Transfer Learning
and Embeddings

CS 3 4 4 WELLESLEY
Deep Learning <R?

Transfer Learning

Transfer learning is taking knowledge a NN has learned
in one task and applying it to learning a different task

Transfer Learning

Suppose some NN has been trained
on a very large set of images

We can use this NN as a starting point
for solving some other image problem

Trained on over 1M
images belonging to
1000 classes

Transfer Learning

L9215
2/ ‘lood
indino
A
TTS ‘AU0D EXE
TTS ‘AU0d £XE
TTS ‘AU0d EXE
TTS ‘AUOD EXE
2 Y1 :921S
¢/ "1ood indyno
TTS ‘AUOD EXE
TTS ‘AUOD EXE
TTS ‘AU EXE
TTS 'AUOD EXE 8z 10218
indino
2/ ‘1ood
95T ‘AUOD EXE
[osemimere | oo
indino
z/ ‘|ood
H FA RCYH
indino
2/ ‘1ood
7 vz dus
9 ‘AU0D EXE ndino
afew!

-19

VGG

|00ty |

|ood Sae
| ashuodexe |

A

T/ ‘T1S ‘A0 £xE
967 ‘AU0D £XE
95T ‘AU0D EXE
95T ‘AUOD EXE

H

95T ‘AUOD EXE

ok

95T ‘AUOD £XE
9ST ‘AU0D £XE

P

95T ‘AUOD EXE

.~ 7/ 95T ‘AU0d £XE

<=
| sr‘Auodgxe |
| szrAuodgxe |

8TT ‘AUOD EXE

7/ ‘8TT ‘AUOD EXE

9 ‘AU0d £XE

i

19 ‘AU0D EXE

H

ResNet 34

¢/ ‘|ood

T/ ‘v9 ‘Nu0d LXL

i

afew

ResNet 50

ResNet50 Model Architecture

()]
Input | £ — Wk S S S
PEL 13 |5 S1E| (e8| (e8| (2|8 o]
® | |2 a7 m|8 0| e | o8| 8| .
S CEMcKN 22| |2la] |Ela]| |Ela] !
o s o |2 o |2 o |2 o8 |
) o o o o :
N |
!
L J U) U J L J L J
RS RS RS RS RS |
Stage 1 Stage 2 Stage3 Stage4 Stage 5 \

Freeze layers
Non-trainable

ResNet 50

import tensorflow as tf

R50 = tf.keras.applications

LResNet50(pooling="'avg', weights='imagenet"')

ResNet 50

R50.summary ()

Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) [(None, 224, 224, 3 0@ [1
)1
convl_pad (ZeroPadding2D) (None, 230, 230, 3) © ['input_1[0][0]"']
convl_conv (Conv2D) (None, 112, 112, 64 9472 ['convl_pad[@] [0]']
)
convl_bn (BatchNormalization) (None, 112, 112, 64 256 ['convl_conv[@][0]']
)
convl_relu (Activation) (None, 112, 112, 64 0 ['convi_bn[@][0]']
)
pooll_pad (ZeroPadding2D) (None, 114, 114, 64 © ['convl_relulo] [0]']
e o o

conv5_block3_3_conv (Conv2D) (None, 7, 7, 2048) 1050624

conv5_block3_3_bn (BatchNormal (None, 7, 7, 2048) 8192

ization)

conv5_block3_add (Add) (None, 7, 7, 2048) 0

conv5_block3_out (Activation) (None, 7, 7, 2048) 0

avg_pool (GlobalAveragePooling (None, 2048) 0
2D)
predictions (Dense) (None, 1000) 2049000

['conv5_block3_2_relul@][0]']
['conv5_block3_3_conv([0][0]']
['conv5_block2_out[@] [0]"*,
'conv5_block3_3_bn[0][0]"']
['conv5_block3_add[0] [0] ']

['conv5_block3_out[0] [0]"']

['avg_pool[o] [0]']

Total params: 25,636,712
Trainable params: 25,583,592
Non-trainable params: 53,120

ResNet 50

import tensorflow as tf

R50 = tf.keras.applications}ResNet50(pooling='avg', weights='imagenet"')

R50

tf.keras.applications{ResNet50(pooling="avg', weights='imagenet', include_top=False)

ResNet 50

R50.summary ()

include_top=True

Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) [(None, 224, 224, 3 0@ [1
)1
convl_pad (ZeroPadding2D) (None, 230, 230, 3) © ['input_1[0][0]"']
convl_conv (Conv2D) (None, 112, 112, 64 9472 ['convl_pad[@] [0]']
)
convl_bn (BatchNormalization) (None, 112, 112, 64 256 ['convl_conv[@][0]']
)
convl_relu (Activation) (None, 112, 112, 64 0 ['convi_bn[@][0]']
)
pooll_pad (ZeroPadding2D) (None, 114, 114, 64 © ['convl_relulo] [0]']
e o o

conv5_block3_3_conv (Conv2D) (None, 7, 7, 2048) 1050624

conv5_block3_3_bn (BatchNormal (None, 7, 7, 2048) 8192

ization)

conv5_block3_add (Add) (None, 7, 7, 2048) 0

conv5_block3_out (Activation) (None, 7, 7, 2048) 0

avg_pool (GlobalAveragePooling (None, 2048) 0
2D)
predictions (Dense) (None, 1000) 2049000

['conv5_block3_2_relul@][0]']
['conv5_block3_3_conv([0][0]']
['conv5_block2_out[@] [0]"*,
'conv5_block3_3_bn[0][0]"']
['conv5_block3_add[0] [0] ']

['conv5_block3_out[0] [0]"']

['avg_pool[o] [0]']

Total params: 25,636,712
Trainable params: 25,583,592
Non-trainable params: 53,120

ResNet 50

R50.summary ()

include_top=False

Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) [(None, 224, 224, 3 0@ [1
)1
convl_pad (ZeroPadding2D) (None, 230, 230, 3) 0 ['input_1[0] [0]"']
convl_conv (Conv2D) (None, 112, 112, 64 9472 ['convl_pad[@] [0]']
)
convl_bn (BatchNormalization) (None, 112, 112, 64 256 ['convl_conv[0] [0]"']
)
convl_relu (Activation) (None, 112, 112, 64 © ['convl_bn[0]l[0]"']
)
pooll_pad (ZeroPadding2D) (None, 114, 114, 64 0 ['convl_relul@] [0]"']
e o o
conv5_block3_3_bn (BatchNormal (None, None, None, 8192 ['conv5_block3_3_conv([0] [0]"']
ization) 2048)
conv5_block3_add (Add) (None, None, None, 0 ['conv5_block2_out[@] [0]',
2048) 'conv5_block3_3_bn[@] [0]"']
conv5_block3_out (Activation) (None, None, None, @ ['conv5_block3_add[0] [0]"']
2048)
avg_pool (GlobalAveragePooling (None, 2048) 0 ['conv5_block3_out[0] [0]"']

2D)

Total params: 23,587,712
Trainable params: 23,534,592
Non-trainable params: 53,120

ResNet 50

Create model
model_R50 = tf.keras.Sequential([

tf.keras.applications {ResNet50(include_top=False, pooling='avg', weights='imagenet')L
tf.keras.layers[ﬁense 128, activation='relu’),

tf.keras.layers{Dense(4, activation='softmax')

1)

model_R50. layers[0].trainable = False

ResNet 50

Create model

model_R50 = tf.keras.Sequential([
tf.keras.applications.ResNet50(include_top=False, pooling='avg', weights='imagenet'),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(4, activation='softmax')

1)

model_R50. layers[0].trainable = False

Layer (type) Output Shape Param #
mode1_R50.summary()

resnet50 (Functional) (None, 2048) 23587712

dense (Dense) (None, 128) 262272

dense_1 (Dense) (None, 4) 516

Total params: 23,850,500
Trainable params: 262,788
Non-trainable params: 23,587,712

ResNet 50

Create model

model_R50 = tf.keras.Sequential([
tf.keras.applications.ResNet50(include_top=False, pooling='avg', weights='imagenet'),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(4, activation='softmax')

1)

model_R50. layers[0].trainable = False

Compile and train model

mode1_R50. compile(
optimizer="adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=["'accuracy'l])

model_R50.fit(train_ds, validation_data=val_ds, epochs=5)

Transfer Learning

Transfer learning is taking knowledge a NN has learned
in one task and applying it to learning a different task

Many NNs have been trained on massive datasets for
long periods of time, with their architectures and
hyperparameters tuned

These pre-trained NNs have already learned low-level
(and mid-level and high-level) features from a very large
dataset

Embeddings

Embedding

An embedding is a way to represent high-dimensional
data in a low-dimensional space in a way that captures

some of the structure, similarity, or semantic meaning of
the data

Non-Embedding

In English, words are represented by a sequence of
letters, but the letters have no relationship to the
meaning of the word

opt TOP cat CAP
pot car

What if all words that started with the letter “a”
pertained to animals, and all words that started with the
letter “b” were verbs?

Embedding

An embedding is a way to represent high-dimensional
data in a low-dimensional space in a way that captures
some of the structure, similarity, or semantic meaning of
the data

In an embedding in machine learning, data are normally
represented by a vector (1D array) of numbers, where
each position in the vector corresponds to a feature

ResNet 50

include_top=False

fAs input, start with\
(224, 224, 3) image

50,176 pixels
\150’528 features)

Layer (type)

Output Shape

Param #

Connected to

input_1 (InputLayer)

convl_pad (ZeroPadding2D)

convl_conv (Conv2D)

convl_bn (BatchNormalization)

[(None, 224, 224, 3
)]

(None, 230, 230, 3)

(None, 112, 112, 64
)

(None, 112, 112, 64
)

0

9472

256

[l

['input_1[0][0]"']

['convl_pad[0][0]']

['convl_conv[0] [0]"']

Embedding is lower-dimensional representation
that captures some meaning in image, though
2,048 features may not be interpretable

conv5_block3_add (Add)

conv5_block3_out (Activation)

(None, None, None, 0
2048)

(None, None, None, @
2048)

avg_pool (GlobalAveragePooling

2D)

(None, 2048) 0

['conv5_block2_out[0] [0]"',
'conv5_block3_3_bn[0][0]"']

['conv5_block3_add[0] [0]"']

['conv5_block3_out[0] [0]"']

Total params: 23,587,712
Trainable params: 23,534,592
Non-trainable params: 53,120

Image Embedding

ResNet50 Model Architecture

390ig ai

)o0|g AU0D

3o0ig ai

)o0|g AU09)

320ig ail

)o0|g AU09)

3o0ig ai

)o0|g AU09)

|00d Xe\l

njoy

ANOD

Buipped 0.9z

Image Embedding

More similar Less similar
AL
o § u
m m m m m
3 3 3 3 i
O O O O O
(0] () (0] (0] (0]
o o o o o
o o o o o
5 5 5 5 5
(o] (o] « « (o]
0.3 0.1 0.4 0.3 0.3 4.4 8.6
-1.1 -0.1 -0.6 -3.8 -1.1 9.2 4.7
5.8 3.5 7.2 5.7 5.8 0.1 -0.8
7.6 -2.9 9.1 -8.2 7.6 -1.4 5.3

24 2.6 2.0 25 24 -4.5 0.2

v,

L%

" n @ © JBuppaqu

-0.7
-6.3

Image Similarity (Cosine)

Y

Word Encoding

Apple College Ruby Studying Fox Pi

1 2 3 4 5 6

Word Encoding

Apple College Ruby Studying Fox Pi
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

Word Embedding

Apple College Ruby Studying Fox Pi
Size -0.5 0.6 -0.8 0.1 0.3 -0.6
Red 0.8 0.03 091 0.0 0.7 0.01
Verb 0.01 -0.01 -0.07 0.99 0.4 0.0
Scholastic 0.2 0.97 0.03 0.87 0.02 0.3
Animal 0.05 0.01 -0.04 -0.02 099 -0.1
Numerical | -0.02 0.21 0.0 0.3 0.01 0.99
Cost -0.8 0.92 0.94 0.2 0.04 0.06

GloVe (Global Vectors for word representation)

Transfer

Trained on 6 billion words of text learning!

from Wikipedia and from news stories

Each word is represented by 50 dimensional vector

The 50 features may not be interpretable

GloVe Embedding

Apple College

Ruby Studying Fox Pi

~ 0.52 -1.23

-0.83 142

E 0.5 -0.69

Q %{ 129 -1.16
% 0.12 0.0

_ 027 032

0.16 0.29 044 04

091 0.35 0.06 1.0/
-0.55 -0.87 0.1c 0.44
1.39 -0.73 093 0.64
-0.14 -0.08 0.19 0.33

-0.25 -0.11 1.51 0.15

Word Similarity (Cosine)

0.87

0.57

0.40

0.09

College
University

Fox
Wolf

Apple
Red

Fox
Pi

Apple College Ruby Studying Fox Pi
0.52 -1.23 0.16 0.29 044 04
-0.83 1.42 0.91 0.35 0.06 1.07

0.5 -0.69 -0.55 -0.87 0.16 0.44
1.29 -1.16 1.39 -0.73 093 0.64
0.12 0.0 -0.14 -0.08 0.19 0.33
0.27 032 -0.25 -0.11 1.51 0.15

Nearest Neighbors

0.92
0.89
0.88
0.85
0.84
0.82
0.82
0.79
0.79
0.78

Truck

Cars
Vehicle
Driver
Driving
Bus
Vehicles
Parked
Motorcycle
Taxi

What are the k=10 words
most similar to “car”?

t-SNE (t-distributed Stochastic Neighbor Embedding)

Apple College Ruby Studying Fox Pi
0.52 -1.23 0.16 0.29 0.44 04
-0.83 1.42 0.91 0.35 0.06 1.07

How can we visualize
50-dimensional data?

o 05 -069 -055 -087 016 0.44
Embed it in 129 -116 139 -073 093 064
2 dimensions. 012 00 -014 -008 019 033

And plot it!

0.27 032 -0.25 -0.11 1.51 0.156

PCA is a linear reduction, whereas t-SNE is non-linear.

t-SNE (t-distributed Stochastic Neighbor Embedding)

t-SNE embedding of example words

How can we visualize
50-dimensional data?

Embed it in
2 dimensions.
And plot it!

portuguese
QS anish brazil
aﬂ_;enﬁ'r@a(ico
o "o usa
[J
peso
. aollar
.shopplng ([)
airplapes @M
il @ large®
° () .arge
.driver d
o
.maroon
.dog .kitten
u . ,
.cat.p PRy .frlghtenlng
frog swarm
olo%d ® fock
bee®
® eJcese

university
college
. g

PCA is a linear reduction, whereas t-SNE is non-linear.

t-SNE (t-distributed Stochastic Neighbor Embedding)

Embeddings of Animal Images

How can we visualize
2048-dimensional data?

Embed itin .
2 dimensions. - oy
And plot it!

sheep
spider
chicken
horse
squirrel
cow
elephant

Dataset of 26k+ images of 10 different animals

Word Analogies

USA is to dollar as Mexico is to

small is to smaller as large is to

pilot is to airplanes as driver is to

usa Mexico

dollar peso

larger
larg.e,. smaller

o’

small

airplanes.v\.)
pilot

cars)
.v\.d river

Word Analogies

USA is to dollar as Mexico is to

AistoBasCistoD

For every word D, calculate the similarity
between A-B and C-D, and choose the
word D that yields the highest similarity

usa Mexico

dollar 4

larger

o’

large smaller

small

airplanes.,\.)
pilot

cars)
.‘\.d river

