
An	Applica)on	of	Vector	Space:	
Ranking	Web	Search	Results	

	

The	Web	Search	Model	

2

The Web

Web crawler

Indexer

Search

User

Indexes

Query Engine

Query	Engine�s	opera)ons	

•  Process	query	
•  Look-up	the	index		
•  Retrieve	list	of	documents		
•  Order	documents	
•  Prepare	results	page	

3

MOTIVATING QUESTION:
Given a large list of documents that match a query,
how to order them according to their relevance?

Binary	term-document	incidence	matrix	

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each document is represented by a binary vector � {0,1}|V|

Sec. 6.2

4

Why	Ranking	Search	Results?	
•  Thus	far,	our	queries	have	all	been	Boolean.	

–  Documents	either	match	or	don�t.	No	“top-10”	results.	
•  Boolean	queries	exhibit	the	“feast-or-famine”	problem:	

–  Adding	a	term	to	a	query	goes	from	‘000’s	of	results	to	no	results	

•  Boolean	queries	are	good	for	expert	users		
with	precise	understanding	of	their	needs	and	the	
collecLon.	
–  Also	good	for	applicaLons:	they	can	easily	handle	1000s	of	
results.	

•  Boolean	are	not	good	for	the	majority	of	users.	
–  Most	users	incapable	of	wriLng	Boolean	queries		
(or	they	are,	but	they	think	it’s	too	much	work).	

–  Most	users	don’t	want	to	wade	through	1000s	of	results.	
•  This	is	parLcularly	true	of	web	search.	

Ch. 6

5

Solu)on:	Score	Documents	to	Rank	
Given	document	di		;	Given	query	q	
•  Calculate	score(q,	di),	usually	a	number	[0,	1]	

–  score	measures	how	well	document	and	query	“match”	
•  Rank	documents	in	decreasing	order	of	score(q,	di)	

Assign	a	score	to	a	query/document	pair	
•  Let�s	start	with	a	one-term	query	
•  If	the	query	term	does	not	occur	in	the	document:		

what	the	score	of	the	document	should	be?	____	
•  If	the	query	term	occurs	5	Lmes	in	d1	and	50	Lmes	in	d2,	

which	document	should	have	a	higher	score?	____	
•  We	will	look	at	a	number	of	alternaLves	for	this.	

6

But	first:	The	Bag	of	Words	Model	

•  �Bag	of	words�	Model:		
– Document	=	bag	of	[unordered]	words		
–  d1	=	“John	is	quicker	than	Mary”		
and		
d2	=	“Mary	is	quicker	than	John”		
have	the	same	words.	

–  Is	this	a	good	idea?	
•  In	a	sense,	this	is	a	step	back:		
The	posiLonal	index	was	able	to	disLnguish	these	
two.	But	that’s	ok	for	now.	

7

Term-document	count	matrices	

•  Consider	the	number	of	occurrences	of	a	term	
in	a	document:		
– Each	document	is	a	count	vector	in	ℕv:	a	column	
below		Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Sec. 6.2

Idea:	Query	terms	that	appear	more	o_en	in	a	document,	match	it	be`er	
8

Method	1:	Term	Frequency	!t,d		

•  Assign	to	each	term	a	weight	
	<t,d	term	frequency	=	
							how	o_en	term	t		
occurs	in	document	d	

	
		

•  query	=	�who	wrote	wild	boys�	
•  doc1	=	�Duran	Duran	sang	Wild	Boys	in	1984�	
•  doc2	=�Wild	boys	don�t	remain	forever	wild�	
•  doc3	=�Who	brought	wild	flowers?�	
•  doc4	=�It	was	John	Krakauer	who	wrote	In	to	

the	wild.�	

9

query	=	{boys:	1,	who:	1,	wild:	1,	wrote:	1}	
doc1	=	{1984:	1,	boys:	1,	duran:	2,	in:	1,	sang:	1,	wild:	1}
doc2	=	{boys:	1,	don�t:	1,	forever:	1,	remain:	1,	wild:	2}	
doc3	=	{																																																																																	}	
doc4	=	{																																																																																}	

∑
∈

=
qt

dttfdqscore ,),(

score(q,	doc1)	=	1	+	1	=	2	
score(q,	doc2)	=	1	+	2	=	3	
score(q,	doc3)	=		
score(q,	doc4)	=		

Why	using	just	!t,d		is	not	good?	
•  Bigger	documents	have	more	terms,		thus	their	score	is	larger.	

–  Will	need	to	fix	this:	“length	normalizaOon”	
•  A	document	having	10	occurrences	of	a	term	

is	not	10	Lmes	be`er	than	another	that	has	it	once.	
–  Will	need	to	fix	this	

•  All	terms	are	equally	important.	
–  How	frequency	can	indicate	importance?	

Postulate:		
A	word	that	appears	in	(almost)	every	document,		
is	not	very	important	
i.e.,	it	has	no	discriminatory	power.	

10

Log-frequency	weigh)ng	

•  The	log	frequency	weight	of	term	t	in	d	is	

•  0	→	0,	1	→	1,	2	→	1.3,	10	→	2,	1000	→	4,	etc.	
•  Score	for	a	document-query	pair:	sum	over	terms	
t	in	both	q	and	d:	

•  score	

•  The	score	is	0	if	none	of	the	query	terms	is	
present	in	the	document.	

⎩
⎨
⎧ >+

=
otherwise 0,

0 tfif, tflog 1
 10 t,dt,d

t,dw

∑ ∩∈
+=

dqt dt) tflog (1 ,

Sec. 6.2

11

Method	2:	Weights	according	to	rarity	
•  Rare	terms	are	more	informaLve	than	frequent	terms	

–  Recall	stop	words	
•  Consider	a	term	in	the	query	that	is	rare	in	the	
collecLon		
(e.g.,	arachnocentric)	

•  A	document	containing	this	term	is	very	likely	to	be	
relevant	to	the	query	arachnocentric	

•  →	We	want	a	high	weight	for	rare	terms	like	
arachnocentric.	

•  dft	-	document	frequency	for	term	t	(=	num	of	docs	
contain	t)	

•  idft	-	inverse	document	frequency	for	term	t	

Sec. 6.2.1

idft = log
N
dft

N - total number of documents
12

idf	example	

term dft idft

arachnocentric 1

capricious 100

sunday 1,000

person 10,000

under 100,000

the 1,000,000

There is one idf value for each term t in a collection.

Sec. 6.2.1

)/df(log idf 10 tt N=

suppose N = 1,000,000 documents
Effect	of	idf	on	ranking	

•  Does	idf	have	an	effect	on	ranking	of	documents		
for	one-term	queries?	
–  	e.g.	person	

•  idf	has	no	effect	on	ranking	one	term	queries	
•  Does	idf	affects	the	ranking	for	queries	with	>	1	terms	

–  e.g.	capricious	person	
–  idfcapricious	>	idfperson	

•  idf	weighLng	makes	occurrences	of	capricious		
count	for	much	more	in	the	final	document	ranking		
than	occurrences	of	person.	

14

Method	3:	BeQer	R.idf	weigh)ng	

•  The	n-idf	weight	of	a	term	is		
	the	product	of	its	R	weight	and	its	idf	weight.	

	

•  Best	known	weighLng	scheme	in	informaLon	
retrieval	
– AlternaLve	names:	n	x	idf,	n-idf	(with	hyphen,	not	
minus)	

•  What	happens	to	n.idf	weight	when…	
–  the	number	of	occurrences	within	a	document	
increases?	

–  the	rarity	of	the	term	in	the	collecLon	increases?	

)df/(log)tflog1(w 10,, tdt N
dt

×+=

Sec. 6.2.2

15

Binary	→	count	→	R.idf	weight	matrix	

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a
 real-valued vector of tf.idf weights ∈ R|V| of |V| terms

Sec. 6.3

How to rank results for query: “In the mercy of Caesar”

Term-Document Matrix

16

Ranking	of	documents	for	a	query	

•  Rank	by	summing	n.idf	weights.	
•  But	how	do	we	normalize	lengths?	
We	need	to	think	in	terms	of	vector	arithmeLc…	

17
€

Score(q,d) = tf.idft,dt∈q∩d∑

Sec. 6.2.2

DOCUMENTS	are	vectors	

•  So	we	have	a	|V|-dimensional	
vector	space	

•  Terms	are	axes	of	the	space	
•  Documents	are	points	or	vectors	

in	this	space	
•  Very	high-dimensional:		

tens	of	millions	of	dimensions	
when	you	apply	this		
to	a	web	search	engine	

•  These	are	very	sparse	vectors:	
most	entries	are	zero.	

Sec. 6.3

t1

d2

d1

d3

d4

d5

t3

t2

θ
φ

18

QUERIES	are	also	vectors	

•  Key	idea	1:	Represent	queries	as	
vectors	in	the	space	

•  Key	idea	2:	Rank	documents	
according	to	their	proximity	to	
query	in	this	space	
–  proximity	=	similarity	of	vectors	
–  proximity	≈	inverse	of	�distant�	

•  How	to	determine	vector	
proximity?	
–  Let’s	try	shortest	distance	b/w	
vectors	

–  Euclidean	distance?	

Sec. 6.3

t1

d2

d1

d3

d4

d5

t3

t2

θ
φ

19

Euclidean	distance	is	not	a	good	idea	

The	Euclidean	distance	
between	q	and	d2	is	large	
even	though	the	
distribuLon	of	terms	in	the	
query	q	and	the		
distribuLon	of	terms		
in	d2	are	very	similar.	

Sec. 6.3

20

Use	angle	instead	of	distance	

•  Thought	experiment:		
take	a	document	d	and	append	it	to	itself.		
Call	this	document	d2.	
–  �SemanLcally�	d	and	d2	have	the	same	content	

•  The	Euclidean	distance	between	the	two	documents		
can	be	quite	large	

•  The	angle	between	d	and	d2	is	0,		
corresponding	to	maximal	similarity.	

•  Key	idea:	Rank	documents	according	to	angle	with	
query.	

Sec. 6.3

21

From	angles	to	cosines	

•  The	following	two	noLons	are	equivalent.	
–  Rank	documents	in	decreasing	order	of	the	
angle	between	query	and	document	

–  Rank	documents	in	increasing	order		of	
cosine(query,	document)	

•  Cosine	is	a	monotonically	decreasing	funcLon	for	
the	interval	[0o,	180o]	

Sec. 6.3

22

Length	normaliza)on	

•  A	vector	can	be	(length-)	normalized		
by	dividing	each	of	its	components	by	its	length	–		
for	this	we	will	divide	by	the	L2	norm:	

•  Dividing	a	vector	by	its	L2	norm		
makes	it	a	unit	(length)	vector		
(“on	surface	of	unit	hypersphere”)	

•  Effect	on	the	two	documents	d	and	d2:		
they	have	idenLcal	vectors	a_er	length-normalizaLon.	
–  Long	and	short	documents	now	have	comparable	weights	

∑=
i i
xx 2

2

!

Sec. 6.3

23

cosine(query,document)	

∑∑
∑

==

==•=
•

=
V

i i
V

i i

V

i ii

dq

dq

d
d

q
q

dq
dqdq

1
2

1
2

1),cos(!

!

!
!

!!

!!!!

Dot product Unit vectors

qi is the tf-idf weight of term i in the query
di is the tf-idf weight of term i in the document

cos(q,d) is the cosine similarity of q and d … or,
equivalently, the cosine of the angle between q and d.

Sec. 6.3

24

Cosine	similarity	illustrated	

•  The	effect	of	length	normalizaLon	

25

Cosine	similarity	amongst	3	documents	

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

How	similar	are	
the	novels	
SaS:	Sense	and	
Sensibility	
PaP:	Pride	and	
Prejudice,	and	
WH:	Wuthering	
Heights?	 Term frequencies (counts)

Sec. 6.3

Note: To simplify this example, we don’t do idf weighting. 26

3	documents	example	contd.	

Log	frequency	weigh)ng	

term SaS PaP WH
affection 3.06 2.76 2.30
jealous 2.00 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

A^er	length	normaliza)on	

term SaS PaP WH
affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0 0.405
wuthering 0 0 0.588

cos(SaS,PaP) ≈
0.789 × 0.832 + 0.515 × 0.555 + 0.335 × 0.0 + 0.0 × 0.0
≈ 0.94
cos(SaS,WH) ≈ 0.79
cos(PaP,WH) ≈ 0.69

Sec. 6.3

27

Calcula)on	of	similari)es 		

28
28

Alterna)ve	1:	Jaccard	coefficient	
•  A	commonly	used	measure	of	overlap	of	two	sets	A	
and	B	
–  jaccard(A,B)	=	|A	∩	B|	/	|A	�	B|	
–  jaccard(A,A)	=	___	
–  jaccard(A,B)	=	___	if	A	∩	B	=	0	

•  Jaccard()	takes	values	between	___	and	___.	
•  Example:	Query	q:	ides	of	march	

– What	is	the	score	that	the	Jaccard	coefficient	
computes	for	each	of	the	two	documents	below?	

–  d1:	caesar	died	in	march	
–  d2:	the	long	march	

•  Score(q,d1)	=	____	Score(q,d2)	=	____	More	
relevant:	___	

Ch. 6

29

Issues	with	Jaccard	for	scoring	

•  +	Easy	to	implement	
•  -	It	doesn�t	consider	how	many	Lmes	a	term	occurs	in	
a	document	
–  Ignores	“term	frequency”	

•  -	It	considers	every	word	to	be	equally	important.		
But	rare	terms	in	a	collecLon	are	more	informaLve	
than	frequent	terms.		
–  Ignores	“term	rarity”	

•  -	Long	documents	have	an	advantage.		
We	need	a	sophisLcated	way	of	normalizing	for	length	
–  Ignores	“length	normalizaOon”	

Ch. 6

30

