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Common Problems ML May Help Solve

BINARY 
CLASSIFICATION

Predicting 2 
categorical outcomes

Email is spam or not

Someone has a 
disease or not

MULTICLASS 
CLASSIFICATION

Predicting >2 
categorical outcomes

Song is pop, rap,
or country

Flower is daisy, rose, 
sunflower, or tulip

REGRESSION

Predicting a 
continuous outcome

Stock price

Hours of sleep
per night

Logistic regression



Linear Classifier
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Linear Classifier

Logistic regression learns a 
linear decision boundary, i.e., 
a hyperplane that divides the 
two classes
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Linear Classifier

Data are not linearly separable



Hyperplane
A hyperplane in ℝn is an n-1 dimensional subspace

A hyperplane in ℝ1 is a point A hyperplane in ℝ2 is a line A hyperplane in ℝ3 is a plane



What is a Hyperplane?

Parameterized by a “weight” 
vector w orthogonal to the 
hyperplane, centered at the origin 

w

What range is 
● the dot product of w with any of the blue points? 
● the dot product of w with any of the red points? 
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Training
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w = (23       2)
b = 3

During training, the parameters 
of the model are learned from 
the training data
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Neural Inspiration
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Should I wear a jacket?



Should I wear a jacket?



Hard Threshold vs. Sigmoid Function

Returns either 0 or 1

Returns a number between 
0.0 and 1.0 that can be 

interpreted as a probability
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Sigmoid Function
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Forward Propagation

❖ ŷ is interpreted as the probability that y = 1 for input x

❖ For example, what is the probability that some email 
message x is spam (1) as opposed to ham (0)?

➢ If ŷ is 0.25, the probability that the message is spam is 25% and 
we classify the message as ham (0)

➢ If ŷ is 0.75, the probability that the message is spam is 75% and 
we classify the message as spam (1)



Parameters w and b
Different values for parameters w and b lead to different decision boundaries 

We want to quantify the cost associated with a given boundary 
(value settings for w and b) for our data 

Then we can find the values of w and b that have the lowest cost 



Loss
The loss function, L, quantifies the 
error, i.e., how far our prediction ŷ 
is from the true label y

True label y Prediction ŷ Loss L
0 0.001 Close to 0
0 0.999 Large
1 0.999 Close to 0
1 0.001 Large



Cost
The cost function, J, is the average loss (error) of 
all m data points



Cost Examples
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Cost Examples

(4, 1) (1, 2) (3, 2) (5, 3)

w = (1, 3)
b = -8.2
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0.37
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5.8

0.003

0.997
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Cost Examples

w = (1, 3)
b  = -8.2

Cost, J
0.225

w = (3, 0.1)
b  = -13

Cost, J
1.06

w = (2, 5)
b  = -12

Cost, J
0.506

w = (4, -5)
b  = -4

Cost, J
2.36
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