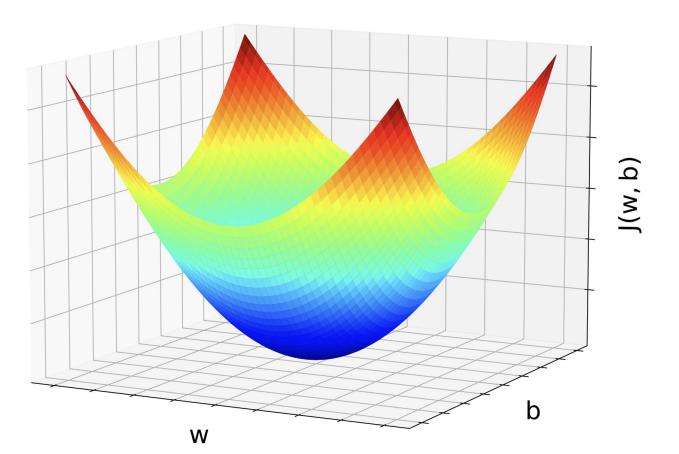
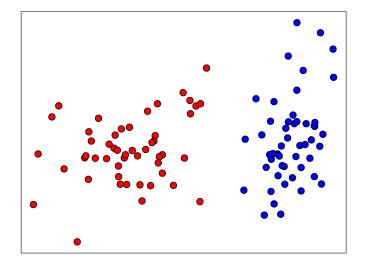
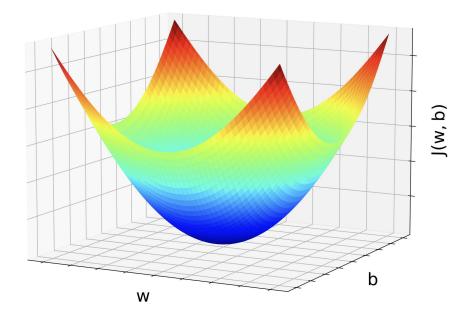
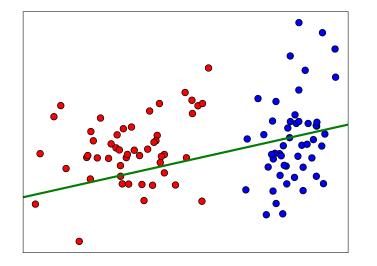
Gradient Descent

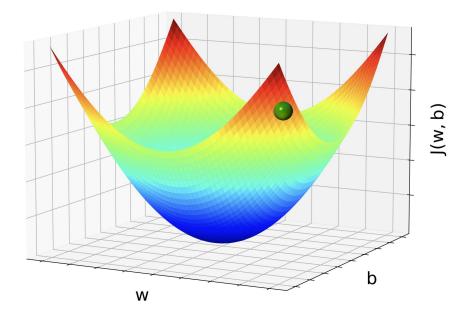




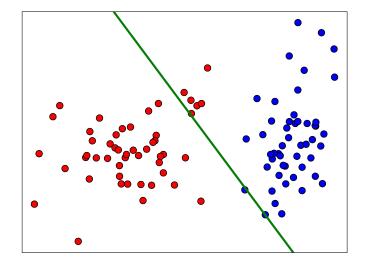


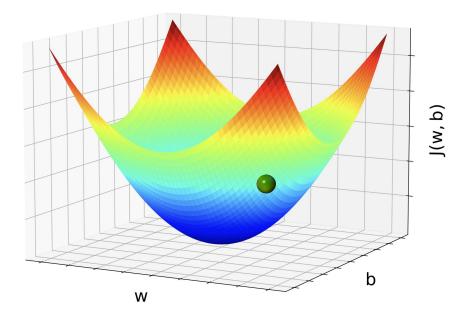
Cost Function



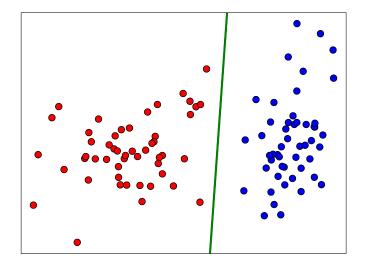


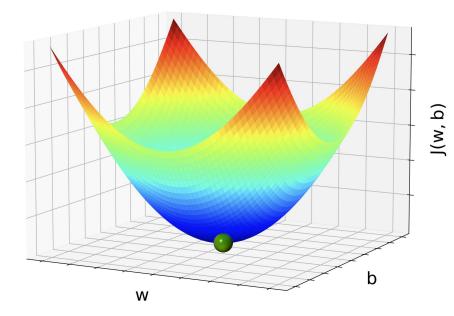
Cost Function





Cost Function





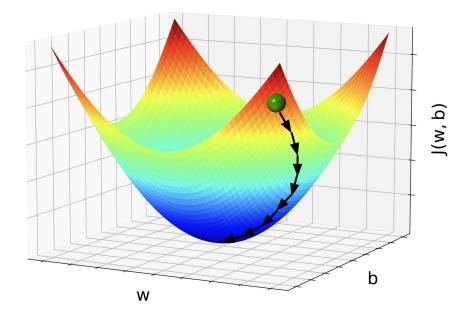
Cost Function

Gradient Descent

We want to find parameters **w** and b that minimize the cost, J(**w**, b)

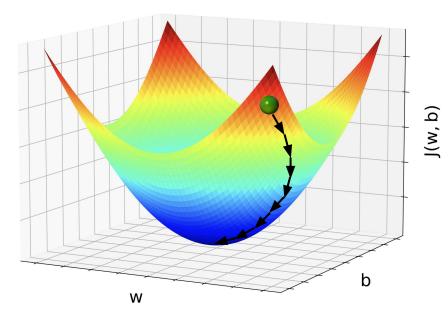
Gradient Descent Algorithm

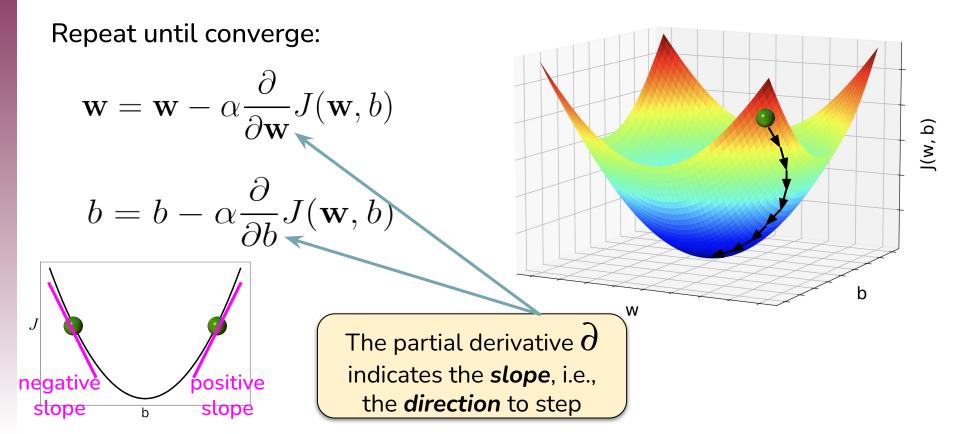
- Initialize w and b (e.g., to 0)
- Repeat until converge:
 Update w and b to
 - reduce the cost J(w, b)



Repeat until converge:

$$\mathbf{w} = \mathbf{w} - \alpha \frac{\partial}{\partial \mathbf{w}} J(\mathbf{w}, b)$$
$$b = b - \alpha \frac{\partial}{\partial b} J(\mathbf{w}, b)$$
$$\mathbf{\alpha} \text{ is the step size or }$$
$$learning rate$$





Computing Derivatives: Chain Rule

 $f(\mathbf{x}) = x^2$

g(x) = 2x + 1

 $h(x) = f(g(x)) = (2x+1)^2$

 $f'(\mathbf{x}) = 2x$

g'(x) = 2

 $h'(x) = 2 \cdot (2x+1) \cdot 2$

 $h'(x) = f'(g(x)) \cdot g'(x)$

 $\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$

Computing Derivatives: Chain Rule

$$z = \mathbf{w} \cdot \mathbf{x} + b$$

$$\hat{y} = g(z) = \frac{1}{1 + e^{-z}}$$

$$L = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

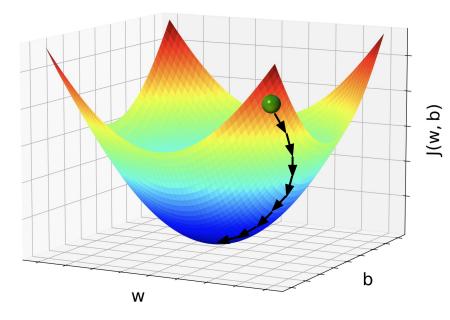
$$J = \frac{1}{m} \sum_{i=1}^{m} L$$

Computing Derivatives: Chain Rule

$$\begin{aligned} z &= \mathbf{w} \cdot \mathbf{x} + b & \mathbf{x} & \frac{dz}{dw} \\ a &= g(z) = \frac{1}{1 + e^{-z}} & a(1 - a) & \frac{da}{dz} \\ L &= -y \log(a) - (1 - y) \log(1 - a) & \frac{-y}{a} + \frac{1 - y}{1 - a} & \frac{dL}{da} \\ \hline J &= \frac{1}{m} \sum_{i=1}^{m} L & \frac{dL}{dw} &= \frac{dL}{da} \cdot \frac{da}{dz} \cdot \frac{dz}{dw} = (a - y) \cdot x \\ \frac{dJ}{dw} &= \frac{1}{m} \sum_{i=1}^{m} \frac{dL}{dw} = \frac{1}{m} \sum_{i=1}^{m} (a - y) \cdot x \end{aligned}$$

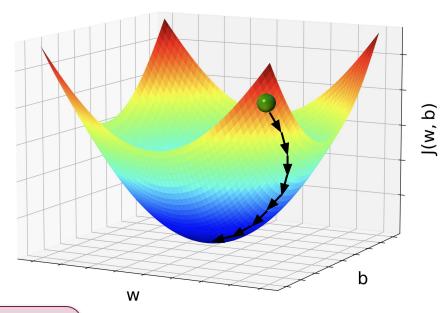
Repeat until converge:

$$\mathbf{w} = \mathbf{w} - \alpha \underbrace{\frac{\partial}{\partial \mathbf{w}} J(\mathbf{w}, b)}_{b}$$
$$b = b - \alpha \underbrace{\frac{\partial}{\partial b} J(\mathbf{w}, b)}_{b}$$



Repeat until converge:

$$\mathbf{w} = \mathbf{w} - \alpha \underbrace{\frac{1}{m} \sum_{i=1}^{m} (a - y) \cdot x}_{b = b - \alpha}$$
$$b = b - \alpha \underbrace{\frac{1}{m} \sum_{i=1}^{m} (a - y)}_{i = 1}$$

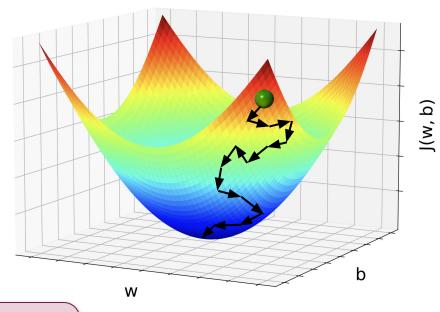


With **batch** gradient descent, we consider **all** data points each time we update a weight parameter

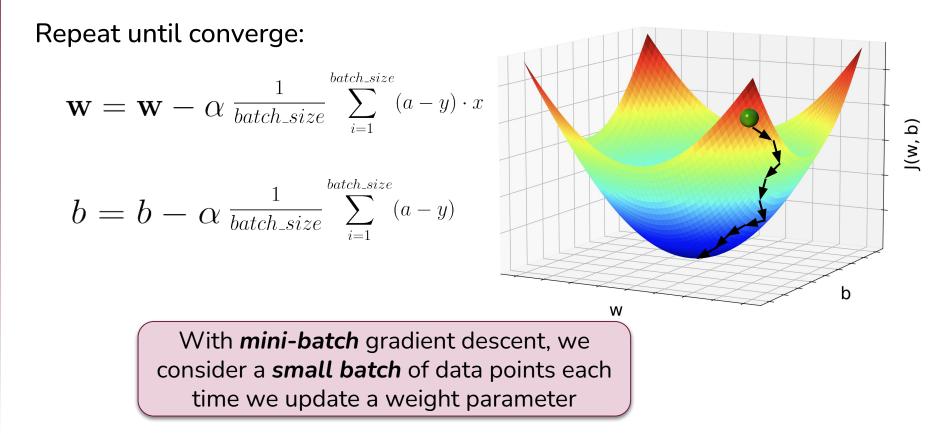
Repeat until converge:

$$\mathbf{w} = \mathbf{w} - \alpha \ (a - y) \cdot x$$

$$b = b - \alpha \ (a - y)$$

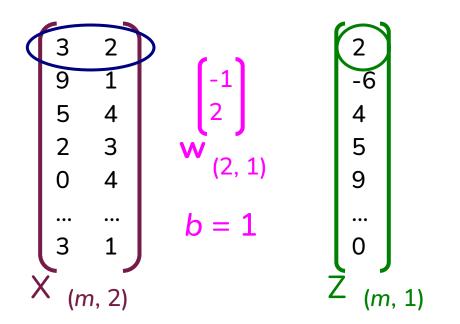


With *stochastic* gradient descent, we consider a *single* data point each time we update a weight parameter



$$z = \mathbf{x} \cdot \mathbf{w} + b$$

Z = new array of shape (m, 1)For i = 1 to m: Z[i] = np.dot(X[i], w) + b



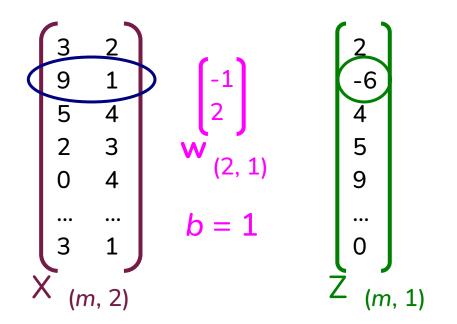
Vectorization speeds up execution time dramatically

Highly optimized libraries *parallelize* computation

Guideline: **avoid looping** over arrays

$$z = \mathbf{x} \cdot \mathbf{w} + b$$

Z = new array of shape (m, 1)For i = 1 to m: Z[i] = np.dot(X[i], w) + b



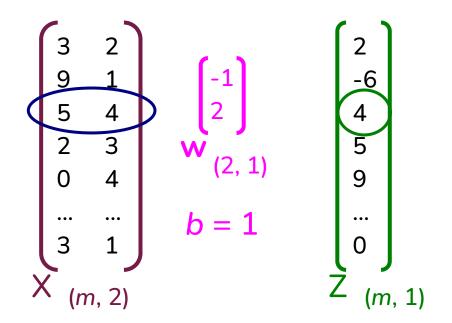
Vectorization speeds up execution time dramatically

Highly optimized libraries *parallelize* computation

Guideline: **avoid looping** over arrays

$$z = \mathbf{x} \cdot \mathbf{w} + b$$

Z = new array of shape (m, 1)For i = 1 to m: Z[i] = np.dot(X[i], w) + b



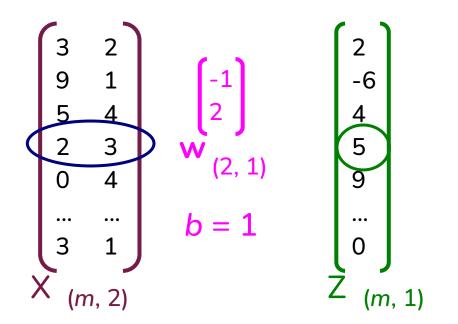
Vectorization speeds up execution time dramatically

Highly optimized libraries *parallelize* computation

Guideline: **avoid looping** over arrays

$$z = \mathbf{x} \cdot \mathbf{w} + b$$

Z = new array of shape (m, 1)For i = 1 to m: Z[i] = np.dot(X[i], w) + b



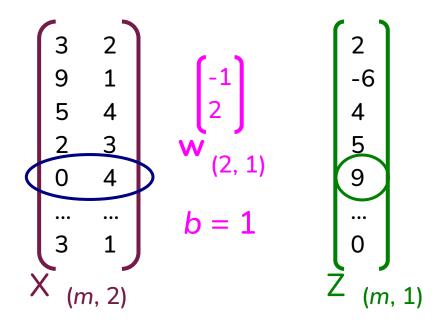
Vectorization speeds up execution time dramatically

Highly optimized libraries *parallelize* computation

Guideline: **avoid looping** over arrays

$$z = \mathbf{x} \cdot \mathbf{w} + b$$

Z = new array of shape (m, 1)For i = 1 to m: Z[i] = np.dot(X[i], w) + b



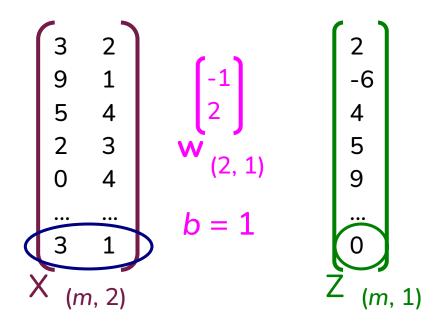
Vectorization speeds up execution time dramatically

Highly optimized libraries *parallelize* computation

Guideline: **avoid looping** over arrays

$$z = \mathbf{x} \cdot \mathbf{w} + b$$

Z = new array of shape (m, 1)For i = 1 to m: Z[i] = np.dot(X[i], w) + b



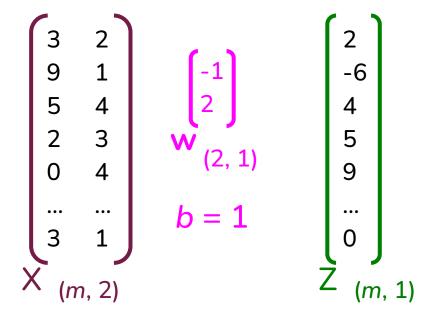
Vectorization speeds up execution time dramatically

Highly optimized libraries *parallelize* computation

Guideline: **avoid looping** over arrays

$$z = \mathbf{x} \cdot \mathbf{w} + b$$

$$Z = np.dot(X, w) + b$$



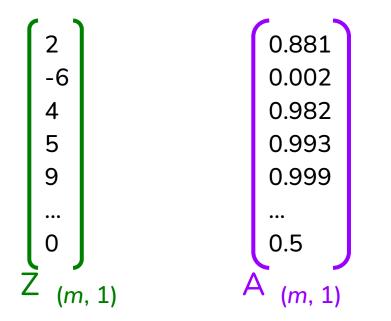
Vectorization speeds up execution time dramatically

Highly optimized libraries *parallelize* computation

Guideline: **avoid looping** over arrays

$$a = \operatorname{sigmoid}(z) = \frac{1}{1 + e^{-z}}$$

A = sigmoid(Z)



Vectorization speeds up execution time dramatically

Highly optimized libraries *parallelize* computation

Guideline: **avoid looping** over arrays

Training (Fitting)

Gradient Descent Algorithm

- Initialization
- Repeat until convergence:
 - Forward propagation
 - Calculate cost
 - > Backpropagation

Training refers to learning the parameters (**w** and b) of the model from the training data*

*Assumes X refers to training data with m rows and d columns

Gradient Descent Algorithm

Initialization

- Repeat until convergence:
 - Forward propagation
 - Calculate cost
 - Backpropagation

Initialize parameters w and b

- → Create (d, 1) array w of random numbers
- \rightarrow Create variable *b* set to 0

Loop for max_iter iterations

Gradient Descent Algorithm

Initialization

Repeat until convergence:

- Forward propagation
- Calculate cost
- Backpropagation

Gradient Descent Algorithm

- Initialization
- Repeat until convergence:
 - Forward propagation
 - Calculate cost
 - Backpropagation

Compute activations

- $\Rightarrow \quad \mathbf{Z} = \mathbf{X} \cdot \mathbf{w} + \mathbf{b}$
- → A = g(Z) = sigmoid(Z)

Gradient Descent Algorithm

- Initialization
- Repeat until convergence.
 - > Forward propagation
 - Calculate cost
 - > Backpropagation

 $\frac{\text{Cost using current values}}{\text{of } \boldsymbol{w} \text{ and } \boldsymbol{b}}$ $\frac{1}{m} \sum_{i=1}^{m} -\boldsymbol{y} \log(\boldsymbol{A}) - (1 - \boldsymbol{y}) \log(1 - \boldsymbol{A})$

Gradient Descent Algorithm

- Initialization
- Repeat until convergence:
 - > Forward propagation
 - Calculate cost
 - > Backpropagation

Compute gradients

- \rightarrow dZ = A y
- → $dW = X^{T} \cdot dZ / m$ → $db = \frac{1}{m} \sum_{i=1}^{m} dZ$
- Update parameters
- \rightarrow W = W $\alpha \cdot dW$
- \rightarrow b = b $\alpha \cdot db$

Testing

Make predictions

 Assess how well predictions correspond to known labels **Testing** refers to evaluating the trained model with testing data*

*Assumes X refers to testing data

Make predictions

 Assess how well predictions correspond to known labels Predict activations

- \rightarrow A = Forward propagation of X
- → Predictions = Binarize (round) A

Testing

Make predictions

 Assess how well predictions correspond to known labels

Score model

→ Calculate percentage of predictions that correctly match labels

Overfitting

- **Overfitting** is one of the most common problems in ML
- Model learns properties specific to the training data that don't generalize to new (testing) data
- Performance is much better on training data than on testing data



Regularization

Smaller values for the parameters w lead to more generalizable models and are less prone to overfitting

To incentivize small values for **w**, modify the cost function so that it:

