Lecture 10: Global Snapshots

Global snapshot problem

- Record the state of every process and channel at an instance of time.

- System model:
 - N process (machines)
 - 2 channels between every 2 processes
 - One in each direction
 - No shared memory
 - No global clock
 - Communication is FIFO
 - No messages are ever lost, but there could be some delay
Consistent global state

- The global state of a distributed system is a collection of the local states of the processes and the channels.
- Notationally, global state \(GS \) is defined as,
\[
GS = \bigcup_i L Si, \bigcup_i SC_i
\]
- A global state \(GS \) is a consistent global state iff it satisfies the following two conditions:

 C1: \(\text{send}(m_{ij}) \in LS_i \Rightarrow m_{ij} \in SC_i \bigoplus \text{rec}(m_{ij}) \in LS_j \) (\(\bigoplus \) is Ex-OR operator.)

 C2: \(\text{send}(m_{ij}) \notin LS_i \Rightarrow m_{ij} \notin SC_i \land \text{rec}(m_{ij}) \notin LS_j \).

Figure 4.1: An Interpretation in Terms of a Cut.
Issues in recording a global state

The following two issues need to be addressed:

I1: How to distinguish between the messages to be recorded in the snapshot from those not to be recorded.

- Any message that is sent by a process before recording its snapshot, must be recorded in the global snapshot (from C1).
- Any message that is sent by a process after recording its snapshot, must not be recorded in the global snapshot (from C2).

I2: How to determine the instant when a process takes its snapshot.

- A process p_j must record its snapshot before processing a message m_j that was sent by process p_i after recording its snapshot.

Chandy-Lamport algorithm

Marker sending rule for process p_i

1. Process p_i records its state.
2. For each outgoing channel C on which a marker has not been sent, p_i sends a marker along C before p_i sends further messages along C.

Marker receiving rule for process p_j

On receiving a marker along channel C:

- If p_j has not recorded its state then
 - Record the state of C as the empty set
 - Execute the "marker sending rule"
- Else
 - Record the state of C as the set of messages received along C after p_j's state was recorded and before p_j received the marker along C

Algorithm 4.1 The Chandy-Lamport algorithm.
Example

Correctness and Complexity

Correctness
- Due to FIFO property of channels, it follows that no message sent after the marker on that channel is recorded in the channel state. Thus, condition C2 is satisfied.
- When a process p_j receives message m_{ij} that precedes the marker on channel C_j, it acts as follows: If process p_j has not taken its snapshot yet, then it includes m_{ij} in its recorded snapshot. Otherwise, it records m_{ij} in the state of the channel C_j. Thus, condition C1 is satisfied.

Complexity
- The recording part of a single instance of the algorithm requires $O(e)$ messages and $O(d)$ time, where e is the number of edges in the network and d is the diameter of the network.
Another example

The original source of this example is Indranil Gupta’s lecture notes for his CS425 distributed systems course at Illinois.
P1 is Initiator:
• Record local state S1,
• Send out markers
• Turn on recording on channels C_{21}, C_{31}

P1

P2

P3

P_1 P_2 P_3

A B C D E

E F G

H I J

S_1, Record C_{21}, C_{31}

• First Marker!
• Record own state as S_3
• Mark C_{13} state as empty
• Turn on recording on other incoming C_{23}
• Send out Markers
• S1, Record $C_{21}=C_{24}$
• $C_{31}=<>$

• S3
• $C_{13}=<>$
• Record C_{23}

• First Marker!
• Record own state as S2
• Mark C_{32} state as empty
• Turn on recording on C_{12}
• Send out Markers
P1
A B C D E

P2
E F G

P3
H I J

S1, Record C_{21}, C_{24}

C_{31} = <>

P2

S2
C_{32} = <>
Record C_{32}

P3

• S3
• C_{33} = <>
• Record C_{23}

Duplicate!

C_{12} = <>

P1

S1, Record C_{21}, C_{24}

C_{31} = <>

C_{31} = <>

Duplicate!

C_{21} = <message G→D>

P2

S2
C_{32} = <>

P3

• S3
• C_{33} = <>
• Record C_{23}

• Duplicate!
• C_{32} = <>
• C_{12} = <>
• Record C_{12}
Algorithm has Terminated
Collect the Global Snapshot Pieces

S1 \(C_{21} = \text{<message G\rightarrow D }> \) \(C_{31} = \text{<}> \)
S2 \(C_{22} = \text{<}> \) \(C_{12} = \text{<}> \)
S3 \(C_{13} = \text{<}> \) \(C_{23} = \text{<}> \)