Distributed Algorithms

Distributed algorithms

- System of N processes modeled as a graph with N nodes
 - Links usually represent the logical topology

- Centralized algorithms:
 - Most of the work is done by one or more of the nodes
 - Other nodes play a smaller role

- Distributed algorithms:
 - Each node plays an equal role
Basic concepts

- Symmetric algorithms
 - Vs asymmetric
- Anonymous algorithms
- Uniform algorithms
- Deterministic algorithms
 - Vs non-deterministic
- Synchronous algorithms
 - Vs asynchronous
- Online algorithms
 - Vs offline algorithms

Spanning tree

- A **spanning tree** is a subgraph that contains all the vertices of the graph, but is a tree.
- A graph may have many spanning trees.

[Image of a graph with labeled vertices and edges, showing a spanning tree highlighted.](https://commons.wikimedia.org/wiki/index.php?curid=408540)
Synchronous single-initiator ST algorithm

Termination:
- Algorithm terminates after specified number of rounds

Complexity:
- Local space = $O(\text{degree})$
- Local time = $O(\text{diameter} + \text{degree})$
- Global space = sum of local space
- Total number of messages sent = between e and $2e$
- Message time complexity = d rounds

Analysis
Asynchronous single-initiator ST algorithm

Analysis

- Termination:
 - Algorithm terminates after each node receives either a reject or an accept from all of its neighbors

- Complexity:
 - Local space = O(degree)
 - Local time = O(degree)
 - Global space = sum of local space
 - Total number of messages sent = between 2e and 4e
 - Message time complexity = unknown, but bounded by n-1
Leader Election – Ring algorithm

Goal: Elect highest id process as leader
Initiates the election

Goal: Elect highest id process as leader

Election: 32

Election: 80
Initiates the election

Election: 80

Goal: Elect highest id process as leader
Initiates the election

Goal: Elect highest id process as leader

Elected: 80

Goal: Elect highest id process as leader
Initiates the election

Elected: 80

elected = 80

Goal: Elect highest id process as leader
Final decision

- **Goal:** Elect highest id process as leader

- **Diagram:**
 - N12: elected = 80
 - N6: elected = 80
 - N80: elected = 80
 - N32: elected = 80
 - N3: elected = 80
 - N5: elected = 80

- **Assume no failures occur during the election protocol itself**

Analysis

- **Assume no failures occur during the election protocol itself**

- **How many messages will be sent?**
 - **Single initiator**
 - Note: Worst case occurs when the initiator is the ring successor of the would-be leader
 - **Multiple initiators**
What about failures?