
Blocks Languages for Creating Tangible Artifacts
Franklyn Turbak, Smaranda Sandu, Olivia Kotsopoulos, Emily Erdman, Erin Davis, and Karishma Chadha

Computer Science Department, Wellesley College
Wellesley, Massachusetts, USA

Email:{franklyn.turbak, smaranda.sandu, olivia.kotsopoulos, emily.erdman, erin.davis, karishma.chadha}@wellesley.edu

Abstract—Logo turtles and Henderson’s picture language have
long been used to teach computational thinking by inspiring
learners to construct programs that create complex geometric
designs. We have developed visual blocks-based versions of these
languages, TurtleBlocks and PictureBlocks, that allow users to
transform their designs into tangible artifacts produced by laser
cutters and vinyl cutters. Our languages embody two novel
features. First, they use constructive area geometry to convert
the geometric designs generated by our programs into formats
suitable for laser and vinyl cutters. Second, they leverage static
typing and polymorphism to provide a new way to reference the
names of procedure parameters and local variables in a blocks
language.

I. INTRODUCTION

Rapid prototyping machines such as vinyl cutters, laser
cutters, and 3D printers allow designers to quickly turn com-
plex designs into tangible artifacts made out of card stock,
wood, and plastic. As their costs decrease, these machines
are becoming more commonplace, especially in educational
settings, ushering in an era in which ordinary people can
fabricate artifacts from their own designs ([1], [2]).

At Wellesley College, we are seeking to make it easier for
our community members to create tangible artwork. Although
the 3D printer offers exciting possibilities, the simplicity of
the 2D designs for the vinyl and laser cutters have made these
machines our primary focus. In the simplest case, designs are
just a set of lines and curves to be cut. The vinyl cutter stylus
can cut these designs on thin materials such as card stock
and adhesive-backed vinyl sheets. The laser cutter can cut
these designs in sheets of wood and various kinds of plastic
of thicknesses up to a quarter inch. Designs for the laser
cutter can also specify areas to be engraved and the depth
of engraving.

Any 2D drawing application can be used to create designs
for the vinyl and laser cutters, but many applications (e.g.,
Adobe Illustrator and Corel Draw) have a steep learning curve
that makes it difficult to create artifacts that are satisfying to
novices. Other details further complicate turning a 2D design
into an artifact. For example, only red lines with hairline
thickness specify where the laser should cut; any other color
or thickness is ignored. And our vinyl cutter only accepts files
in DXF format, which is not an available export option in
many 2D drawing applications.

Our goal was to create simple 2D design environments
in which users can quickly create interesting artifacts for
vinyl and laser cutters. There are numerous domain-specific
environments that allow novices to make 2D and 3D designs

for fabrication, many of which involve sketching or gesturing
(e.g., [3], [4]). But we also wanted the environments to
introduce nonprogrammers to computational thinking [5] and
give them hands-on experience with techniques like procedural
abstraction, modularity, and divide/conquer/glue problem solv-
ing. We were inspired by the Eisenbergs’ Craft Technology
Group at the University of Colorado, Boulder, which focuses
on computer science activities that involve creating personally
meaningful physical artifacts, including those fabricated on
rapid prototyping machines ([6], [7]). Another exemplar of
this spirit is Johnson’s FlatLang, a Logo-like language for
specifying laser-cut construction kit parts [8].

We adapted two existing environments for creating geomet-
ric designs. The first is turtle geometry, in which a virtual
creature with a pen in its belly draws shapes by following
a series of simple commands written by the programmer.
Decades before the phrase “computational thinking” was
coined, Papert and the Logo community used turtles to teach
children to think computationally by having them instruct
turtles to draw geometric shapes ([9], [10]). The second is
Henderson’s picture language ([11], [12]), which facilitates
the construction of complex geometric designs from simple
primitive pictures by transforming (rotating, flipping) pictures
and composing them (putting one picture above, beside, or
over one another). This picture language was popularized in
[13], and for over a decade we have used both it and turtles
in Wellesley’s introductory Java programming class as visual
contexts for teaching methods and recursion [14].

We developed blocks programming languages, TurtleBlocks
and PictureBlocks, for these two computational approaches
to 2D geometric design. Blocks languages were pioneered
in Glinert’s BLOX [15] and are currently epitomized by
Scratch ([16]–[18]), App Inventor ([19], [20]), and StarLogo
TNG ([21], [22]). In these languages, programs are created
by connecting visual program fragments shaped like jigsaw
puzzle pieces. The shapes of these blocks help novices avoid
frustrating syntax errors commonly encountered in textual pro-
gramming languages by visually suggesting how expressions
and statements are combined to form programs. Blocks are
arranged into drawers according to function, so that program-
mers can search for an appropriate block rather than having
to remember the name of the construct, ameliorating another
problem with text-based programming.

PictureBlocks is the first block–based implementation of
Henderson’s picture language, making the latter accessible to
a much broader audience. On the other hand, there have been

a. A TurtleBlocks program for drawing Sierpinski’s gasket.

b. Turtle drawing from program. c. Boundary of the turtle drawing. d. Laser-cut artifact

Fig. 1. A TurtleBlocks program and its output.

many previous turtle implementations in blocks languages.
Indeed, LogoBlocks [23], an early blocks programming lan-
guage, was first targeted at turtle programming. Sprites in
Scratch can be programmed to create turtle drawings. StarLogo
TNG has turtles, but they are used mainly for multi-agent sim-
ulations rather than for generating geometric figures. TurtleArt
[24] is a blocks-based turtle environment whose main focus is
creating geometric designs.

TurtleBlocks and PictureBlocks offer the novel ability to
produce tangible artifacts on laser and vinyl cutters, a feature
unsupported by existing turtle and picture environments. For
example, Fig. 1a shows a complete TurtleBlocks program
that draws a level 5 Sierpinski gasket. Running this program
generates the drawing in Fig. 1b. Selecting the printing option
for a laser-cut design yields the cutting lines in Fig. 1c, and
cutting a wooden sheet yields the artifact in Fig. 1d. We
present our technique for generating tangible output in Sec. II.

Another feature that sets our languages apart from other
blocks languages is the way that they leverage static typing
and polymorphism to reference the names of procedure param-
eters and block-structured local variables. This fixes naming
problems in blocks languages like App Inventor and StarLogo
TNG. We describe this in Sec. III.

We conclude in Sec. IV with a discussion of user feedback

on our languages from several workshops.
Due to space limitations, here we summarize only the key

aspects of our work. For a more detailed discussion with
additional examples, see our companion technical report [25].

II. CREATING TANGIBLE OUTPUT

A. Cutting

A core problem addressed by our environments is that the
input to laser and vinyl cutters is a set of lines/curves to be
cut, which can be challenging to specify in many drawing
programs or in traditional turtle drawing. Consider Fig. 2a
and Fig. 2b. The simplest turtle program for creating a star
— repeat 5 times going forward a fixed distance and turning
left by 144 degrees — yields the lines in Fig. 2c. This drawing

a. Star outline b. Star frame c. Simple turtle star

Fig. 2. Cutting lines for two star shapes.

is not suitable for cutting because it specifies 6 disjoint pieces
(5 triangles and a pentagon). This can easily be modified to
specify the outline in Fig. 2a by repeating 5 times the following
code: go forward the side length of one stellation, turn left
144 degrees, go forward the same length, and turn right by 72
degrees. But a turtle program to specify the lines in Fig. 2b
would be much more complicated.

Our key observation regarding the problem of specifying
cutting lines was that these are often the natural boundaries of
2D areas that are significantly easier to specify. For example,
the cutting lines in Fig. 2a and Fig. 2b are the boundaries of
the areas in Fig. 3. The star area in Fig. 3a is just a filled

a. Star area b. Star frame area

Fig. 3. Cutting lines for two star shapes.

version of the simple turtle star in Fig. 2c, and the star frame
area in Fig. 3b is just a version of the simple turtle star drawn
with a thick pen. Both of these pictures are easy to create in
TurtleBlocks because there are commands for filling the path
generated by an arbitrary sequence of turtle commands and
for setting the pen thickness of the turtle.

This leaves one problem: how do we transform areas like
those in Fig. 3 to boundaries like those in Fig. 2? Our solution
is to use computational area geometry (CAG), which defines
a notion of area and a set of operations on areas:

• An area is a set of points on a Cartesian plane bounded
by a closed path consisting of straight or curved lines.

• Two areas can be combined by union and difference
to yield another area. E.g., Fig. 4 shows two areas
and the areas that result from these two operations on
the two areas. A single area can have multiple disjoint
components bounded by a single path with disconnected
components, such as the difference area in Fig. 4d.

• From any area, it is possible to extract a path for that
area (the red lines in Fig. 4).

a. J area b. K area c. union(J,K) d. difference(J,K)

Fig. 4. Areas J and K and combining operations on them.

CAG operations are provided by some programming libraries
and 2D drawing applications. We use those provided by Java’s
java.awt.geom.Area interface and implemented in the
java.awt.Shape class.

In TurtleBlocks and PictureBlocks, our approach to generat-
ing cutting patterns is to use these CAG operations to calculate
boundaries as follows:

1) The languages provide simple ways to create primitive
areas. In TurtleBlocks:

• Each line drawn by the turtle is a rotated rectangular
area determined by the length of the line and the
turtle’s thickness and heading.

• There are commands for generating filled rectan-
gles, ellipses, and arcs centered at the turtle. All of
these are rotated according to the turtle’s heading.

• There is a command for filling the path generated
by a given sequence of turtle commands.

In PictureBlocks:
• There are blocks to create primitive pictures for

lines and filled and unfilled rectangles, ellipses, arcs,
and polygons.

• Users can specify collections of these filled areas
in a file that can be loaded into PictureBlocks as a
single picture.

• Using a simple sketching application provided by
PictureBlocks, users can draw colored areas (rectan-
gles, ellipses, arcs, and polygons) that can be saved
to a file and loaded as a single picture.

2) By default, multiple areas in drawings are combined
using the CAG union operator. In TurtleBlocks all lines
and other areas drawn by a turtle are simply unioned
together. In PictureBlocks, areas in pictures that touch
or intersect are unioned together. The result of this
step is a single area that might consist of multiple
disconnected components. In the union operations of
this step, colors of areas are ignored, except that white
areas are subtracted from the other areas by the CAG
difference operator. For example, the picture Fig. 5a
yields the boundary in Fig. 5b because the white stars
are effectively “cut out” of the rings (whose colors are
ignored).

a. Nested rings with stars
“cut out”.

b. Boundary of the rings
with stars.

Fig. 5. White areas are subtracted from non-white areas.

3) In the final step, the CAG operation for enumerating the
path enclosing an area is applied to the result of the
previous step. The lines and splines in this path can be
displayed to the user and written to file formats such as

a. Sample picture b. Picture etched into wood. c. Print made from the etching.

Fig. 6. Output from a PictureBlocks program.

PostScript and DXF that can be used to specify cutting
on a laser or vinyl cutter.

B. Engraving

A laser cutter can also engrave materials. In engraving
mode, the laser cutter “prints” a picture by converting it to a
bitmap, and then processes each row of the bitmap by moving
the laser in a line and adjusting its power according to the
color of the corresponding pixel. The laser cutter operator can
specify the relationship between color and laser power, and
thus engraving depth.

TurtleBlocks and PictureBlocks support an engraving mode
in which the colored lines and areas of the patterns are passed
to the laser cutter unaltered. Users can make designs with
multiple colors, and then control the depth for each color
by adjusting the settings on the laser cutter. Fig. 6b shows
the result of engraving into wood the PictureBlocks picture in
Fig. 6a. In the engraving, the black areas of the picture were
engraved, but the yellow areas were not. The engraving was
deep enough that the wood piece could be used to create the
print in Fig. 6c using traditional printmaking techniques.

C. Combining Engraving and Cutting

For some designs, we wish to combine engraving and
cutting. Consider the ring-and-star design in Fig. 5a. When
creating a wooden artifact from this design, we might like
to cut out the stars and engrave the rings on the remaining
wood. For this purpose, we provide an engrave-and-cut mode
that overlays the cutting boundary in Fig. 5b on top of the
colored picture in Fig. 5a. When given this picture, the laser
cutter first engraves the colored areas and then cuts along the
red boundary. In this mode, the color red is treated specially
(for cutting) and so cannot be used for engraving areas. But
any red hairlines in the original picture will also be cut.

As another example, consider the knitting pattern in Fig. 7a,
which is expressed in PictureBlocks by composing patterns
created by M. C. Escher [26]. Suppose we want to cut out the
blank areas between the pieces of yarn, but where two pieces
of yarn cross, we want to engrave the black border of the
yarn to indicate which piece of yarn is on top. PictureBlocks
provides an engrave-lines-and-cut mode that is similar to the
engrave-and-cut mode but (1) ignores the colors of areas and
(2) pays attention to the colors of existing lines (Fig. 7b).

a. PictureBlocks picture. b. Laser-cut artifact

Fig. 7. Engrave-lines-and-cut example with Escher’s knitting pattern.

D. Pragmatics

In the near future, many fabrication devices may become
inexpensive enough to be commonly owned by individuals and
used at home [2]. Currently, however, laser cutters are rather
expensive, usually costing tens of thousands of US dollars,
though there are now models less than $10K. But schools
with engineering or architecture programs may already have
laser cutters they are willing to share with other departments.
An alternative is to send jobs out to laser cutter services, but
the turnaround time interferes with iterative experimentation.

In contrast, vinyl cutters are much more affordable. Welles-
ley has a low-end desktop version that costs just a few hundred
US dollars and uses relatively inexpensive supplies (cardstock
and vinyl sheets). Inexpensive desktop 3D printers are now
available [2], and we plan to explore using 3D printers as an al-
ternative to laser cutters for producing artifacts in TurtleBlocks
and PictureBlocks. It is worth noting that desktop vinyl cutters
and 3D printers are the basis of the Fab@School project for
introducing elementary school children to engineering design
via personal fabrication ([27], [28]).

III. LANGUAGE DESIGN

A. Blocks Framework

Both TurtleBlocks and PictureBlocks are implemented using
the OpenBlocks framework ([29], [30]), which also underlies
StarLogo TNG and App Inventor, giving all four languages a
similar look and feel.

Expressions (program fragments that denote values) are
represented as blocks whose left side has a plug whose shape
indicates the type of the value. For example, in Fig. 1a, the
blocks with angled sides are numerical expressions, while the
rounded sides of the “>” (greater-than) block indicate that

it is a boolean expression. Some expressions have argument
sockets whose shape indicates the type of the argument. For
example, the “÷” (division) block is an operator that takes
two number operands and produces a number as a result.

Commands (program fragments that perform actions) are
represented as blocks with a notch at the top and a bump at the
bottom. These naturally compose vertically to create so-called
“stacks” — sequences of commands that are performed in
order from the top down. All the commands in Fig. 1a take one
or more expressions as arguments. Control commands, such as
if and repeat, also take one or more command substacks
for code that may be executed as part of the command.

Procedure, function, and global variable declarations are
specified by top-level blocks that cannot be nested in other
blocks. In Fig. 1a, the tall sierpinski block declares a
two-argument procedure that is invoked by the two shorter
sierpinski blocks.

B. Connector shapes and static vs. dynamic typing

Types in programming languages describe collections of
related values, such as numbers, booleans, and lists; each type
is associated with a set of operations on the values of that type.
In a dynamically typed language, such as Python or JavaScript,
each value carries type information that is used to determine
the validity of operations at run time (e.g., division can be
applied only to two numbers). In a statically typed language,
like Ada or ML, the compiler can determine the type of each
variable and expression (often aided by user type declarations)
and the validity of operations at compile time. Many languages
lie between these two extremes, such as Java, which does much
type checking at compile time, but leaves certain type checks
for run time [31].

In statically typed blocks languages, types can be repre-
sented by connector shapes, which visually indicate which
block connections are valid. Socket shapes specify the allowed
types of inputs to a block and the plug shape indicates the
type of the value denoted by an expression. For example, in
TurtleBlocks and PictureBlocks, angled connector shapes de-
note numbers and rounded connector shapes denote booleans.
For dynamically typed languages, such as App Inventor, it
is natural for all sockets and plugs to have a single shape
for all values, indicating that all combinations of blocks are
syntactically legal (and type errors are caught only at run time).

However, in practice, many dynamically typed blocks lan-
guages use connector shapes in ad hoc and potentially confus-
ing ways [32]. E.g., Scratch is a dynamically typed language
with two plug shapes: an angled shape for booleans and
a rounded shape for numbers and strings. There is a third
input shape (rectangular) that accepts any shape of value.
Fig. 8 shows Scratch expressions for adding two numbers (a),
comparing two numbers (b), and concatenating two strings (c).

Block shapes in Scratch prevent simple type errors, such as
using the result of an addition operator (a number) as the test
expression of a conditional (which must have a boolean shape).
But because numbers and strings share the same shape and

a. b. c.

Fig. 8. Simple examples of Scratch shapes/types.

there are operators (like join) whose arguments may have
any shape, it is possible to compose blocks in nonsensical
ways. Scratch handles these situations in a failsoft way by
automatically converting values to avoid error messages [18].
For example, strings used in a numeric context are converted
to 0, and numbers and booleans used in a string context are
converted to strings (Fig. 9).

Fig. 9. Scratch converts value types to avoid dynamic type errors.

TurtleBlocks and PictureBlocks avoid these problems by
employing a static type discipline in which each distinct kind
of value is represented by a different shape. TurtleBlocks
has distinct shapes for numbers, booleans, strings, colors, arc
types, and pen corner types. PictureBlocks additionally has a
shape for picture values.

Surprisingly, connector shapes that consistently express
static types are relatively rare in blocks languages. It is found
mostly in blocks languages with a very small number of types.
For example, TurtleArt [24] and PicoBlocks [33] have only
two types (integer and boolean) and use connector shapes to
distinguish these types. But there are type-related limitations
and/or inconsistencies in these languages. For example, pro-
cedure blocks with parameters can be defined only in the text
language, not the blocks language, their parameters can have
only integer types, and their output type (if any) must be an
integer. It is possible to define procedure blocks with output
type boolean, but they cannot take any parameters.

StarLogo TNG ([21], [22]) is the only other well-known
blocks language that uses shapes to consistently distinguish
types in a full-featured language with global variables and
procedures. It has separate shapes for six types (integer,
boolean, string, integer list, boolean list, and string list) and
allows global variables, procedure parameters, and procedure
results to have any of these types. A way to express more
complex types (arbitrary list, pair, and function types) via
connector shapes is described in [32].

C. Polymorphism

Representing each type by a different shape can lead to an
explosion of other kinds of blocks. Consider a chooseNum
block that takes three inputs (a boolean test expression and
two numerical expressions) and produces a number output. If
the test expression evaluates to true, it returns the value of the

a. b. c.
d.

Fig. 10. The TurtleBlocks/PictureBlocks choose block illustrates polymorphism.

first number expression, otherwise it returns the value of the
second one. The problem is that a chooseX block is needed
for every type X, so drawers will become cluttered with copies
of essentially the same block that differ only in their types.

Statically typed programming languages like ML solve this
problem via universal polymorphism, in which universally
quantified type variables can be instantiated to any type [31].
In blocks languages, we can represent such a type variable
using a connector with a particular shape. E.g., the choose
block in TurtleBlocks and PictureBlocks (Fig. 10a) has poly
(i.e., polymorphic-shaped) sockets for the then and else
sockets and a poly plug for its result. If the usage context
for this block constrains any one of these three connectors,
the others change accordingly. If the output of choose is
constrained to have boolean shape, the then and else
sockets change to the boolean shape (Fig. 10b). Or if the
then socket is filled with a number plug, the else socket
and output plug change to the number shape (Fig. 10c).
Such changes can propagate through multiple choose blocks
(Fig. 10d).

Poly shapes can also be used to address ad hoc polymor-
phism (also known as operator overloading) in which it is
sensible to apply the same operator to multiple types. Standard
examples include comparing values of the same type via the
operators <, =, and >, or a toString function that converts
a value to a string. E.g., the equality operator in TurtleBlocks
and PictureBlocks has two poly sockets and constraining one
fixes the other to be the same.

There have been several approaches to expressing polymor-
phic types in non-blocks-based visual programming languages
(e.g., [34]–[36]). Using poly shapes to express polymorphism
in blocks languages was pioneered in StarLogo TNG, which
uses universal polymorphism for list operations and switch
and output statements, and ad hoc polymorphism for com-
paring values and converting values to strings. TurtleBlocks
and PictureBlocks extend polymorphism to variable references
(see Sec. III-D) and can distinguish different polymorphic
types on the same block (akin to ML’s polymorphic tick types).
These are novel features that StarLogo TNG does not support.

D. Naming

The ability to refer to values named by procedure parame-
ters or local variables is a critical feature that most blocks lan-
guages handle poorly. Many blocks languages, such as Scratch
and ModKit [37], don’t even provide procedures (though

Scratch 2.0 will support procedures with parameters [38]), and
some languages provide them only in limited ways (see the
discussion in Sec. III-B). In App Inventor and StarLogo TNG,
there are procedure declaration blocks to which special formal
parameter blocks can be added; separate blocks for referencing
the value of each parameter are added to a special My Blocks
drawer, which quickly becomes cluttered. Even worse, this
design requires that all formal parameter names be distinct,
so the same parameter name cannot be used in two different
procedures. This violates a fundamental locality principle
of name scope and gives novice programmers the mistaken
impression that procedure parameters are globally defined.
Indeed, nothing prevents an attempt to use a reference to a
procedure parameter outside the scope of the procedure body
(e.g., Fig. 11, in which the parameter x of forwardProc is
used in leftProc). This is an error that blocks languages
should prevent, not encourage!

Fig. 11. Out-of-scope procedure parameter reference in StarLogoTNG.

Very few blocks languages support the block-structured
local variables that are common in textual languages. The
only blocks languages we are aware of with local naming
features are TaleBlazer and WebLogo, both currently under
development [39].

TurtleBlocks and PictureBlocks support both procedures
with parameters and block-structured local variables. Proce-
dures with formal parameters are declared as in App Inventor
and StarLogo TNG, and bind command and expression
blocks associate a name with a value in a local scope. All
procedure parameters and local variables are referenced and
set via single polymorphic getter and setter blocks with drop-
down menus that list all names of the given type in scope at
the position of the getter or setter block.

Fig. 12 illustrates how parameter and local variable names
are handled in TurtleBlocks (PictureBlocks is similar). Fig. 12a
shows the declaration of a procedure testScope that takes
two number parameters named a and b and a string parameter
named c. The body of testScope has three nested bind

a. A TurtleBlocks procedure with local variable bindings in its body.

b. A polymorphic variable reference (“getter”) block.

c. The getter block plugged into a number socket.

d. Menu of variables of type number in scope at getter.

e. Getter block after variable b has been chosen.

Fig. 12. An illustration of variable scope in TurtleBlocks.

blocks that bind the number name x to 1, the string name y to
abc, and the number name z to 2. The body of the innermost
bind is a forward command that is missing its argument.
In order to specify a reference to one of the number names
as the argument to forward, we drag a variable getter block
(Fig. 12b) from the appropriate drawer and plug it into the
forward socket (Fig. 12c). The getter’s polymorphic plug
becomes the number shape. The “???” indicates that the name
being referenced has not yet been determined. A drop-down
menu on the getter block lists all the names of the getter’s
output type (in this case, number) that are in scope at the
position of the getter block (Fig. 12d). Any one of these can
be selected (Fig. 12e).

Any change to a formal parameter name propagates to all
getters and setters for that variable. Whenever variable getter
and setter blocks are copied or moved, their name reverts to
“???” if the original variable is not bound in the new context.

This approach to name references is a significant improve-
ment to existing approaches in blocks languages. In contrast
with App Inventor and StarLogo TNG, our approach (1)
reduces drawer clutter (there is only one variable getter and
setter block, rather than one per variable), (2) prevents the
out-of-scope parameter references illustrated in Fig. 11, and
(3) presents a block-structured view of naming in which the
same name can be used in different procedures (or even in
nested naming blocks) — an important idea in computational
thinking. Scratch 2.0 [38] solves the procedure parameter
problem by allowing variable references to be cloned from the
parameter declaration, but does not support local variables. In
terms of naming, BYOB [40] is similar to Scratch 2.0, but
(1) can refer to “holes” in anonymous procedure bodies by
position rather than name and (2) can simulate local naming
by calling local anonymous procedures. The notions of block-
structured local naming constructs and drop-down menus for
names that are in scope is being independently investigated in
WebLogo [39].

IV. USER FEEDBACK

We held four 70-minute TurtleBlocks workshops attended
by a total of 85 students in Wellesley’s CS1 course [14].
They were familiar with Java versions of the turtle and picture
worlds. For PictureBlocks, we held two 70-minute workshops
attended by a total of 40 CS1 students. We also held a 2-hour
laser-cutting workshop featuring TurtleBlocks attended by 8
students, 6 of whom had no prior programming experience. All
workshops were held with earlier versions of TurtleBlocks and
PictureBlocks that did not have the polymorphism or naming
features described in Sec. III-C and Sec. III-D.

After the workshops, we asked students to complete a short
online survey about the tools and experience. All 8 of the non-
CS1 students completed the survey, but only 29 of the 125 CS1
students completed the survey. We learned the following:

• Almost all (35 of 37) respondents indicated that they
were more motivated to create designs when they could
get tangible output from the turtle and picture worlds as
opposed to just drawings on the screen. They loved the
craft-like nature of the activity and the fact that they could
show their creations to their friends and families.

• Many students wanted a way to sketch designs (or at least
components of designs) rather than having to create all
designs from turtle or picture primitives. In response to
this feedback, we have implemented a simple sketching
application that allows drawing lines, rectangles, ellipses,
and polygons. We have integrated this tool into Picture-
Blocks and plan to integrate it into TurtleBlocks. We
are eager to see if students use the tool instead of or
in addition to the computational facilities provided by
the languages. We would like to experiment with more
sophisticated sketching tools, like those in [3], [41].

• A sizable minority of the CS1 students indicated they
preferred to write their turtle/picture programs in Java
rather than in the blocks languages. Many said it was te-
dious to assemble programs with blocks. If we want more

experienced programmers to use blocks environments, we
need to provide automatic conversions between text and
blocks languages (in both directions). This would also
provide a natural learning path from blocks languages to
text languages.

• A few students mentioned the difficulty of designing
robust, connected structures. Some laser-cut artifacts were
fragile due to thin parts. A tool to highlight potentially
weak structural parts of a design would be useful.

We plan to conduct further user studies to evaluate the
effectiveness of our new features: sketching, polymorphism,
and naming. We also plan to develop blocks language envi-
ronments for designing artifacts for 3D printers, starting with
a 3D turtle language inspired by [42].

ACKNOWLEDGMENTS

We gratefully acknowledge Chelsea Hoover, who imple-
mented the first version of TurtleBlocks; Johanna Okerlund,
who helped to implement our environments; Nichole Burton,
who worked on an early version of TurtleBlocks; Marie
Vasek, who informed us about the problems with types in
blocks languages; Michael J. Dawson, who provided extensive
feedback on drafts of this paper; and Mike Eisenberg and Orit
Shaer, who provided advice and support. We also thank the
anonymous reviewers for their suggestions for improving this
paper. This work was supported by Wellesley College faculty
awards grants and a Brachman Hoffman Small Grant.

REFERENCES

[1] N. Gershenfeld, Fab: The Coming Revolution on your Desktop — From
Personal Computers to Personal Fabrication. MIT Press, 2005.

[2] H. Lipson and M. Kurman, “Factory@home: The emerging economy
of personal fabrication,” 2010, report Commissioned by the Whitehouse
Office of Science & Technology Policy.

[3] Y. Oh, G. Johnson, M. D. Gross, and E. Y.-L. Do, “The Designosaur
and the Furniture Factory: Simple software for fast fabrication,” in 2nd
Int. Conf. on Design Computing and Cognition (DCC06), 2006.

[4] K. D. Willis, J. Lin, J. Mitani, and T. Igarashi, “Spatial sketch: bridging
between movement & fabrication,” in 4th Int. Conf. on Tangible,
Embedded, and Embodied Interaction (TEI ’10), 2010, pp. 5–12.

[5] J. Wing, “Computational thinking,” Comm. of the ACM, vol. 49, no. 3,
Mar. 2006.

[6] M. Eisenberg, N. Elumeze, L. Buechley, G. Blauvelt, S. Hendrix, and
A. Eisenberg, “The homespun museum: Computers, fabrication, and the
design of personalized exhibits,” in Conf. on Creativity & Cognition
(C&C’05), 2005, pp. 13–21.

[7] M. Eisenberg, A. Eisenberg, L. Buechley, and N. Elumeze, “Computers
and physical construction: Blending fabrication into computer science
education,” in Int. Conf. on Frontiers in Education: Computer Science
& Computer Engineering (FECS ’08), 2008, pp. 127–133.

[8] G. Johnson, “FlatCAD and FlatLang: Kits by code,” in IEEE Symp. on
Visual Languages and Human-Centric Computing (VL/HCC ’08), 2008,
pp. 117–120.

[9] S. Papert, Mindstorm: Children, Computers, and Powerful Ideas. Basic
Books, 1980.

[10] H. Abelson and A. diSessa, Turtle Geometry: the Computer as a Medium
for Exploring Mathematics. MIT Press, 1981.

[11] P. Henderson, “Functional geometry,” in ACM Symposium on Lisp and
Functional Programming, 1982, pp. 179–187.

[12] ——, “Functional geometry,” Higher Order and Symbolic Computation,
vol. 15, no. 4, pp. 349–365, 2002. This is a revised version of [11].

[13] H. Abelson, G. J. Sussman, and J. Sussman, Structure and Interpretation
of Computer Programs (2nd ed.). MIT Press, 1996.

[14] CS111 Introduction to Programming and Problem Solving, Wellesley
College introductory computer science course. http://cs.wellesley.edu/
∼cs111, accessed Mar. 11, 2012.

[15] E. P. Glinert, “Towards “second generation” interactive, graphical pro-
gramming environments,” in 2nd IEEE Computer Society Workshop on
Visual Languages, 1986, pp. 61–70.

[16] Scratch project, MIT Lifelong Kindergarten Group, http://scratch.mit.
edu/, accessed Mar. 11, 2012.

[17] M. Resnick, J. Maloney, A. Monroy-Hernandez, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, “Scratch: programming for all,” Comm. of the ACM, vol. 52,
no. 11, Nov. 2009.

[18] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
scratch programming language and environment,” ACM Transactions on
Computing Education, vol. 10, no. 4, Nov. 2010.

[19] App Inventor home page, MIT Center for Mobile Learning, http:
//appinventor.mit.edu, accessed Mar. 11, 2012.

[20] D. Wolber, H. Abelson, E. Spertus, and L. Looney, App Inventor.
O’Reilly Media, Inc., Apr. 2011.

[21] StarLogo TNG project, MIT Scheller Teacher Education Program, http:
//education.mit.edu/projects/starlogo-tng, accessed Mar. 11, 2012.

[22] E. Klopfer, H. Scheintaub, W. Huang, and D. Wendel, “Starlogo TNG:
Making agent-based modeling accessible and appealing to novices,” in
Artificial Life Models in Software (2nd edition), M. Komosinski and
A. Adamatzky, Eds. Springer, 2009.

[23] A. Begel, “Logoblocks: A graphical programming language for interact-
ing with the world,” Mar. 1996, MIT Advanced Undergraduate Project.

[24] TurtleArt home page, http://turtleart.org/, accessed Mar. 13, 2012.
[25] F. Turbak, S. Sandu, O. Kotsopoulous, E. Erdman, E. Davis, K. Chadha,

and J. Okerlund, “Blocks languages for creating tangible artifacts,”
Wellesley College, Tech. Rep., Jul. 2012, TinkerBlocks TR 2012-1,
available at http://www.tinkerblocks.org/pubs.

[26] D. Schattschneider, M. C. Escher: Visions of Symmetry. W. H. Freeman
and Company, 1990.

[27] G. Bull, C. Maddox, G. Marx, A. McAnear, D. Schmidt, L. Schrum,
S. Smaldino, M. Spector, D. Sprague, and A. Thompson, “Educational
implications of the digital fabrication revolution,” Journal of Research
on Technology in Education, vol. 42, no. 4, pp. 331–338, Jun. 2010.

[28] Imagine. Design. Create. Construct., Society for Information Tech-
nology & Teacher Education (SITE), Fab@School video, http:
//maketolearn.org/explore/videos/imagine-design-create-construct/, ac-
cessed Jul. 1, 2012.

[29] R. Roque, “Openblocks: An extendable framework for graphical block
programming systems,” Master’s thesis, MIT, May 2007.

[30] OpenBlocks home page, MIT Scheller Teacher Education Program, http:
//education.mit.edu/openblocks, accessed Mar. 13, 2012.

[31] F. Turbak, D. K. Gifford, and M. Sheldon, Design Concepts in Pro-
gramming Languges. MIT Press, 2008.

[32] M. Vasek, “Representing expressive types in blocks programming lan-
guages,” undergraduate thesis, Wellesley College, May, 2012. Available
at http://www.tinkerblocks.org/pubs.

[33] The Playful Invention Company, PicoCricket Reference Guide, version
1.2a, http://www.picocricket.com/pdfs/Reference Guide V1 2a.pdf, ac-
cessed Mar. 22, 2012.

[34] M. A. Najork and E. Golin, “Enhancing Show-and-Tell with a poly-
morphic type system and higher-order functions,” in IEEE Workshop on
Visual Languages, 1990, pp. 215–220.

[35] M.-A. Najork, “Programming in three dimensions,” Ph.D. dissertation,
University of Illinois, Urbana-Champaign, 1994.

[36] R. W. Djang, M. M. Burnett, and R. D. Chen, “Static type inference for
a first-order declarative visual programming language with inheritance,”
Journal of Vis. Languages and Computing, vol. 11, pp. 191–235, 2000.

[37] ModKit home page, http://www.modk.it, accessed Mar. 22, 2012.
[38] J. Maloney, personal communication, Mar. 13, 2012.
[39] D. Wendel and P. Medlock-Walton, personal communication, Mar. 12,

2012.
[40] B. Harvey and J. Mönig, “BYOB 3.1 reference manual,” http://byob.

berkeley.edu/BYOBManual.pdf, accessed Jul. 1, 2012.
[41] G. Johnson, “Sketch It, Make It (SIMI),” videos of prototype sketching

environment for laser-cutterable artifacts, http://sketchitmakeit.com/, ac-
cessed Jul. 1, 2012.

[42] M. D. Gross, “Formwriter: A little programming language for generating
three-dimensional form algorithmically,” in CAAD Futures, 2001, pp.
577–588.

