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RNNs

❖ Recap

❖ GRUs and LSTMs

❖ Bidirectional

❖ Attention

❖ Transformers



Sequence Data
Word labeling

Machine translation

Sentiment classification

Text generation

Speech recognition

Time series prediction

I like red apples pron verb adj noun

¿Tienes una mascota?Do you have a pet?

Good, cheap food!

Write a poem Roses are red...

I stay out too late

54.7



Different RNNs
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Word Embedding
Apple College Ruby Studying Fox Pi
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Why use recurrent NN rather than MLP?
An RNN (like CNN) uses what it’s learned about one part 
of input on other parts of input

An RNN (like CNN) uses 
fewer parameters per layer

RNN allows for different 
length inputs and outputs

An RNN is well suited to
modeling the sequential nature of data



RNN Layer
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RNN Layer Parameters
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RNN Layer Parameters
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A1 = g(X1ᐧWX + A0ᐧWA + bA)

A2 = g(X2ᐧWX + A1ᐧWA + bA)

A3 = g(X3ᐧWX + A2ᐧWA + bA)

A4 = g(X4ᐧWX + A3ᐧWA + bA)

tanh is commonly 
used activation 
function for g(Z)



RNN
layer

RNN Forward Propagation

Neat plot. Great acting.

A = g(XtᐧWX + AᐧWA + bA)

T is number of elements in sequence

For t = 0 to T-1:

A = [[0 0 0 ... 0]]
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RNN Output

actinggreatplotneat
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Sentiment 
Classification

Output is one value, 
not a sequence



RNN Output

applesredlikeI

A1A0 A2 A3 A4

X1 X2 X3 X4

Word Labeling

Output is sequence, 
one value per input

y1 y2 y3 y4



RNN Output Parameters
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RNN Output

applesredlikeI
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y1 = g(A1ᐧWy + by)

y2 = g(A2ᐧWy + by)

y3 = g(A3ᐧWy + by)

y4 = g(A4ᐧWy + by)

Activation function 
g depends on 

problem



RNN Forward Propagation

I like red apples

A = g(XtᐧWX + AᐧWA + bA)

T is number of elements in sequence

For t = 0 to T-1:

A = [[0 0 0 ... 0]] # units

yt = g(AᐧWy + by)

y = [0 0 ... 0]       # T
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RNNs

❖ Recap

❖ GRUs and LSTMs

❖ Bidirectional

❖ Attention

❖ Transformers



Vanishing Gradients

A1A0 A2 A3 A4
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The students who take CS344 at Wellesley College are having a deep learning experience.
student takes is

For deeper networks, it can 
be difficult for the gradient 
(error) at end to propagate 
back to affect earlier layers

Challenging to capture 
long-range dependencies



ResNet (Residual Network)



GRUs and LSTMs
❖ A GRU (Gated Recurrent Unit) or LSTM (Long 

short-term memory) is similar to the simple RNN unit

❖ GRUs and LSTMs have extra sets of parameters, called 
gates: GRU (2 gates), LSTM (3 gates)

❖ Gates enable units to simulate memory, i.e., a unit can 
output newly computed values and/or pass along (as 
output) what it received as input 

❖ GRUs and LSTMs help address the vanishing gradient 
problem and capture longer range dependencies 



GRUs and LSTMs
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Simple RNN Unit
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RNNs

❖ Recap

❖ GRUs and LSTMs

❖ Bidirectional

❖ Attention

❖ Transformers



Unidirectional
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Bidirectional
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Bidirectional
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Unidirectional and Bidirectional

Word labeling

Machine translation

Sentiment classification

Speech recognition

Time series prediction

I like red apples pron verb adj noun

¿Tienes una mascota?Do you have a pet?

Good, cheap food!

I stay out too late

54.7

Unidirectional

Bidirectional



RNNs
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RNNs
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sigmoid

RNN
layer

RNN
layer

Dense
layer



RNNs

❖ Recap

❖ GRUs and LSTMs

❖ Bidirectional

❖ Attention

❖ Transformers



Different RNNs
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Input Output Example Architecture
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Attention

เธอตองออกจากบานเดี๋ยวนี้ ไมงั้นจะสาย 

You have to leave now or else you will be late



Attention
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Attention
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Attention
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Attention
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Attention
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Attention



Heatmap of Attention Weights



RNNs

❖ Recap

❖ GRUs and LSTMs

❖ Bidirectional

❖ Attention

❖ Transformers



Transformers
RNN with 
attention

Transformer



Transformers



Transformers
❖ Self-attention. Rather than use a fixed embedding for each 

word regardless of where/how it’s used in a sentence, a 
context-dependent embedding is calculated for each word 
based on its relationship to other words in the sentence. 
Thus, a richer representation for each word. 

❖ Multi-headed attention. Multiple self-attention 
representations are calculated

❖ Positional embedding. The position of each word in a 
sequence is incorporated into the representation

❖ Parallelization!



Transformers



Transformers

Encoder
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Large Language Models (LLMs)

❖ Use decoder portion of transformer architecture

❖ Trillions of parameters, trained on terabytes of data 
with trillions of words

❖ Costs $10s or $100s of millions to train 

❖ Carbon footprint - 500 tons of CO2e for training and 
1000 tons of CO2e per month for inference 


