Feb 20 12:49:12 2016) c/s: 269 trying: ruth55

guesses: 3 time: 0:00:02:14 77.54% (ETA: Sat Feb 20 12:49:10 2016) c/s: 269 trying: Jones40

guesses: 3 time: 0:00:02:16 79.11% (ETA: Sat Feb 20 12:49:09 2016) c/s: 269 trying: Ruthjones57

guesses: 3 time: 0:00:02:19 81.42% (ETA: Sat Feb 20 12:49:08 2016) c/s: 269 trying: Wendywendy777

guesses: 3 time: 0:00:02:22 83.82% (ETA: Sat Feb 20 12:49:07 2016) c/s: 269 trying: maryjones00000

guesses: 3 time: 0:00:02:25 86.13% (ETA: Sat Feb 20 12:49:06 2016) c/s: 269 trying: maryjones333333

guesses: 3 time: 0:00:02:27 88.81% (ETA: Sat Feb 20 12:49:03 2016) c/s: 269 trying: ruthmary1970

guesses: 3 time: 0:00:02:30 91.12% (ETA: Sat Feb 20 12:49:02 2016) c/s: 269 trying: wendy1993

jonesmary2019 (violin)

guesses: 4 time: 0:00:02:33 94.26% (ETA: Sat Feb 20 12:49:00 2016) c/s: 269 trying: wendywendy1961

guesses: 4 time: 0:00:02:34 DONE (Sat Feb 20 12:48:52 2016) c/s: 269 trying: root1900

Figure 2: Transcript of a single crack mode run that found four passwords. Lines beginning
guesses: were printed out each time the space bar was pressed. Blank lines have been edited out.

8

Exercise 4: Understanding Single Crack Transformation Rules

We’d like to know exactly the sequence of words that are tried in single crack mode. Sadly, the
--stdout option does not work in --single mode, so John does not provide a way to see these
like it does with the transformation of words in a word list.

However, based on candidates seen in transcripts like figure 2, we can reverse engineer much of
what single crack mode does. It appears that this mode does the following for each user:

• splits the user information on spaces and lowercases the results. E.g. Alex Smith becomes the
two words alex and smith, and Mary Ruth Jones becomes the three words mary, ruth and
jones.

• adds to the single mode wordlist the following:

– base words consisting of the account name and each of the lowercased split words from the
user info. For account cello:

cello

alex

smith

– all concatenations of the first letter of one base word and a whole other based word. In
this case:

calex

csmith

acello

asmith

scello

salex

– all concatenations of distinct pairs of base words. In this case:

celloalex

cellosmith

alexcello

alexsmith

smithcello

smithalex

The above process is repeated for each user, and all the words are collected into a single word
list for single crack mode. Then that word list is processed by the single crack mode transformation
rules in the part of john.conf that begins with [List.Rules:Single]. This section has way more
rules than the rule section for regular wordlists. Unfortunately, they are mostly uncommented, and
can be challenging to understand.

For example the rule -[:c] l /[aelos] s\0\p[4310$] (?\p1[za] \p1[:c] is a compressed way to
express ten separate leetspeak rules, the first of which is “Lowercase the word. If the word contains
an a, replace all occurrences of a by 4.” There are similar rules for transforming e to 3, l to 1, o to
0, and s to $. Additionally, each such rule has a variant in which the first character of the resulting
word is capitalized if it’s alphabetic. Note that this rule replaces only one specific character by its
leetspeak equivalent. Other rules are necessary to replace multiple characters in the same word.

To get a better idea of what these rules do, we can create a new version of john.config.orig
named john.config..single-rules-only in which we replace the section labeled [List.Rules:Wordlist]

by the rules in [List.Rules:Single]. Then we can run John in wordlist mode with the --stdout

9

option on a handcrafted wordlist based on /etc/passwd to see all the transformations. The steps
to do this are detailed below.

Step 1: Download john.config..single-rules-only

The file john.config..single-rules-only mentioned above is in the cs342 download folder on
cs.wellesley.edu. In the run directory, download it as follows:

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ scp -r

gdome@cs.wellesley.edu:/home/cs342/download/john.conf.single -rules -only .

Step 2: Install john.config..single-rules-only as john.conf

For this experiment, we need to change john.conf to john.config.single-rules-only. Do this
as follows:

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ rm john.conf

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ ln -s john.conf.single -rules -only

john.conf

Step 3: Create cello.lst

For our single crack experiment, we’ll use a word list derived for user Alex Smith with account
cello. In the run directory, make a file cello.lst with the following 15 lines:

cello

alex

smith

calex

csmith

acello

asmith

scello

salex

celloalex

cellosmith

alexcello

alexsmith

smithcello

smithalex

Step 4: Run the cracker

Now we run the password cracker in wordlist mode on cello.lst with the --stdout option:

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$./john --wordlist=cello.lst

--rules --stdout > cello -transformed.txt

words: 12835 time: 0:00:00:00 DONE (Sat Feb 20 18:19:17 2016) w/s: 183357

current: smithalex1900

Step 5: Study cello-transformed.txt

Remarkably, the cello-transformed.txt file contains 12,835 words — and that’s just for one user!
You should scroll through it to get a sense for the kinds of transformations applied in single crack
mode.

10

It’s worth noting that there are some single crack rules that are not applied in wordlist mode.
Rules beginning with -p are rules that work on “word pairs”. These rules are only active in single
crack mode and cannot be simulated in wordlist mode:

Some word pair rules ...

johnsmith -> JohnSmith , johnSmith

-p-c (?a 2 (?a c 1 [cl]

JohnSmith -> john smith , john_smith , john -smith

-p 1 <- $[_\-] + l

JohnSmith -> John smith , John_smith , John -smith

-p-c 1 <- (?a c $[_\-] 2 l

JohnSmith -> john Smith , john_Smith , john -Smith

-p-c 1 <- l $[_\-] 2 (?a c

johnsmith -> John Smith , John_Smith , John -Smith

-p-c 1 <- (?a c $[_\-] 2 (?a c

Applying different simple rules to each of the two words

-p-[c:] 1 \p1[ur] 2 l

-p-c 2 (?a c 1 [ur]

-p-[c:] 1 l 2 \p1[ur]

-p-c 1 (?a c 2 [ur]

If you search through cello-transformed.txt, you won’t find transformations like AlexSmith,
Alex Smith, alex-smith, even though these transformations would be generated within single crack
mode.

Exercise 5: Password Cracking in Incremental Mode

To test incremental mode, we can used the invocation

./john --incremental unshadowed2

Figure 3 shows a transcript of a run in incremental mode.
In this mode, the cracker will generate all possible combinations of characters up to a given

length (by default, the length is 8). However, as is evident from the transcript, it generates the
candidates in a nonobvious order. You can read more about incremental mode and how to control
it in doc/MODES and doc/CONFIG.

All Together Now

To run all three mode of the cracker (single crack mode, followed by wordlist mode, followed by
incremental mode), just invoke ./john on the unshadowed file. This is controlled by settings in the
john.conf file, so before doing this, you’ll first want to set john.conf back to john.conf.orig,
and then possibly edit it.

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ rm john.conf

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ ln -s john.conf.orig john.conf

For example, the wordlist used by ./john is specified in a line near the top of john.conf.orig.
To use password.lst, for example, this line should read:

Wordlist = $JOHN/password.lst

As before, you can see the current candidate being tested by pressing the space bar.
To stop the cracker in such a way that you can restart it, type Ctrl-c Ctr-c. This saves the

state of the cracker in the file john.rec. To restart the cracker from the saved point, use

./john --restore

11

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$./john --incremental

unshadowed2

Warning: detected hash type "sha512crypt", but the string is also

recognized as "crypt"

Use the "--format=crypt" option to force loading these as that type

instead

Loaded 6 password hashes with 6 different salts (sha512crypt [32/32])

Remaining 2 password hashes with 2 different salts

guesses: 0 time: 0:00:00:01 0.00% c/s: 246 trying: 0064805

guesses: 0 time: 0:00:00:02 0.00% c/s: 253 trying: steetine

guesses: 0 time: 0:00:00:03 0.00% c/s: 255 trying: 49382118

guesses: 0 time: 0:00:00:04 0.00% c/s: 256 trying: morris

guesses: 0 time: 0:00:00:05 0.00% c/s: 257 trying: sanada

guesses: 0 time: 0:00:00:06 0.00% c/s: 258 trying: pig

guesses: 0 time: 0:00:00:07 0.00% c/s: 259 trying: salar

guesses: 0 time: 0:00:00:08 0.00% c/s: 259 trying: allier

guesses: 0 time: 0:00:00:09 0.00% c/s: 259 trying: artsis

guesses: 0 time: 0:00:00:10 0.00% c/s: 258 trying: berom

guesses: 0 time: 0:00:00:11 0.00% c/s: 258 trying: 0100379

guesses: 0 time: 0:00:00:12 0.00% c/s: 258 trying: 0139141

guesses: 0 time: 0:00:00:13 0.00% c/s: 258 trying: shilert

guesses: 0 time: 0:00:00:14 0.00% c/s: 259 trying: sheenes

guesses: 0 time: 0:00:00:15 0.00% c/s: 259 trying: spiel

guesses: 0 time: 0:00:00:16 0.00% c/s: 259 trying: bugbr

guesses: 0 time: 0:00:00:17 0.00% c/s: 260 trying: santine

guesses: 0 time: 0:00:00:18 0.00% c/s: 260 trying: 0239986

guesses: 0 time: 0:00:00:19 0.00% c/s: 261 trying: salanta

guesses: 0 time: 0:00:00:20 0.00% c/s: 260 trying: suness

guesses: 0 time: 0:00:00:21 0.00% c/s: 260 trying: sussey

guesses: 0 time: 0:00:00:22 0.00% c/s: 260 trying: mereed

guesses: 0 time: 0:00:00:23 0.00% c/s: 260 trying: menisa

guesses: 0 time: 0:00:00:24 0.00% c/s: 260 trying: asd102

guesses: 0 time: 0:00:00:25 0.00% c/s: 261 trying: assep1

guesses: 0 time: 0:00:00:26 0.00% c/s: 261 trying: 0224953

guesses: 0 time: 0:00:00:27 0.00% c/s: 261 trying: rji

guesses: 0 time: 0:00:00:28 0.00% c/s: 261 trying: stephie

guesses: 0 time: 0:00:00:29 0.00% c/s: 261 trying: 0078740

guesses: 0 time: 0:00:00:30 0.00% c/s: 261 trying: staffic

guesses: 0 time: 0:00:00:31 0.00% c/s: 261 trying: marting

guesses: 0 time: 0:00:00:32 0.00% c/s: 261 trying: macking

guesses: 0 time: 0:00:00:33 0.00% c/s: 261 trying: mictus1

guesses: 0 time: 0:00:00:34 0.00% c/s: 261 trying: minden1

guesses: 0 time: 0:00:00:35 0.00% c/s: 261 trying: morthen

guesses: 0 time: 0:00:00:36 0.00% c/s: 261 trying: moottlE

guesses: 0 time: 0:00:00:37 0.00% c/s: 261 trying: bonet

guesses: 0 time: 0:00:00:38 0.00% c/s: 261 trying: stonny

guesses: 0 time: 0:00:00:39 0.00% c/s: 261 trying: alivo1

guesses: 0 time: 0:00:00:40 0.00% c/s: 262 trying: shish2

Figure 3: Transcript of a incremental mode. Lines beginning guesses: were printed out each time
the space bar was pressed. Blank lines have been edited out.

12

Restoring Your Settings

After performing the experiments on this handout, it’s important to restore the state of the password
cracker to its original state. You can do that via the following steps.

Step 1: Restore john.conf to john.conf.orig

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ rm john.conf

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ ln -s john.conf.orig john.conf

Step 2: Restore john.pot to john.rec

If you saved the files john.pot to john.rec earlier, you should restore them now:

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ cp \texttt{john.pot.saved}

\texttt{john.pot}

wendy@cs342 -ubuntu -1:~/john -1.7.9 -jumbo -7/ run$ cp \texttt{john.rec.saved}

\texttt{john.rec}

I suggest using cp rather than mv in the last step so that you still have the .saved files should you
want to use them again.

13

