
CS344
Deep Learning

Gradient Descent

Cost Function

Cost Function

Cost FunctionData and Decision Boundary

Cost Function

Cost FunctionData and Decision Boundary

Cost Function

Cost FunctionData and Decision Boundary

Cost Function

Cost FunctionData and Decision Boundary

Gradient Descent

We want to find
parameters w and b that
minimize the cost, J(w, b)

Gradient Descent Algorithm

❖ Initialize w and b (e.g., to 0)

❖ Repeat until converge:
➢ Update w and b to

reduce the cost J(w, b)

Gradient Descent Algorithm

𝛼 is the step size or
learning rate

Repeat until converge:

Gradient Descent Algorithm
Repeat until converge:

The partial derivative 𝜕
indicates the slope, i.e.,

the direction to step
negative

slope
positive

slope

Computing Derivatives: Chain Rule

f(x) = x2

g(x) = 2x+1

h(x) = f(g(x)) = (2x+1)2 h′(x) = 2ᐧ(2x+1) ᐧ 2

h′(x) = f′(g(x)) ᐧ g′(x)

f′(x) = 2x

g′(x) = 2

Computing Derivatives: Chain Rule

Computing Derivatives: Chain Rule
x

Gradient Descent Algorithm
Repeat until converge:

Gradient Descent Algorithm
Repeat until converge:

With batch gradient descent,
we consider all data points each

time we update a weight parameter

Gradient Descent Algorithm
Repeat until converge:

With stochastic gradient descent,
we consider a single data point each
time we update a weight parameter

Gradient Descent Algorithm
Repeat until converge:

With mini-batch gradient descent, we
consider a small batch of data points each

time we update a weight parameter

-1
2

Vectorization
Vectorization speeds up
execution time dramatically

Highly optimized libraries
parallelize computation

Guideline: avoid looping
over arrays

numpy has a built in
function for everything

3 2
9 1
5 4
2 3
0 4
... ...
3 1

X

w

b = 1

(m, 2)

(2, 1)

2
-6
4
5
9
...
0

Z (m, 1)

Z = new array of shape (m, 1)
For i = 1 to m:

Z[i] = np.dot(X[i], w) + b

-1
2

Vectorization
Vectorization speeds up
execution time dramatically

Highly optimized libraries
parallelize computation

Guideline: avoid looping
over arrays

numpy has a built in
function for everything

3 2
9 1
5 4
2 3
0 4
... ...
3 1

X

w

b = 1

(m, 2)

(2, 1)

2
-6
4
5
9
...
0

Z (m, 1)

Z = new array of shape (m, 1)
For i = 1 to m:

Z[i] = np.dot(X[i], w) + b

-1
2

Vectorization
Vectorization speeds up
execution time dramatically

Highly optimized libraries
parallelize computation

Guideline: avoid looping
over arrays

numpy has a built in
function for everything

3 2
9 1
5 4
2 3
0 4
... ...
3 1

X

w

b = 1

(m, 2)

(2, 1)

2
-6
4
5
9
...
0

Z (m, 1)

Z = new array of shape (m, 1)
For i = 1 to m:

Z[i] = np.dot(X[i], w) + b

-1
2

Vectorization
Vectorization speeds up
execution time dramatically

Highly optimized libraries
parallelize computation

Guideline: avoid looping
over arrays

numpy has a built in
function for everything

3 2
9 1
5 4
2 3
0 4
... ...
3 1

X

w

b = 1

(m, 2)

(2, 1)

2
-6
4
5
9
...
0

Z (m, 1)

Z = new array of shape (m, 1)
For i = 1 to m:

Z[i] = np.dot(X[i], w) + b

-1
2

Vectorization
Vectorization speeds up
execution time dramatically

Highly optimized libraries
parallelize computation

Guideline: avoid looping
over arrays

numpy has a built in
function for everything

3 2
9 1
5 4
2 3
0 4
... ...
3 1

X

w

b = 1

(m, 2)

(2, 1)

2
-6
4
5
9
...
0

Z (m, 1)

Z = new array of shape (m, 1)
For i = 1 to m:

Z[i] = np.dot(X[i], w) + b

-1
2

Vectorization
Vectorization speeds up
execution time dramatically

Highly optimized libraries
parallelize computation

Guideline: avoid looping
over arrays

numpy has a built in
function for everything

3 2
9 1
5 4
2 3
0 4
... ...
3 1

X

w

b = 1

(m, 2)

(2, 1)

2
-6
4
5
9
...
0

Z (m, 1)

Z = new array of shape (m, 1)
For i = 1 to m:

Z[i] = np.dot(X[i], w) + b

-1
2

Vectorization
Vectorization speeds up
execution time dramatically

Highly optimized libraries
parallelize computation

Guideline: avoid looping
over arrays

numpy has a built in
function for everything

3 2
9 1
5 4
2 3
0 4
... ...
3 1

X

w

b = 1

(m, 2)

(2, 1)

2
-6
4
5
9
...
0

Z (m, 1)

Z = np.dot(X, w) + b

Vectorization
Vectorization speeds up
execution time dramatically

Highly optimized libraries
parallelize computation

Guideline: avoid looping
over arrays

numpy has a built in
function for everything

2
-6
4
5
9
...
0

Z (m, 1)

A = sigmoid(Z)

0.881
0.002
0.982
0.993
0.999
...
0.5

A (m, 1)

Training (Fitting)
Training refers to learning
the parameters (w and b)
of the model from the
training data*

Gradient Descent Algorithm

❖ Initialization

❖ Repeat until convergence:

➢ Forward propagation

➢ Calculate cost

➢ Backpropagation

*Assumes X refers to training data with m rows and d columns

Training

Gradient Descent Algorithm

❖ Initialization

❖ Repeat until convergence:

➢ Forward propagation

➢ Calculate cost

➔ Create (d, 1) array w of random
numbers

➔ Create variable b set to 0

Initialize parameters w and b

➢ Backpropagation

Training

Gradient Descent Algorithm

❖ Initialization

❖ Repeat until convergence:

➢ Forward propagation

➢ Calculate cost

Loop for max_iter iterations

➢ Backpropagation

Training

Gradient Descent Algorithm

❖ Initialization

❖ Repeat until convergence:

➢ Forward propagation

➢ Calculate cost

➔ Z = X ᐧ w + b
➔ A = g(Z) = sigmoid(Z)

Compute activations

➢ Backpropagation

Training

Gradient Descent Algorithm

❖ Initialization

❖ Repeat until convergence:

➢ Forward propagation

➢ Calculate cost

Cost using current values
of w and b

➢ Backpropagation

Training

Gradient Descent Algorithm

❖ Initialization

❖ Repeat until convergence:

➢ Forward propagation

➢ Calculate cost

➢ Backpropagation

Compute gradients

➔ dZ = A - y

➔ dW = XT ᐧ dZ / m

➔ db =

Update parameters

➔ W = W - 𝛼 ᐧ dW

➔ b = b - 𝛼 ᐧ db

Testing
Testing refers to evaluating
the trained model with
testing data*

❖ Make predictions

❖ Assess how well predictions
correspond to known labels

*Assumes X refers to testing data

Testing

❖ Make predictions

❖ Assess how well predictions
correspond to known labels

Predict activations

➔ A = Forward propagation of X

➔ Predictions = Binarize (round) A

Testing

❖ Make predictions

❖ Assess how well predictions
correspond to known labels

Score model

➔ Calculate percentage of
predictions that correctly
match labels

Overfitting
❖ Overfitting is one of the most common problems in ML

TS

Z

❖ Model learns properties specific to the training data that don’t
generalize to new (testing) data

❖ Performance is much better on training data than on testing data

Regularization
Smaller values for the parameters w lead to more generalizable
models and are less prone to overfitting

To incentivize small values for w, modify the cost function so that it:

1) Fits the training data well

2) Penalizes large values for w
and

λ is
regularization

parameter

