Gradient Descent
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Cost Function

J(w, b)
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Gradient Descent

We want to find
parameters w and b that
minimize the cost, J(w, b)

Gradient Descent Algorithm

* Initialize w and b (e.g., to 0O)

% Repeat until converge:
> Update wand b to
reduce the cost J(w, b)

J(w, b)



Gradient Descent Algorithm

Repeat until converge:

w=w—a—J(w,b)

Ow

a is the step size or
learning rate

J(w, b)



Gradient Descent Algorithm

Repeat until converge:

0

w=w—a—J(w,b)

Ow
9,

b=b—a—.J(w,b

ob

A

J
negative positive
tope b stop

indicates the slope, i.e.,

The partial derivative 8
the direction to step

J(w, b)



Computing Derivatives: Chain Rule

fx) = 5

g(x) =2x+1

h(x) = flg(x)) = (2x+1)°

f(x) = 2x
g'(x)=2

h'(x) = 2:(2x+1) - 2
h'(x) =1 (g(x)) - g'(x)

a _ 4 dg
dev dg dz




Computing Derivatives: Chain Rule

Z2=W-X+0b
B 1
14 e

L = —ylog(y) — (1 — y)log(1 —7)

1 m

)= 9(2)



Computing Derivatives: Chain Rule

z=wW-X+0b] %
:a = 9(2) = 5 +1€_z] a(l —a)
;L = —yfg(a) — (1 - y)log(1 — a)] %@/ n 1 :?CJL

% N da.dz .dw

d.J 1 = dL 1
do = m2adn ~mala-y)e
1=1

=1

=(a—y) -z



Gradient Descent Algorithm

Repeat until converge:

0

w=w—a—J(w,b

Ow

b=0b— a—J(w,

M

J(w, b)



Gradient Descent Algorithm

Repeat until converge: |
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we consider all data points each

With batch gradient descent,
time we update a weight parameter

J(w, b)



Gradient Descent Algorithm

Repeat until converge: I

w=w-—a(a—y)

b=b—«a (a—1y)

we consider a single data point each

With stochastic gradient descent,
time we update a weight parameter

J(w, b)



Gradient Descent Algorithm

Repeat until converge:
1 batch size \ *\

W = W — X juich_size

1:_

batch_size

b=b— Qs L

i=1
\/

w

With mini-batch gradient descent, we
consider a small batch of data points each
time we update a weight parameter

J(w, b)



2 =X -W-+0b

Vectorization

Z = new array of shape (m, 1)
For i = 1 to m:
Z[i] = np.dot(X[i], w) + b
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Vectorization speeds up
execution time dramatically

Highly optimized libraries
parallelize computation

Guideline: avoid looping
over arrays

numpy has a built in
function for everything
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Vectorization

Z = new array of shape (m, 1) . .
For i = 1 to m: Vectorization speeds up

Z[i] = np.dot(X[i], w) + b execution time dramatically
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Vectorization

Z = new array of shape (m, 1)
For i = 1 to m:
Z[i] = np.dot(X[i], w) + b

Y F Y
3 2 2
9 1 [1] 6
S A O

w
0 4 (2.1) 9
oee b — 1
3 1 0
\. / S

Vectorization speeds up
execution time dramatically

Highly optimized libraries
parallelize computation

Guideline: avoid looping
over arrays

numpy has a built in
function for everything
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Vectorization

Z = new array of shape (m, 1)
For i = 1 to m:
Z[i] = np.dot(X[i], w) + b
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execution time dramatically

Highly optimized libraries
parallelize computation

Guideline: avoid looping
over arrays

numpy has a built in
function for everything
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Vectorization

Z = new array of shape (m, 1)
For i = 1 to m:
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Vectorization

Z = np.dot(X, w) + b
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Vectorization speeds up
execution time dramatically

Highly optimized libraries
parallelize computation

Guideline: avoid looping
over arrays

numpy has a built in
function for everything



o 1
Vectorization ¢ = sigmoid(z) = -———

A = sigmoid (Z2) Vectorization speeds up

execution time dramatically

(5 (0881 ) Highly optimized libraries
6 0.002 parallelize computation
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9 0.999 over arrays
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function for everything



Training (Fitting)

Training refers to learning
the parameters (w and b)
Gradient Descent Algorithm of the model from the

training data®

% Initialization

% Repeat until convergence:
> Forward propagation
> Calculate cost

> Backpropagation

*Assumes X refers to training data with m rows and d columns



Training

Initialize parameters w and b

Gradient Descent Algorith > Create (d, 1) array w of random
numbers
< |nitialization => Create variable b setto O

% Repeat until convergence:
> Forward propagation
> Calculate cost

> Backpropagation



Training

Loop for max_iter iterations

Gradient Descent Algorithm

< Initialization

% Repeat until convergence:

> Forward propagation
> Calculate cost

> Backpropagation



Training

Compute activations

Gradient Descent Algorithm 2> Z=X-w+b
= A =g(Z) = sigmoid(2)

< Initialization

% Repeat until convergence:

> Forward propagation

> (Calculate cost

> Backpropagation



Training
Cost using current values
of wand b

%Z —ylog(A) — (1 —y)log(1 — A)

Gradient Descent Algorithm

s Initialization
* Repeat until convergence:

> Forward propagation

> (Calculate cost

> Backpropagation



Training

Compute gradients

Gradient Descent Algorithm > dZ=A-y
> dW=X"-dZ/m
< Initialization > db= iZdZ
m =1

% Repeat until convergence:
Update parameters

> W=W-¢o dW
= b=b-a-db

> Forward propagation

> (Calculate cost

> Backpropagation




Testing

Testing refers to evaluating
the trained model with
testing data*

/7

% Make predictions

/7

% Assess how well predictions
correspond to known labels

*Assumes X refers to testing data



Testing

Predict activations

= A = Forward propagation of X

=> Predictions = Binarize (round) A

s Make predictions

% Assess how well predictions
correspond to known labels



Testing

Score model

=> Calculate percentage of
predictions that correctly
match labels

/7

s Make predictions

% Assess how well predictions
correspond to known labels




Overfitting

% Overfitting is one of the most common problems in ML

s Model learns properties specific to the training data that don’t
generalize to new (testing) data

s Performance is much better on training data than on testing data
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Regularization

Smaller values for the parameters w lead to more generalizable
models and are less prone to overfitting

To incentivize small values for w, modify the cost function so that it:

1) Fits the training data well ( Ais \1
and regularization
2) Penalizes large values for w L parameter J

ZL+ Zw d—JZLZ(a—y)'ﬂHLiw

i=1 m



