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Deep Learning
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Hidden layers enable NNs to learn their own non-linear features!
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Forward Propagation:
Batch

A1 = g(X ᐧ W1 + b1)

W1
b1 A1X

Shape
(m, d)
(d, 2)
(1, 2)
(m, 2)

X
W1
b1
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Forward Propagation:
Batch

A2 = g(A1 ᐧ W2 + b2)W2
b2

A1 A2

Shape
(m, 2)
(2, 3)
(1, 3)
(m, 3)
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Forward Propagation:
Batch

A3 = g(A2 ᐧ W3 + b3)

W3
b3 A3A2

Shape
(m, 3)
(3, 1)
(1, 1)
(m, 1)

A2
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Loss and Cost
The loss function, L, quantifies the 
error, i.e., how far our prediction ŷ 
is from the true label y

The cost function, J, is the average loss (error) over all 
data points



Training

We want to find 
parameters (W’s and b’s) 
that minimize the cost, J

Gradient Descent Algorithm

❖ Initialize parameters (W’s and b’s)

❖ Repeat until converge:
➢ Update parameters (W’s and b’s) 

to reduce the cost, J



Random Initialization
❖ If units in the same layer start 

with the same parameters 
then they will end with the 
same parameters

❖ There’s no point in having 
repetitive units, i.e., multiple 
units in a layer with the same 
parameter values

❖ Thus, we initialize the parameters randomly so 
they start (and end) with different values



Gradient Descent
❖ Initialize parameters (W’s and b’s)

❖ Repeat until converge:
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What do layers learn
Low-Level Mid-Level High-Level
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Extensions

❖ Activation functions

❖ Classification and regression

❖ Hyperparameter tuning



Activation Functions
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z = xᐧw + b 
a = g(z) Without non-linear activation 

functions, we have a linear classifier



Activation Functions

sigmoid
ReLU

(Rectified Linear Unit)
tanh

(hyperbolic tangent)

ReLU is most common 
for hidden layers



Extensions

❖ Activation functions

❖ Classification and regression

❖ Hyperparameter tuning



Classification and Regression

Loss
function

Units in 
output layer

Units in 
output layer

Activation in 
output layer

Binary 
Classification

Multiclass 
Classification

(integer labels) Regression

Multiclass 
Classification

(one-hot labels)

1 k
(num classes)

1k
(num classes)

sigmoid 
(logistic) softmax softmax linear, i.e., identity

(no activation)

binary 
crossentropy

sparse categorical 
crossentropy

categorical 
crossentropy

mean squared
error
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Hyperparameter Tuning Using validation data!

❖ Architecture, i.e., number of layers and units per layer

❖ Activation functions (ReLU for hidden layers)

❖ Batch size (32, 64, 128, 256, 512)



Gradient Descent

Batch
(batch size = m)

Stochastic
(batch size = 1)

Mini-Batch
(batch size = 64)



Hyperparameter Tuning Using validation data!

❖ Architecture, i.e., number of layers and units per layer

❖ Activation functions (ReLU for hidden layers)

❖ Batch size (32, 64, 128, 256, 512)

❖ Learning rate, 𝛼. Decrease over time.

❖ Iterations of gradient descent (convergence and max_iter)

❖ Gradient descent (Adam: adaptive moment estimation)



Improvements on Gradient Descent



Hyperparameter Tuning Using validation data!

❖ Architecture, i.e., number of layers and units per layer

❖ Activation functions (ReLU for hidden layers)

❖ Batch size (32, 64, 128, 256, 512)

❖ Learning rate, 𝛼. Decrease over time.

❖ Iterations of gradient descent (convergence and max_iter)

❖ Gradient descent (Adam: adaptive moment estimation)

❖ Regularization (L2, dropout, early stopping)



Overfitting
❖ Overfitting is one of the most common problems in ML

TS

Z

❖ Model learns properties specific to the training data that don’t 
generalize to new (testing) data

❖ Performance is much better on training data than on testing data



Regularization - L2

Smaller values for the parameters w lead to more generalizable 
models and are less prone to overfitting

To incentivize small values for w, modify the cost function so that it:

1)   Fits the training data well

2)   Penalizes large values for w
and

λ is 
regularization 

parameter



Regularization - Dropout

0.5 0.5 0.5

Randomly choose units to remove from network 
each time parameters are updated
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Regularization - Early  Stopping

Number of Iterations

Co
st

Training Data

Validation Data


