Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work?
 - L = Where is the ghost?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in [0, ∞)
 - L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

- Associate a probability with each value
 - Temperature:

P('	Γ)
Т	Р
hot	0.5
cold	0.5

P(W)	
W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

Probability Distributions

Unobserved random variables have distributions

P(T)	Γ)
Т	Р
hot	0.5
cold	0.5

P(W)	
W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$P(W = rain) = 0.1$$

• Must have:
$$\forall x \ P(X=x) \ge 0$$
 and $\sum_x P(X=x) = 1$

Shorthand notation:

$$P(hot) = P(T = hot),$$

 $P(cold) = P(T = cold),$
 $P(rain) = P(W = rain),$
...

OK if all domain entries are unique

Joint Distributions

• A joint distribution over a set of random variables: $X_1, X_2, \ldots X_n$ specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

• Must obey:
$$P(x_1,x_2,\dots x_n) \geq 0$$

$$\sum_{(x_1,x_2,\dots x_n)} P(x_1,x_2,\dots x_n) = 1$$

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

- Size of distribution if n variables with domain sizes d?
 - For all but the smallest distributions, impractical to write out!

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
 - (Random) variables with domains
 - Assignments are called outcomes
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact
- Constraint satisfaction problems:
 - Variables with domains
 - Constraints: state whether assignments are
 - Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Constraint over T,W

Т	W	Р
hot	sun	Т
hot	rain	F
cold	sun	F
cold	rain	Т

Events

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?

P(T,W)

W

sun

rain

sun rain 0.1

hot

hot

cold

- Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

D_{I}	T	W.
	1.	vv

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Quiz: Events

- P(+x, +y)?
- P(+x)?
- P(-y OR +x) ?

P(X,Y)

X	Υ	Р
+x	+y	0.2
+x	-у	0.3
-X	+y	0.4
-X	-у	0.1

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

 $P(t) = \sum_{s} P(t, s)$

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

Quiz: Marginal Distributions

P(X)

P(Y)

Ī	P(X, Y)	
Х	Υ	Р
+x	+y	0.2
+x	-у	0.3
-X	+y	0.4
-X	-у	0.1

$P(x) = \sum P(x, y)$
$\frac{2}{y}$

$$P(y) = \sum_{x} P(x, y)$$

_	P(X,y) [Ay Ay Ay Ay Ay [Ay Ay Ay Ay [Ay Ay Ay [Ay Ay Ay [Ay Ay

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the definition of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

P(T,W)				
Т	W	Р		
hot	sun	0.4		
hot	rain	0.1		
cold	sun	0.2		
cold	rain	0.3		

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Quiz: Conditional Probabilities

■ P(+x | +y)?

P(X,Y)

X	Υ	Р
+x	+y	0.2
+x	-у	0.3
- X	+y	0.4
-x	-V	0.1

- P(-x | +y)?
- P(-y | +x)?

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

Р W 0.4 0.6 Joint Distribution P(T, W)

hot 0.4 0.1 rain 0.2

Normalization Trick

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)}$$

$$= \frac{P(W = s, T = c)}{P(W = s, T = c) + P(W = r, T = c)}$$

$$= \frac{0.2}{0.2 + 0.3} = 0.4$$

$$P(W|T = c)$$

Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

To Normalize

- (Dictionary) To bring or restore to a normal condition
 - All entries sum to ONE

- Procedure:
 - Step 1: Compute Z = sum over all entries
 - Step 2: Divide every entry by Z
- Example 1

W	Р	Normalize	W	Р
sun	0.2	→	sun	0.4
rain	0.3	Z = 0.5	rain	0.6

Example 2

	W	Р		Т	W	Р
ot	sun	20	Normalize	hot	sun	0.4
ot	rain	5	\rightarrow	hot	rain	0.1
ld	sun	10	Z = 50	cold	sun	0.2
ld	rain	15		cold	rain	0.3

The Product Rule

Sometimes have conditional distributions but want the joint

$$P(y)P(x|y) = P(x,y)$$
 \iff $P(x|y) = \frac{P(x,y)}{P(y)}$

The Product Rule

$$P(y)P(x|y) = P(x,y)$$

Example:

	г

P(D|W)

- (- ,)			
D	W	Р	
wet	sun		
dry	sun		
wet	rain		
dry	rain		

P(D,W)

The Chain Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots x_n) = \prod_{i} P(x_i | x_1 \dots x_{i-1})$$

Why is this always true?

Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple

• In the running for most important AI equation!

Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
 - M: meningitis, S: stiff neck

$$P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01$$
 Example givens

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.992} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.992} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.992} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.992} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.992} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.992} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.992} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.992} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.992} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.992} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.992} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.992} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.992} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.992} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.992} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.992} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001} = \frac{0.8 \times 0.0001}{0.0001} = \frac{0.0001}{0.0001} = \frac{0.0001} = \frac{0.0001}{0.0001} = \frac{0.0001}{0.0001} = \frac{0.0001}{0.000$$

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

Quiz: Bayes' Rule

• Given:

P(W)		
R	Р	
sun	0.8	
rain	0.2	

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dny	rain	U 3

P(D|W)

What is P(W | dry)?