
CS344
Deep Learning

Advanced
Neural Networks

Deep Learning

x1

x2

x3

Input Layer Hidden Layers Output Layer

Hidden layers enable NNs to learn their own non-linear features!

x1

x2

x3

?
?
?

w

b ?

?
?
?

w

b ?

?
?
?

w

b ?

?
?w

b ?

?
?w

b ?

?
?w

b ?

W1 =
? ?
? ?
? ?

b1 = ? ?

W3 =
?
?
?

b3 = ?

W2 =
? ? ?
? ? ?

b2 = ? ? ?

x1

x2

x3

z = xᐧw + b
a = g(z)

z = xᐧw + b
a = g(z)

x1

x2

x3

z = xᐧw + b
a = g(z)

z = xᐧw + b
a = g(z)

z = xᐧw + b
a = g(z)

x1

x2

x3

z = xᐧw + b
a = g(z)

x1

x2

x3

Forward Propagation:
Batch

A1 = g(X ᐧ W1 + b1)

W1
b1 A1X

Shape
(m, d)
(d, 2)
(1, 2)
(m, 2)

X
W1
b1
A1

x1

x2

x3

Forward Propagation:
Batch

A2 = g(A1 ᐧ W2 + b2)W2
b2

A1 A2

Shape
(m, 2)
(2, 3)
(1, 3)
(m, 3)

A1
W2
b2
A2

x1

x2

x3

Forward Propagation:
Batch

A3 = g(A2 ᐧ W3 + b3)

W3
b3 A3A2

Shape
(m, 3)
(3, 1)
(1, 1)
(m, 1)

A2
W3
b3
A3

Loss and Cost
The loss function, L, quantifies the
error, i.e., how far our prediction ŷ
is from the true label y

The cost function, J, is the average loss (error) over all
data points

Training

We want to find
parameters (W’s and b’s)
that minimize the cost, J

Gradient Descent Algorithm

❖ Initialize parameters (W’s and b’s)

❖ Repeat until converge:
➢ Update parameters (W’s and b’s)

to reduce the cost, J

Random Initialization
❖ If units in the same layer start

with the same parameters
then they will end with the
same parameters

❖ There’s no point in having
repetitive units, i.e., multiple
units in a layer with the same
parameter values

❖ Thus, we initialize the parameters randomly so
they start (and end) with different values

Gradient Descent
❖ Initialize parameters (W’s and b’s)

❖ Repeat until converge:

Deep Networks Forward propagation

Deep Networks Forward propagation

Deep Networks Forward propagation

Deep Networks Forward propagation

Deep Networks Forward propagation

Deep Networks Forward propagation

Deep Networks Forward propagation

Deep Networks Backward propagation

Deep Networks Backward propagation

Deep Networks Backward propagation

Deep Networks Backward propagation

Deep Networks Backward propagation

Deep Networks Backward propagation

Deep Networks Backward propagation

What do layers learn
Low-Level Mid-Level High-Level

What do layers learn
Low-Level Mid-Level High-Level

Extensions

❖ Activation functions

❖ Classification and regression

❖ Hyperparameter tuning

Activation Functions

x1

x2

x3

z = xᐧw + b
a = g(z)

z = xᐧw + b
a = g(z)

z = xᐧw + b
a = g(z)

z = xᐧw + b
a = g(z)

z = xᐧw + b
a = g(z)

z = xᐧw + b
a = g(z) Without non-linear activation

functions, we have a linear classifier

Activation Functions

sigmoid
ReLU

(Rectified Linear Unit)
tanh

(hyperbolic tangent)

ReLU is most common
for hidden layers

Extensions

❖ Activation functions

❖ Classification and regression

❖ Hyperparameter tuning

Classification and Regression

Loss
function

Units in
output layer

Units in
output layer

Activation in
output layer

Binary
Classification

Multiclass
Classification

(integer labels) Regression

Multiclass
Classification

(one-hot labels)

1 k
(num classes)

1k
(num classes)

sigmoid
(logistic) softmax softmax linear, i.e., identity

(no activation)

binary
crossentropy

sparse categorical
crossentropy

categorical
crossentropy

mean squared
error

Extensions

❖ Activation functions

❖ Classification and regression

❖ Hyperparameter tuning

Hyperparameter Tuning Using validation data!

❖ Architecture, i.e., number of layers and units per layer

❖ Activation functions (ReLU for hidden layers)

❖ Batch size (32, 64, 128, 256, 512)

Gradient Descent

Batch
(batch size = m)

Stochastic
(batch size = 1)

Mini-Batch
(batch size = 64)

Hyperparameter Tuning Using validation data!

❖ Architecture, i.e., number of layers and units per layer

❖ Activation functions (ReLU for hidden layers)

❖ Batch size (32, 64, 128, 256, 512)

❖ Learning rate, 𝛼. Decrease over time.

❖ Iterations of gradient descent (convergence and max_iter)

❖ Gradient descent (Adam: adaptive moment estimation)

Improvements on Gradient Descent

Hyperparameter Tuning Using validation data!

❖ Architecture, i.e., number of layers and units per layer

❖ Activation functions (ReLU for hidden layers)

❖ Batch size (32, 64, 128, 256, 512)

❖ Learning rate, 𝛼. Decrease over time.

❖ Iterations of gradient descent (convergence and max_iter)

❖ Gradient descent (Adam: adaptive moment estimation)

❖ Regularization (L2, dropout, early stopping)

Overfitting
❖ Overfitting is one of the most common problems in ML

TS

Z

❖ Model learns properties specific to the training data that don’t
generalize to new (testing) data

❖ Performance is much better on training data than on testing data

Regularization - L2

Smaller values for the parameters w lead to more generalizable
models and are less prone to overfitting

To incentivize small values for w, modify the cost function so that it:

1) Fits the training data well

2) Penalizes large values for w
and

λ is
regularization

parameter

Regularization - Dropout

0.5 0.5 0.5

Randomly choose units to remove from network
each time parameters are updated

Regularization - Dropout

0.5 0.5 0.5

Randomly choose units to remove from network
each time parameters are updated

Regularization - Dropout

0.5 0.5 0.5

Randomly choose units to remove from network
each time parameters are updated

Regularization - Early Stopping

Number of Iterations

Co
st

Training Data

Validation Data

