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Gradient Descent

We want to find 
parameters w and b that 
minimize the cost, J(w, b)

Gradient Descent Algorithm

❖ Initialize w and b (e.g., to 0)

❖ Repeat until converge:
➢ Update w and b to 

reduce the cost J(w, b)



Gradient Descent Algorithm

𝛼 is the step size or 
learning rate

Repeat until converge:



Gradient Descent Algorithm
Repeat until converge:

The partial derivative 𝜕 
indicates the slope, i.e.,

the direction to step
negative 

slope
positive 

slope



Computing Derivatives: Chain Rule

f(x) = x2

g(x) = 2x+1

h(x) = f(g(x)) = (2x+1)2 h′(x) = 2ᐧ(2x+1) ᐧ 2

h′(x) = f′(g(x)) ᐧ g′(x)

f′(x) = 2x

g′(x) = 2



Computing Derivatives: Chain Rule



Computing Derivatives: Chain Rule
x



Gradient Descent Algorithm
Repeat until converge:



Gradient Descent Algorithm
Repeat until converge:

With batch gradient descent,
we consider all data points each 

time we update a weight parameter



Gradient Descent Algorithm
Repeat until converge:

With stochastic gradient descent, 
we consider a single data point each 
time we update a weight parameter



Gradient Descent Algorithm
Repeat until converge:

With mini-batch gradient descent, we 
consider a small batch of data points each 

time we update a weight parameter
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Vectorization
Vectorization speeds up 
execution time dramatically

Highly optimized libraries 
parallelize computation

Guideline: avoid looping 
over arrays

numpy has a built in 
function for everything
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Z = new array of shape (m, 1)
For i = 1 to m:

Z[i] = np.dot(X[i], w) + b
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Training (Fitting)
Training refers to learning 
the parameters (w and b) 
of the model from the 
training data*

Gradient Descent Algorithm

❖ Initialization

❖ Repeat until convergence:

➢ Forward propagation

➢ Calculate cost

➢ Backpropagation 

*Assumes X refers to training data with m rows and d columns



Training

Gradient Descent Algorithm

❖ Initialization

❖ Repeat until convergence:

➢ Forward propagation

➢ Calculate cost

➔ Create (d, 1) array w of random 
numbers

➔ Create variable b set to 0

Initialize parameters w and b

➢ Backpropagation 



Training

Gradient Descent Algorithm

❖ Initialization

❖ Repeat until convergence:

➢ Forward propagation

➢ Calculate cost

Loop for max_iter iterations

➢ Backpropagation 



Training

Gradient Descent Algorithm

❖ Initialization

❖ Repeat until convergence:

➢ Forward propagation

➢ Calculate cost

➔ Z = X ᐧ w + b
➔ A = g(Z) = sigmoid(Z)

Compute activations

➢ Backpropagation 



Training

Gradient Descent Algorithm

❖ Initialization

❖ Repeat until convergence:

➢ Forward propagation

➢ Calculate cost

Cost using current values 
of w and b

➢ Backpropagation 



Training

Gradient Descent Algorithm

❖ Initialization

❖ Repeat until convergence:

➢ Forward propagation

➢ Calculate cost

➢ Backpropagation 

Compute gradients

➔ dZ = A - y

➔ dW = XT ᐧ dZ / m

➔ db = 

Update parameters

➔ W = W - 𝛼 ᐧ dW

➔ b = b - 𝛼 ᐧ db



Testing
Testing refers to evaluating 
the trained model with 
testing data*

❖ Make predictions

❖ Assess how well predictions 
correspond to known labels

*Assumes X refers to testing data



Testing

❖ Make predictions

❖ Assess how well predictions 
correspond to known labels

Predict activations

➔ A = Forward propagation of X

➔ Predictions = Binarize (round) A



Testing

❖ Make predictions

❖ Assess how well predictions 
correspond to known labels

Score model

➔ Calculate percentage of 
predictions that correctly 
match labels



Overfitting
❖ Overfitting is one of the most common problems in ML

TS

Z

❖ Model learns properties specific to the training data that don’t 
generalize to new (testing) data

❖ Performance is much better on training data than on testing data



Regularization
Smaller values for the parameters w lead to more generalizable 
models and are less prone to overfitting

To incentivize small values for w, modify the cost function so that it:

1)   Fits the training data well

2)   Penalizes large values for w
and

λ is 
regularization 

parameter


