Lecture 9: Global Snapshots

Distributed garbage collection

Diagram showing object reference and garbage object interaction.
Distributed deadlock detection

\[p_1 \xrightarrow{\text{wait-for}} p_2 \xleftarrow{\text{wait-for}} \]

Distributed termination detection

\[p_1 \xleftarrow{\text{passive}} \xrightarrow{\text{activate}} p_2 \xrightarrow{\text{passive}} \]
What should we do if P2 fails at event X?

Global state of the system

- We need to keep track of not only the clocks.

- But also:
 - The state of the process
 - The state of all the channels
 - Messages sent and received on the channels

- Ok, that looks easy ...
Is it really?

Global snapshot problem

- Record the state of every process and channel at an instance of time.
- System model:
 - N process (machines)
 - 2 channels between every 2 processes
 - One in each direction
 - No shared memory
 - No global clock
 - Communication is FIFO
 - No messages are ever lost, but there could be some delay
Chandy-Lamport algorithm

Marker sending rule for process p_i
(1) Process p_i records its state.
(2) For each outgoing channel C on which a marker
has not been sent, p_i sends a marker along C
before p_i sends further messages along C.

Marker receiving rule for process p_j
On receiving a marker along channel C:
\[\text{if } p_j \text{ has not recorded its state then}\]
\hspace{1em} Record the state of C as the empty set
\hspace{1em} Execute the “marker sending rule”
\[\text{else}\]
\hspace{1em} Record the state of C as the set of messages
\hspace{1em} received along C after p_j, state was recorded
\hspace{1em} and before p_j received the marker along C

Algorithm 4.1 The Chandy-Lamport algorithm.

Example time

Let’s do this on the board together