An Application of Vector Space:
Ranking Web Search Results

The Web Search Model

%@ Web crawler @
@ \‘ ’ /

| Gearch

The Web

Indexes

Query Engine’ s operations

Process query

Look-up the index
Retrieve list of documents
Order documents
Prepare results page

MOTIVATING QUESTION:
Given a large list of documents that match a query,
how to order them according to their relevance?

Binary term-document incidence matrix

Antony and Cleopatra | Julius Caesar | The Tempest Hamlet Othello Macbeth
Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Each document is represented by a binary vector € {0,1}Vl

Why Ranking Search Results?

* Thus far, our queries have all been Boolean.
— Documents either match or don’ t. No “top-10” results.
* Boolean queries exhibit the “feast-or-famine” problem:

— Adding a term to a query goes from ‘000’s of results to no results
* Boolean queries are good for expert users
with precise understanding of their needs and the
collection.
— Also good for applications: they can easily handle 1000s of
results.
* Boolean are not good for the majority of users.

— Most users incapable of writing Boolean queries
(or they are, but they think it’s too much work).

— Most users don’t want to wade through 1000s of results.
* This is particularly true of web search.

Solution: Score Documents to Rank

Given document d; ; Given query q
* Calculate score(q, d}), usually a number [0, 1]

— score measures how well document and query “match”
* Rank documents in decreasing order of score(q, d,)

Assign a score to a query/document pair
* Let’s start with a one-term query

* If the query term does not occur in the document:
what the score of the document should be?

e If the query term occurs 5 times in d1 and 50 times in d2,
which document should have a higher score?

* We will look at a number of alternatives for this.

But first: The Bag of Words Model

« “Bag of words” Model:
— Document = bag of [unordered] words

— d1 = “John is quicker than Mary”
and
d2 = “Mary is quicker than John”
have the same words.

— Is this a good idea?

* In a sense, this is a step back:
The positional index was able to distinguish these
two. But that’s ok for now.

Term-document count matrices

e Consider the number of occurrences of a term
in a document:

— Each document is ajcount vector in NY: a column

Antony and Cleopatra | Julius Caesar | The Tempest Hamlet Othello Macbeth
Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1
Calpurnia 0 10 0 (1] (1] 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 5 5 1
worser 2 0 1 1 1 0

Idea: Query terms that appear more often in a document, match it better

Method 1: Term Frequency tf, ,

* Assign to each term a weight
tf, , term frequency =
how often term t
occurs in document d « query = ‘who wrote wild boys’

» docl= ‘Duran Duran sang Wild Boys in 1984’

doc3 = ‘Who brought wild flowers?’

doc4 = ‘It was John Krakauer who wrote /n to
the wild.’

Score(q, d) = E []pt J » doc2 = ‘Wild boys don’ t remain forever wild’
=t °

query = {boys: 1, who: 1, wild: 1, wrote: 1} score(q, docl)=1+1=2
docl ={1984: 1, boys: 1, duran: 2, in: 1, sang: 1, wild: 1} score(q, doc2)=1+2=3
doc2 = {boys: 1, dont: 1, forever: 1, remain: 1, wild: 2} score(q, doc3) =
doc3={ } score(q, doc4) =
doc4 ={ }

Why using just tf, , is not good?

* Bigger documents have more terms, thus their score is larger.
— Will need to fix this: “length normalization”
* A document having 10 occurrences of a term
is not 10 times better than another that has it once.
— Will need to fix this
* All terms are equally important.
— How frequency can indicate importance?

Postulate:
A word that appears in (almost) every document,
is not very important
i.e., it has no discriminatory power.

10

Log-frequency weighting

* The log frequency weight of term tin d is
{1+log10 tf, . if tf, , >0
Wtd = ' ’

0, otherwise

0-0,1-51,2->1.3,10-> 2,1000 - 4, etc.

 Score for a document-query pair: sum over terms
tin both gandd:

*score =N (L+logtf,,)

* The score is 0 if none of the query terms is
present in the document.

Method 2: Weights according to rarity

* Rare terms are more informative than frequent terms
— Recall stop words

* Consider a term in the query that is rare in the
collection
(e.g., arachnocentric)

* A document containing this term is very likely to be
relevant to the query arachnocentric

* - We want a high weight for rare terms like
arachnocentric.

e df, - document frequency for term t (= num of docs
contain t)

* idf, - inverse document frequency for term t

. N
idf, =log— N - total number of documents

t

idf example
suppose N = 1,000,000 documents

arachnocentric 1
capricious 100
sunday 1,000
person 10,000
under 100,000
the 1,000,000

idf, =log,, (N/df))

There is one idf value for each term t in a collection.

Effect of idf on ranking

Does idf have an effect on ranking of documents
for one-term queries?

— e.g. person

Does idf affects the ranking for queries with > 1 terms
— e.g. capricious person
- idfmpricious > idfperson

14

Method 3: Better tf.idf weighting

* The tf-idf weight of a term is
the product of its tf weight and its idf weight.

w =(1+logtf, ;) xlog,,(N/df,)

* Best known weighting scheme in information
retrieval
— Alternative names: tf x idf, tf-idf (with hyphen, not
minus)
* What happens to tf.idf weight when...

— the number of occurrences within a document
increases?

— the rarity of the term in the collection increases? 15

Binary » count > tf.idf weight matrix

Term-Document Matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a
real-valued vector of tf.idf weights € RVl of |V| terms

How to rank results for query: “In the mercy of Caesar’

16

Ranking of documents for a query

DOCUMENTS are vectors

* So we have a |V|-dimensional
vector space

* Terms are axes of the space
* Documents are points or vectors

in this space d,
— * Very high-dimensional: /
Score(q,d) E tfldf[,d tens of millions of dimensions dy = ,
teqgnNd when you apply this / d
to a web search engine o !
* These are very sparse vectors: P
* Rank by summing tf.idf weights. most entries are zero. T
* But how do we normalize lengths? .
We need to think in terms of vector arithmetic... ds
17 18
QUERIES are also vectors Euclidean distance is not a good idea
* Key idea! 1: Represent queries as GOSSIP d
vectors in the space
* Key idea 2: Rank documents The Euclidean distance 1
according to their proximity to t . between g and d, is large [)
query in this space s even though the /
— proximity = similarity of vectors d; " distribution of terms in the /
— proximity = inverse of “distant” = query g and the / //
* How to determine vector N distribution of terms | ds
proximity? Vs T in d, are very similar. 0 5// JEALOUS
— Let’s try shortest distance b/w
vectors 4,

— Euclidean distance?

19

20

Use angle instead of distance

Thought experiment:
take a document d and append it to itself.
Call this document d>.

— “Semantically” d and d? have the same content

The Euclidean distance between the two documents
can be quite large

The angle between d and d?is 0,
corresponding to maximal similarity.

Key idea: Rank documents according to angle with
query.

21

From angles to cosines

* The following two notions are equivalent.
— Rank documents in decreasing order of the
angle between query and document
— Rank documents in increasing order of
cosine(query, document)
* Cosine is a monotonically decreasing function for
the interval [0°, 180°]

22

Length normalization

A vector can be (length-) normalized
by dividing each of its components by its length —
for this we will divide by the L, norm:

&), =3

Dividing a vector by its L, norm
makes it a unit (length) vector
(“on surface of unit hypersphere”)

Effect on the two documents d and d?:
they have identical vectors after length-normalization.
— Long and short documents now have comparable weights

23

cosine(query,document)

‘Dot product ‘ ‘U it vectors ‘
N 2L v
e — d
Cos(é’d)_q*; th‘,% v =7 s
ald lal Vg S

g, is the tf-idf weight of term i in the query
d; is the tf-idf weight of term j in the document

cos(q,d) is the cosine similarity of g and d or,
equivalently, the cosine of the angle between g and d.

24

Cosine similarity illustrated

* The effect of length normalization
GOSSIP d>
14 % 11 v(di)

: (

/ f \\\}a) o
L \
| /e 0 f/ \

JEALOUS O |
0 1 0 1

o

25

Cosine similarity amongst 3 documents

How similar are

58 20

SaS: Sense and affection 15
Sensibility

jealous 10 7 11
PaP: Pride and

gossip 2 0 6
Prejudice, and

wuthering 0 0 38

WH: Wuthering

s .
Heights? Term frequencies (counts)

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

Log frequency weighting After length normalization

affection 3.06 2.76 2.30 affection 0.789 0.832 0.524

jealous 2.00 1.85 2.04 jealous 0.515 0.555 0.465
gossip 1.30 0 1.78 gossip 0.335 0 0.405
wuthering 0 0 2.58 wuthering 0 0 0.588

cos(SaS,PaP) =

0.789 x 0.832 + 0.515 x 0.555 + 0.335 x 0.0 + 0.0 x 0.0
~ 0.94

cos(SaS,WH) = 0.79

cos(PaP,WH) =~ 0.69

27

Calculation of similarities

TERM-DOCUMENT MATRIX

term vectors Sas PaP Wh Hei query = jealous gossip
affection 115 58 20 0
jealous 10 7 11 1
gossip 2 0 6 1

EUCLIDIAN NORMS
euclidian nor 115.451288 58.4208867 23.6008474 1.41421356

NORMALIZED TERM-DOCUMENT MATRIX

norm term vecS a s PaP Wh Hei

affection 0.99609109 0.99279561 0.8474272 0

jealous 0.08661662 0.11982016 0.46608496 0.70710678

gossip 0.01732332 0 0.25422816 0.70710678
SIMILARITIES CALCULATION SIMILARITIES TO QUERY

sim(SAS, PaP) 0.99929328 sim(q,Sas) 0.07349664

sim(Sas, WH) 0.88888946 sim(q,PaP) 0.08472565
sim(PaP,WH) 0.89716838 sim(q,WH) 0.50933829 best match

Sas is much more similar to PaP

than it is to WH.
28

Alternative 1: Jaccard coefficient

A commonly used measure of overlap of two sets A
and B

— jaccard(A,B)=|AnB|/|A U B|

— jaccard(AA)=
— jaccard(A,B)=___ ifAnB=0
Jaccard() takes values between ___ and

Example: Query q: ides of march

— What is the score that the Jaccard coefficient
computes for each of the two documents below?

— d1: caesar died in march

— d2: the long march

Score(q,d1) = Score(q,d2) = More
relevant: ___

29

Issues with Jaccard for scoring

+ Easy to implement

- It doesn’ t consider how many times a term occurs in
a document

— Ignores “term frequency”

- It considers every word to be equally important.

But rare terms in a collection are more informative
than frequent terms.

— Ignores “term rarity”

- Long documents have an advantage.
We need a sophisticated way of normalizing for length

— Ignores “length normalization”

30

