Advanced Neural Networks

Deep Learning

Hidden layers enable NNs to learn their own non-linear features!

Loss and Cost

The loss function, L, quantifies the error, i.e., how far our prediction \hat{y} is from the true label y

$$L = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

The cost function, *J*, is the average loss (error) over all data points

$$J = \frac{1}{m} \sum_{i=1}^{m} L = \frac{1}{m} \sum_{i=1}^{m} -y_i \log(\hat{y}_i) - (1 - y_i) \log(1 - \hat{y}_i)$$

Training

We want to find parameters (**W**'s and b's) that minimize the cost, J

Gradient Descent Algorithm

- Initialize parameters (W's and b's)
- Repeat until converge:
 - Update parameters (W's and b's) to reduce the cost, J

Random Initialization

- If units in the same layer start with the same parameters then they will end with the same parameters
- There's no point in having repetitive units, i.e., multiple units in a layer with the same parameter values

Thus, we initialize the parameters randomly so they start (and end) with different values

Gradient Descent

- Initialize parameters (W's and b's)
- Repeat until converge:

 $W2 = W2 - \alpha dW2$

$$b2 = b2 - \alpha db2$$

 $W1 = W1 - \alpha dW1$

 $b1 = b1 - \alpha db1$

What do layers learn

Low-Level

Mid-Level

High-Level

What do layers learn

Low-Level

Mid-Level

High-Level

Extensions

Activation functions

Classification and regression

Hyperparameter tuning

Extensions

Activation functions

Classification and regression

Hyperparameter tuning

Classification and Regression

Extensions

Activation functions

Classification and regression

Hyperparameter tuning

Hyperparameter Tuning

Using validation data!

- Architecture, i.e., number of layers and units per layer
- Activation functions (ReLU for hidden layers)
- Batch size (32, 64, 128, 256, 512)

Gradient Descent

<u>Batch</u> (batch size = *m*)

(q m)

<u>Stochastic</u> (batch size = 1)

Hyperparameter Tuning

Using validation data!

- Architecture, i.e., number of layers and units per layer
- Activation functions (ReLU for hidden layers)
- Batch size (32, 64, 128, 256, 512)
- **\diamond** Learning rate, α . Decrease over time.
- Iterations of gradient descent (convergence and max_iter)
- Gradient descent (Adam: adaptive moment estimation)

Improvements on Gradient Descent

Hyperparameter Tuning

Using validation data!

- Architecture, i.e., number of layers and units per layer
- Activation functions (ReLU for hidden layers)
- Batch size (32, 64, 128, 256, 512)
- **\diamond** Learning rate, α . Decrease over time.
- Iterations of gradient descent (convergence and max_iter)
- Gradient descent (Adam: adaptive moment estimation)
- Regularization (L2, dropout, early stopping)

Overfitting

- **Overfitting** is one of the most common problems in ML
- Model learns properties specific to the training data that don't generalize to new (testing) data
- Performance is much better on training data than on testing data

Regularization - L_2

Smaller values for the parameters w lead to more generalizable models and are less prone to overfitting

To incentivize small values for **w**, modify the cost function so that it:

Regularization - Dropout

Randomly choose units to remove from network each time parameters are updated

Regularization - Dropout

Randomly choose units to remove from network each time parameters are updated

Regularization - Dropout

Randomly choose units to remove from network each time parameters are updated

Number of Iterations