
Finding the Balance Between Guidance and Independence
in Cybersecurity Exercises

Richard Weiss
The Evergreen State College

Franklyn Turbak
Wellesley College

Jens Mache, Erik Nilsen
Lewis & Clark College

Michael E. Locasto
SRI International

Abstract
In order to accomplish cyber security tasks, one needs to
know how to analyze complex data and when and how
to use tools. Many hands-on exercises for cybersecu-
rity courses have been developed to teach these skills.
There is a spectrum of ways that these exercises can be
taught. On one end of the spectrum are prescriptive exer-
cises, in which students follow step-by- step instructions
to run scripted exploits, perform penetration testing, do
security audits, etc. On the other end of the spectrum
are open-ended exercises and capture-the- flag activities,
where little guidance is given on how to proceed.

This paper reports on our experience with trying to
find a balance between these extremes in the context of
one of the suite of cybersecurity exercises that we have
developed in the EDURange framework1. The particular
exercise that we present teaches students about dynamic
analysis of binaries using strace. We have found that
students are most successful in these exercises when they
are given the right amount of prerequisite knowledge and
guidance as well as some opportunity to find creative so-
lutions. Our scenarios are specifically designed to de-
velop analysis skills and the security mindset in students
and to complement the theoretical aspects of the disci-
pline and develop practical skills.

1 Introduction

When we choose hands-on exercises for our classes, we
are faced with an apparent dilemma. Do we provide a
step-by- step description with nothing left for the student
to discover, or do we only describe a challenge and stu-
dents must figure out what to do and how to do it? Many
faculty believe that inquiry-based learning is the gold
standard [1], while others are frustrated by the slow pace
that this approach could entail. In addition, the structure
of many classes does not allow students to explore the

1http://www.edurange.org

material at their own rate. Moreover, some researchers,
including the keynote speaker at the 2016 Computer Sci-
ence Education conference SIGCSE [18], stress the im-
portance of explicit instruction. We have attempted to
find a balance between these two extremes.

Hands-on exercises provide an opportunity for differ-
ential instruction. To the extent that instructors have mul-
tiple exercises to choose from and exercises that are flexi-
ble, they can decide how much guidance to give students.
Note that difficulty and degree of guidance are related
but not identical parameters for instruction. Difficulty
has to do with the level of abstraction and the complex-
ity of a system that is being described. Guidance has to
do with the size of the steps from the users current level
of knowledge or understanding to that which is required
to complete the exercise. Often, learning a concept or
knowledge area is broken down into multiple levels of
difficulty. Students can progress from one level to the
next once they have mastered the skills and concepts of
the former. The degree of guidance has to do with the
hints, clues, examples, and explanations that are given
to the student, as well as the difference in difficulty of
successive levels. In their Usenix presentation, Chung
and Cohen [5] discuss the escalation in difficulty of chal-
lenges in the CSAW CTF and the fact that students can
become discouraged when faced with difficult challenges
in a competition.Feng claims that competitions that are
unguided are often discouraging and frustrating for be-
ginners and do not promote steady learning [11].

One of our primary educational goals in creating ex-
ercises is to nurture analysis skills. When speaking of
analysis skills, we mean the ability to reason about large,
complex, and opaque data and systems. Strong analyt-
ical skills enable people to impose structure and mean-
ing on such artifacts, reason about these relationships,
and draw meaningful conclusions or inferences. These
are precisely the kinds of skills that we believe are use-
ful in many cybersecurity scenarios, from security policy
design to reverse engineering to vulnerability analysis.

1

Analysis skills complement the security mindset, which
is the ability to think about how systems can fail, and be
made to fail in different ways, even as one is designing a
system [17]. In designing our exercises, we focus on the
following analysis skills:

1. Verifying assumptions by checking network mes-
sages, protocols, file formats and other input data
constraints to see if layers of abstraction are coher-
ent and correct; enumerating and checking if failure
modes, exceptions, and errors are controlled, caught
or anticipated.

2. Gaining understanding of program, network, or sys-
tem behavior and semantics, network topology or
organization, or a defense posture; observing and
enumerating how software components or network
elements are actually composed.

3. Extracting information from opaque artifacts. For
example, analyzing a raw dump of network traf-
fic, intrusion alerts, firewall logs, system call traces,
or executable files and recognizing anomalies in a
mass of otherwise normal data.

4. Creating emergent resilience by understanding a
system well enough to design and propose enhance-
ments to reliability, fault tolerance, or availability.

Most students, and even many computer science faculty,
do not have these skills or the prerequisite knowledge to
distinguish normal behavior from abnormal. Our goal
has been to develop exercises that will cultivate this abil-
ity, whether it is applied to reverse engineering or pen-
etration testing or network intrusion detection. EDU-
Range is both a collection of such exercises and frame-
work for developing them. It has a number of advan-
tages that make it useful for studying teaching alterna-
tives [22], and several exercises have been tested in the
classroom. One feature is that we have built in tools for
collecting user interactions. Another feature is that in-
structors can use either a graphical interface or scripts to
create new exercises and modify existing ones. The exer-
cises cover network protocols and reconnaissance as well
as dynamic and static reverse engineering. Some results
for one of these exercises that addresses network recon-
naissance has been presented elsewhere [21]. In this pa-
per, we report on a reverse engineering scenario which
has raised issues of guidance for us as faculty. The sce-
nario has been modified several times, and in our most
recent version, we have surveyed our students about the
perceived level of guidance.

2 Related Work

Our philosophy on information security education stems
from our understanding and teaching of the hacker cur-
riculum as described by Bratus [2]. This approach is

predicated on the utility of understanding failure modes.
Rather than teaching students the success cases, we at-
tempt to deliver a culture shock that makes them dis-
respect API boundaries and adopt a cross-layer view
of the CS discipline as described by Bratus et al. [4].
We also routinely encourage our students to adopt a
dual frame of mind (attacker and defender) when solv-
ing problems to prevent artificial abstraction layers from
becoming boundaries of competence [23]. The impor-
tance of analysis skills as explained by Bratus et al. [3]
is based on linking expected behavior to actual behav-
ior as seen in network traces, log files, program bina-
ries, rules/policies, system call traces, network topolo-
gies, network interactions, unknown protocols, injected
backdoor code, etc. All of our exercises are based on
skills like these. A tool that actually supports this type
of analysis is NetCheck [26], which is used to debug net-
work applications. Using a simplified model of normal
network behavior, NetCheck collects information about
network applications using strace and compares it to
the model.

There are a number of well-known lab exercises that
are very prescriptive. They give explicit instructions to
the student on what to do and how to do it and they
don’t require the students to do a deep analysis in or-
der to answer the questions. For example, Towsons Se-
curity Injections [19] mainly focus on several important
secure programming patterns, but do not emphasize anal-
ysis. The SEED [9] project presents a mature, well-
documented set of exercises, which are not typically in-
teractive or dynamic and require significant work to set
up and run. They are very prescriptive in terms of their
description of what the student does and they require ex-
tensive knowledge. Some of them were designed for the
graduate level. However, there is nothing in the lab that
requires students to analyze what the software system is
doing. The Principles of Computer Security lab manual
written by Nestler et al [16] provides a broad overview
of cyber security, yet is also prescriptive. The exercises
described by Yuan et al [25] seem to emphasize tools for
auditing software, but not the analysis skills.

In contrast, open-ended cybersecurity games and
capture-the- flag competitions are known to engage stu-
dents [20, 12]. This includes competitions such as
CCDC2, Plaid3, notsosecure4, iCTF5 [8], CSAW6 [12],
TRACER FIRE7, Packetwars8, and many others. These
activities often provide little guidance. Because they re-
quire a significant amount of infrastructure and prepara-

2http://nationalccdc.org
3http://www.pwning.net
4http://ctf.notsosecure.com
5http://ictf.cs.ucsb.edu
6https://csaw.isis.poly.edu
7http://csr.lanl.gov/tf
8http://packetwars.com

2

tion by the organizers, they only reach a small number of
students. Some competitions such as CCDC and Pack-
etwars require the installation of physical hardware, and
they often require that students and their faculty travel to
participate. However, they are moving to virtual environ-
ments and qualifying rounds for CCDC are run remotely.
There are also a number of non-technical games with the
goal of interesting students with no technical background
in cybersecurity. These include Control-Alt- Hack [7],
d0x3d! [13], Security Cards9, CyberCIEGE10 [6] and
Werewolves [10]. The last of these introduces players
to the concept of covert channels in a non-technical con-
text. Online exercises that are not necessarily compe-
titions but provide challenging exercises would include
Google Gruyere11 and overthewire12. Our exercises are
intended to create scenarios that are closer technically to
real-world situations that a security professional would
face. We want exercises that our students can use in the
classroom and even as training for some of these com-
petitions if they are really attracted to them. We view
the exercises described in the next section as a middle
ground between the two ends of the spectrum.

There has been some research to try to deter-
mine whether guided or unguided instruction is better.
Kirschner, Sweller and Clark [14] have argued that min-
imally guided instruction is not effective. One thing to
keep in mind is that they are focusing on content knowl-
edge alone and not skills or abilities. On the other
side, Kussmal et al [15] have shown positive results
with inquiry-based learning in computer science. Wolf-
man and Bates [24] have written about the advantages
of kinesthetic learning in the classroom. These view-
points are consistent with our observations, which are
that something between the two extremes works well.
We assume that in cyber security, the student needs to
acquire content knowledge, skills using tools and analy-
sis skills (abilities).

3 Description of the strace Scenario

For this paper, we focus on degree of guidance that was
needed by the students for a scenario that consists of mul-
tiple exercises using the strace tool to examine system
calls, what they learned in this scenario, and how we
modified the scenario in response to feedback from the
students. The strace scenario has been used by several
faculty at different schools and has undergone multiple
revisions over the last two years. strace is a Linux tool
that generates a trace of all the system calls made during
the execution of a program. These include memory, file,

9http://securitycards.cs.washington.edu
10http://www.cisr.us/cyberciege
11https://google-gruyere.appspot.com
12http://overthewire.com

process, and networking operations. It is used to analyze
the runtime behavior of programs, especially executables
for which there is no source code. In the context of cy-
bersecurity, strace is useful for detecting if a program is
doing something unusual and potentially malicious, such
as reading information from unexpected sources, writ-
ing information to an obscure file, surprisingly forking
a child process, or performing suspicious network com-
munication.

There are multiple goals for this exercise. One of
them is for students to learn how to use strace to an-
alyze what a program is doing. Another is to understand
the operation of normal programs with respect to sys-
tem calls and detect abnormal behavior in malicious pro-
grams. As with many tools for security analysis, effec-
tively using strace to detect abnormal behavior requires
(1) sifting through a large amount of data and (2) being
able to distinguish abnormal behavior from normal be-
havior. For example, the output of strace when running
the empty C program compiled from

int main () {}

has 23 lines involving 11 different system calls, many
of which (e.g., brk, ftstat64, mmap2, munmap,
mprotect) only make sense to those with some back-
ground in the Linux operating system. This output sum-
marizes system calls made when running any program.
For malware analysis, students must learn what to ignore
in order to focus on calls made by the program itself. So
the strace scenario begins with an exercise on study-
ing the output of strace running on the empty program.
However, it is important to let students know not to focus
on understanding all of the system calls. We found that
without that guidance, students readily explored paths
that did not help them solve the challenges of the sce-
nario or meet the learning goals.

In the next part of the scenario, students are asked to
explain the output of strace for a C program that per-
forms a character-by-character copy of an input file to
an output file. This introduces them to system calls for
opening and closing files and reading and writing file
information, and they can correlate aspects of the dy-
namic execution reported by strace with static features
of the program. It also exposes them to input/output
buffering performed by the system; although the source
code copies the file one character at a time, the read

and write calls reported by strace manipulated bigger
strings.

Running strace on even simple programs can easily
generate hundreds or thousands of lines of output, so it
is important for students to learn ways to filter and sum-
marize this information. There are options for counting
the number of calls made to different system routines and
summarizing the time spent in them as well as options for

3

showing only certain calls or categories of calls (e.g., file
operations, process management operations, networking
operations). By default, strace does not trace calls of
child processes forked from the main process, but there is
a -f option for doing this. This is important to know, be-
cause malicious code often creates new child processes.

The exercises introduce some of these options. Once
they have learned the basics of strace, students are
asked to use it to analyze some executables for which
they have no source code. These exercises culminate
in the trojaned cat exercise, where the usual Linux cat

command for displaying file contents has been replaced
by a trojaned version that additionally writes the contents
of every displayed file to a special directory. strace ex-
poses the operations that open, write to, and close the file
in the special directory.13

The strace scenario has been tested several times
starting in Fall 2014 in a computer security course at a
liberal arts college. There were 29 students in this class
who worked on the exercises in groups of two or three
over two 70-minute class sessions. Initially, the instruc-
tor circulated around the room while students worked on
the strace exercises from a handout, observing what
they were doing and answering questions. It soon be-
came apparent that most students did not understand the
purpose of examining the output of strace on the empty
program. None of the students had operating systems
experience, and many were trying to understand the de-
tails of system calls like brk and mmap2. The instruc-
tor stepped in to explain that the point of this exercise
was to show that many system calls are made to run
any program, and that these form a boilerplate that can
be ignored in subsequent operations. Similarly, for the
copy exercise, the instructor needed to emphasize that
the point of the exercise was to relate file operations
from the dynamic trace to lines of the program. By the
end of the second session, most groups had spent signif-
icant time on the trojaned cat problem, and most had
discovered that the program was surreptitiously squirrel-
ing away copies of the displayed files. This test of the
strace scenario highlighted issues involving the level
of guidance and independence in hands-on security exer-
cises. We have included the questions and some sample
student answers in the Appendix.

The scenario was repeated at the same college in
Spring 2016 with 23 students. This time the instruc-
tor went over the first two questions as a demo to em-
phasize that the point of these questions was what to

13In the initial version of the scenario, the file contents displayed
by cat were appended (along with the file name) to a single file
named /tmp/carnivore. However, this led to undesirable behav-
ior when a student used the trojaned cat to display the contents of
/tmp/carnivore — the file would double in size! So in subsequent
versions of the scenario, the file contents displayed by each call to cat

were written to a separate file file in the directory /tmp/data.

ignore in the output of strace. Students worked in
groups on the other problems except for the trojaned cat

question, which was assigned as an individual homework
problem. Even though the in-class exercises had em-
phasized that boilerplate system calls should be ignored
and had exposed students to strace options for viewing
forked processes and filtering the output for file opera-
tions, many students still got sidetracked with the com-
plexities of unfiltered strace output, or did not generate
output for forked processes (which was essential to solv-
ing the problem).

The scenario was also run a another liberal arts col-
lege in Spring 2016, where the instructor gave more ini-
tial guidance. The first five parts of the scenario were
done by the instructor as a demo, and the remaining parts
were done by the students. The students were surveyed
on their perceived level of guidance. Using a 5-point Lik-
ert scale, they indicated whether they wanted more guid-
ance or more independence. Out of 10 responses from a
class of 13, 7 wanted more guidance, but the responses
included the full range, indicating that finding a balance
of guidance and independence that works for all students
seems unlikely. The results are shown in Figure 1.

Figure 1: Student survey results. Students were asked
whether they wanted more guidance or more indepen-
dence for the exercise.

4 Discussion and Lessons Learned

We have considered and tried a number of strategies in
the context of the strace scenario, and here are some of
them:

• Does the instructor tell the students how the tool
works, what it can do, what to pay attention to and
what to ignore? Or are these left for the student
to discover by running simple examples? We tried
both, and students seem to work more efficiently
when told what to pay attention to.

4

• Does the instructor present students with a general
problem first, or show them an example? The in-
structor can choose the level of guidance. Our early
experience was that students could be distracted by
investigating what the empty program actually does
vs. moving on to examine programs that do more
interesting things. Similarly, students could get
caught up reading about all of the different system
calls and lose sight of the goal of finding anoma-
lous behavior. In the most recent trial, the instructor
gave a demo of the first steps in the scenario, while
the students followed along. This saved the students
some time.

• When it comes to understanding options for a tool
like strace, there is a tradeoff between having stu-
dents explore options based on documentation (e.g.,
man pages) and having an instructor show particu-
larly useful options. The man page approach fosters
independence in the teach-a-person-to-fish kind of
way; but it can take significant time, and some stu-
dents may not find options they can use for effective
analysis. A middle ground is to have the students
interactively experiment with options during a rela-
tively short portion of the class and then have a dis-
cussion about which options are particularly useful
and why.

• Tools like strace involve several levels of knowl-
edge. In order to be able to make sense of simple
traces, students need to know something about sys-
tem calls and their relationship to programs. They
must also understand tool options for controlling the
amount of information and summarizing it. These
basic kinds of knowledge are a prerequisite to per-
forming higher-level analysis, such as distinguish-
ing normal from abnormal behavior, and associat-
ing abnormal behavior with particular kinds of mal-
ware.

• Exercises need to be carefully written to explain the
purpose of the exercise and what students should
and should not focus on, and to constrain the ex-
ploration of the students. Otherwise, students can
spend much of their time possibly unproductively
exploring blind alleys. The exercises have ques-
tions, as shown in the Appendix, to guide the stu-
dents and assess whether they have understood the
high-level purpose of the exercise, plus details rele-
vant to subsequent exercises.

• When students have limited background knowledge
(of operating systems, in this particular case), it
can be helpful for an instructor to give a high-level
overview of the area and explain what is and is not
important about the details. Otherwise, students can
spend significant time trying to understand details
that are not important.

• In the context of undergraduate colleges and com-
munity colleges, it is not uncommon for security
courses to be taught by instructors with limited
background in the area. So instructors will be learn-
ing how to use tools one step ahead of, or along-
side, the students. Exercises need to be designed
so that instructors are encouraged to modify them.
By thinking about how to modify the exercises, the
instructors gain more confidence and a deeper un-
derstanding of the content. We found this to be
an advantage of the EDURange framework for the
strace scenario. However, the metacognitive level
of the instructors was higher than that of the stu-
dents, which made it more difficult for them to an-
ticipate the students’ questions and confusions.

Different students need different amounts of guidance,
and different instructors will make different decisions
about the level of scaffolding and guidance that they
want to provide. We are not claiming that there is only
one way to teach analysis skills and the security mind-
set. What is important from the perspective of designing
hands-on exercises is providing flexibility to the instruc-
tor. There is a broad spectrum of hands-on exercises that
are available. Some are very prescriptive and limited in
scope while some are so open-ended that the student is
not even told what to look for. We have found with our
students that a middle ground seems to work well. We
avoid being too prescriptive in terms of giving a recipe
for what to do, but we give significant guidance through
the questions that are included with each exercise. One
of the strategies we tried was presenting some of the ex-
ercises as a demo with students following. Another pos-
sible approach is to let students work on one of the more
complex exercises for a short period of time and then in-
tervene with a discussion. An advantage of EDURange
that supports this is that it can provide the instructor with
the bash histories of each of the students, so that it is pos-
sible to identify misconceptions early on in the exercise.

Some of the questions that we used to frame the sce-
nario are shown in the Appendix. For example, Q1 de-
scribes exactly what students should do, which is very
prescriptive, but the question is very open-ended. In this
case, by talking with the students during the exercise, the
instructors found that the question was not direct enough,
and they were able to provide more guidance in response.

Q6 (the trojaned cat question) seemed to work very
well, judging by the student answers. By the time they
answered Q6, the students had had more experience with
strace and were looking for anomalous behavior. In
contrast to Q1, the instructions are less prescriptive, but
the questions are more precise. Most of the students gave
answers to this question that showed that they understood
how to use the tool and how to find anomalous behav-

5

ior. The two students answers shown in the Appendix
are representative and indicate that the students were not
just answering the focused questions, but were implicitly
posing their own.

In contrast, we saw problems when we used other
hands-on exercises, e.g. a man-in-the-middle attack, that
were very prescriptive in terms of procedure and the
questions were precise but did not address the learning
objectives, e.g. listing IP addresses and ports. In those
cases, when we talked with students as they were doing
the labs, they generally did not understand the principles
behind what they were doing.

We have also found that having a precise record of
what students did during the exercises can be very use-
ful for giving them feedback. In the Spring 2016 itera-
tions of the strace scenario, we captured bash histo-
ries from the student accounts to get a detailed picture of
what commands they executed. This helps the instructor
understand problems encountered by students that may
not be apparent from their writeups for the questions. In
one of the classes, summaries of the bash histories were
used as a basis for discussion in class after the scenario
was completed. We are experimenting with visualiza-
tions of the bash histories, and how to incorporate dis-
cussions of such visualizations into the learning process
of our security scenarios.

5 Conclusions

When designing hands-on exercises, there are trade-offs
that need to be taken into account. In theory, independent
discovery is great. It has the power to engage the creative
energy of the student, and can lead to deeper understand-
ing, but that comes at a price. Independent study can
require a significant amount of time from the students
and the instructors. Students may miss what the goals
of the exercise are and may be frustrated or lost. This
tension could put demands on the instructor given that
different students are going in different directions. We
have found that what seems to work well in our example
is coupling scenarios that are less prescriptive in terms
of telling students what to do, with providing guidance
in terms of the questions that they ask. We have found
that the strace exercise and others that we created have
significant potential for students to discover their own so-
lutions and develop analysis skills when provided a rea-
sonable amount of guidance.

Cyber security is a field that connects with almost all
other topics in Computer Science, yet we ought not teach
it only when students have all of the prerequisite knowl-
edge. We have used our exercises in several classes at
4-year colleges that serve a diverse student population in
terms of prerequisite knowledge and learning rates. As a
consequence, we have learned to fill in the gaps in stu-

dents preparation with lectures, demos, discussions, and
guidance during the exercises. Our experiences and the
experiences of our students have been very positive. In
addition, the feedback we have received from other fac-
ulty who have tried our exercises, is that their interest in
cyber security has increased.

6 Acknowledgments

This work was supported in part by Amazon and the
National Science Foundation under grants 1516100,
1516730, 1141314, and 1141341.

References
[1] BELL, T., URHAHNE, D., SCHANZE, S., AND PLOETZNER, R.

Collaborative inquiry learning: Models, tools, and challenges. In-
ternational Journal of Science Education 32, 3 (2010), 349–377.

[2] BRATUS, S. What hackers learn that the rest of us don’t: Notes
on hacker curriculum. IEEE Security and Privacy 5 (2007), 72–
75.

[3] BRATUS, S., D’CUNHA, N., SPARKS, E., AND SMITH, S. W.
Toctou, traps, and trusted computing. In Trusted Computing-
Challenges and Applications. Springer, 2008, pp. 14–32.

[4] BRATUS, S., SHUBINA, A., AND LOCASTO, M. E. Teaching
the principles of the hacker curriculum to undergraduates. In Pro-
ceedings of the 41st ACM technical symposium on Computer sci-
ence education (New York, NY, USA, 2010), SIGCSE ’10, ACM,
pp. 122–126.

[5] CHUNG, K., AND COHEN, J. Learning obstacles in the capture
the flag model. In 2014 USENIX Summit on Gaming, Games, and
Gamification in Security Education (3GSE 14) (2014).

[6] CONE, B. D., IRVINE, C. E., THOMPSON, M. F., AND
NGUYEN, T. D. A video game for cyber security training and
awareness. Computers & Security 26, 1 (2007), 63 – 72.

[7] DENNING, T., LERNER, A., SHOSTACK, A., AND KOHNO, T.
Control-alt-hack: the design and evaluation of a card game for
computer security awareness and education. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communica-
tions security (2013), ACM, pp. 915–928.

[8] DOUPÉ, A., EGELE, M., CAILLAT, B., STRINGHINI, G.,
YAKIN, G., ZAND, A., CAVEDON, L., AND VIGNA, G. Hit’em
where it hurts: a live security exercise on cyber situational aware-
ness. In Proceedings of the 27th Annual Computer Security Ap-
plications Conference (2011), ACM, pp. 51–61.

[9] DU, W., AND WANG, R. Seed: A suite of instructional labora-
tories for computer security education. Journal on Educational
Resources in Computing (JERIC) 8, 1 (2008), 3.

[10] ENSAFI, R., JACOBI, M., AND CRANDALL, J. R. Students Who
Don’t Understand Information Flow Should Be Eaten: An Ex-
perience Paper. In Proceedings of the 5th USENIX conference
on Cyber Security Experimentation and Test (CSET’12) (2012),
pp. 10–10.

[11] FENG, W.-C. A scaffolded, metamorphic ctf for reverse engi-
neering. In 2015 USENIX Summit on Gaming, Games, and Gam-
ification in Security Education (3GSE 15) (2015).

[12] GAVAS, E., MEMON, N., AND BRITTON, D. Winning cyberse-
curity one challenge at a time. Security & Privacy, IEEE 10, 4
(2012), 75–79.

6

[13] GONDREE, M., AND PETERSON, Z. N. Valuing security by get-
ting [d0x3d!]: Experiences with a network security board game.
In Presented as part of the 6th Workshop on Cyber Security Ex-
perimentation and Test (Berkeley, CA, 2013), USENIX.

[14] KIRSCHNER, P. A., SWELLER, J., AND CLARK, R. E. Why
minimal guidance during instruction does not work: An analysis
of the failure of constructivist, discovery, problem-based, experi-
ential, and inquiry-based teaching. Educational psychologist 41,
2 (2006), 75–86.

[15] KUSSMAUL, C. Process oriented guided inquiry learning (pogil)
for computer science. In Proceedings of the 43rd ACM Techni-
cal Symposium on Computer Science Education (New York, NY,
USA, 2012), SIGCSE ’12, ACM, pp. 373–378.

[16] NESTLER, V., HARRISON, K., HIRSCH, M., AND CONKLIN,
W. A. Principles of computer security lab manual.

[17] SCHNEIER, B. The security mindset. Schneier on Security blog
post, March, 2008. https://www.schneier.com/blog/archives/
2008/03/the security mi 1.html.

[18] SWELLER, J. Cognitive load theory and computer science ed-
ucation. In Proceedings of the 47th ACM Technical Symposium
on Computing Science Education (New York, NY, USA, 2016),
SIGCSE ’16, ACM, pp. 1–1.

[19] TURNER, C. F., TAYLOR, B., AND KAZA, S. Security in com-
puter literacy: A model for design, dissemination, and assess-
ment. In Proceedings of the 42Nd ACM Technical Symposium
on Computer Science Education (New York, NY, USA, 2011),
SIGCSE ’11, ACM, pp. 15–20.

[20] VIGNA, G. Teaching Network Security through Live Exercises.
In Proc. 3rd Ann. World Conf. Information Security Education
(WISE 03) (2003), Kluwer Academic, pp. 3–18.

[21] WEISS, R., LOCASTO, M. E., AND MACHE, J. A reflective
approach to assessing student performance in cybersecurity exer-
cises. In Proceedings of the 47th ACM Technical Symposium on
Computing Science Education (2016), ACM, pp. 597–602.

[22] WEISS, R. S., BOESEN, S., SULLIVAN, J. F., LOCASTO, M. E.,
MACHE, J., AND NILSEN, E. Teaching cybersecurity analy-
sis skills in the cloud. In Proceedings of the 46th ACM Tech-
nical Symposium on Computer Science Education (2015), ACM,
pp. 332–337.

[23] WHITE, G., AND NORDSTROM, G. Security across the Curricu-
lum: Using Computer Security to Teach Computer Science Prin-
ciples. In Proceedings of the 19th National Information Systems
Security Conference (1996), NIST, pp. 483–488.

[24] WOLFMAN, S. A., AND BATES, R. A. Kinesthetic learning in
the classroom. J. Comput. Sci. Coll. 21, 1 (Oct. 2005), 203–206.

[25] YUAN, X., HERNANDEZ, J., AND WADDELL, I. Hands-on labo-
ratory exercises for teaching software security. In Proceedings of
the 16th Colloquium for Information Systems Security Education
(2012).

[26] ZHUANG, Y., GESSIOU, E., PORTZER, S., FUND, F., MUHAM-
MAD, M., BESCHASTNIKH, I., AND CAPPOS, J. Netcheck:
Network diagnoses from blackbox traces. In 11th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI’14), USENIX.

Appendix: strace Exercises

Q1: Your home directory in the account on the EDU-
Range strace scenario NAT instance contains various
files that will be used in this scenario. One is the file
empty.c, whose contents is:

int main () {}

Compile this and run strace. What do you think the
output of strace indicates in this case? How many dif-
ferent system call functions do you see?

Q2: The -o option of strace writes its output to a file.
Do the following:

strace -o empty1 ./empty

strace -o empty2 ./empty

diff empty1 empty2

Explain the differences reported between traces empty1
and empty2.

Q3: Study the following program copy.c.

include <stdio.h>

include <stdlib.h>

int main (int argc, char** argv) {

char c;

FILE* inFile;

FILE* outFile;

char outFileName[256];

if (argc != 3) {

printf("program usage: ./copy <infile> "

printf("<outfile>\n");

exit(1);

}

snprintf(outFileName, sizeof(outFileName),

"%s/%s", getenv("HOME"), argv[2]);

inFile = fopen(argv[1], "r");

outFile = fopen(outFileName, "w");

printf("Copying %s to %s\n", argv[1],

outFileName);

while ((c = fgetc(inFile)) != EOF) {

fprintf(outFile, "%c", c);

}

fclose(inFile);

fclose(outFile);

}

Compile it to an executable named copy, and use
strace to execute it. Explain the non-boilerplate parts
of the trace by associating them with specific lines in
copy.c.

Q4: The file strace-identify was created by calling
strace on a command. The first line of the trace has
been deleted to make it harder to identify. Determine the
command on which strace was called to produce this
trace.

Q5: The file mystery is an executable whose source
code is not available. Use strace to explain what the
program does in the context of the following examples:

mystery foo abc

mystery foo def

mystery baz ghi

7

Q6: Note: please do Q7 and Q8 before this problem; it
turns out theyre helpful for solving this problem.14 Cre-
ate a one-line secret file. Heres an example, though of
course you choose something different as your secret:

echo "My phone number is 123-456-7890" > secret

Now display the secret to yourself using cat:

cat secret

Is your file really secret? How much do you trust the
cat program? Run strace on cat secret to deter-
mine what its actually doing. Based on this and subse-
quent experiments, determine answers to the following
questions:

1. Does the cat program in the strace scenario do
more than display the contents of a file? Exactly
what else does it do?

2. How can you display the contents of a file without
the extra actions reported above?

3. Can anyone else read your secret?

4. Can you read the secrets of anyone else?

5. How do you think the Trojaned cat program was
implemented? How do you think it was installed?
Justify your explanations.

Answering these questions will require some careful
forensics work on your part. Write up all answers in
your solution doc. Explain all experiments you perform,
the key results of those experiments, what you learned
from each experiment, and hypotheses that you devel-
oped along the way. Notes:

• Your writeup should clearly answer all the asked
questions and include sufficiently detailed explana-
tions, evidence, etc.

• Include particular lines from the output of strace
in your explanations where they are relevant.

• Include transcripts with the output of Linux com-
mands in your explanations when they are relevant.

• Note that the strace scenario does not include the
emacs editor. If you want to use an editor to read or
modify a file, you can use the nano or vim editors.

14In the Fall 2014 version of the strace scenerio, questions Q7 and
Q8 were added after an initial version of the exercises had been pub-
lished, so they were put at the end. In some subsequent versions, the
questions were reordered so that the trojaned cat question became the
last one.

• Don’t incorrectly assume that just because you can’t
list the files in a directory that you can’t read the
contents of particular files in that directory.

Q7: Here is a simple shell script in script.sh:

#!/bin/bash

echo "a" > foo.txt

echo "bc" >> foo.txt

echo ‘id -urn‘ >> foo.txt

chmod 750 foo.txt

/bin/cat foo.txt | wc

Compare the outputs of the following calls to strace
involving this script. Explain what you see in the traces
in terms of the commands in the script.

./script.sh

strace ./script.sh

strace -f ./script.sh

Q8: Sometimes strace prints out an overwhelming
amount of output. One way to filter through the output is
to save the trace to a file and search through the file with
grep. But strace is equipped with some options that
can do some summarization and filtering. To see some
of these, try the following, and explain the results:

find /etc/pki

strace find /etc/pki

strace -c find /etc/pki

strace -e trace=file find /etc/pki

strace -e trace=open,close,read,write find /etc/pki

Sample Student Answers to Q6:

Student1: Our file isn’t very secret; don’t trust cat. The
cat we are using isn’t /bin/cat, so it is acting differ-
ently. Everything goes into the /tmp/carnivore file.
To search large carnivore, you can grep it for student and
print both the student line and the line following it (the
password), which is grep -A 1 student carnivore.
Using which cat, we can see that the cat we are using
is the result of a path attack. To get rid of the trojan cat:

export PATH=/bin:/usr/bin:/usr/local/sbin:

/usr/sbin:/sbin:/opt/aws/bin:/home/student_xx/bin

This resets your PATH and gets rid of /usr/local/bin
as a possible path.

Student2: . . . It then resumes a normal cat operation.
In /tmp/carnivore though, other students can read the
secret AND you can read other students secrets since
they are being stored in a directory called tmp that has
drwxrwxrwt permissions. Found this article to refresh
ourselves on what the sticky bit t meant: . . .

8

