
Lumberjack Summer Camp: A Cross-Institutional

Undergraduate Research Experience in Computer Science∗

Patricia Johann

Department of Mathematics and Computer Science, Dickinson College

Carlisle, PA 17013 USA

johannp@dickinson.edu

Franklyn A. Turbak

Department of Computer Science, Wellesley College

Wellesley, MA 02481 USA

fturbak@wellesley.edu

Abstract

This paper describes our experiences in leading Lumberjack Summer Camp, a ten-week

undergraduate research experience in compiler-based optimization techniques for functional

programs, held during the summer of 2000. Like many undergraduate research experiences,

Lumberjack Summer Camp was designed to provide an opportunity for students and faculty

to work closely together toward a common research goal. But Lumberjack Summer Camp was

designed around an additional aim as well: to bring together a critical mass of researchers from

two small liberal arts colleges to pursue individual research projects situated within one overar-

ching, collaborative, cutting-edge research endeavor. We explore some important consequences

of this design choice, ultimately offering Lumberjack Summer Camp as an unusual, but very

workable, model for undergraduate research experiences.

∗To appear in Computer Science Education, Volume 11, Number 4 (December 2001).

1



1 Introduction

The educational value of undergraduate research in the sciences cannot be overestimated. In ad-
dition to providing an opportunity for students to develop close, academically-based mentoring
relationships with faculty, involvement in scientific research develops students’ capacity for intellec-
tual discipline and independent thought, fosters the ability to synthesize knowledge from seemingly
disparate fields of inquiry, and teaches the importance of critically analyzing one’s work relative
to established theory and scientific evidence. It also helps students understand the role that re-
search plays in their own educations — both directly, by determining the content of the curricula
they study, and indirectly, by creating new knowledge and keeping faculty active in, and excited
about, their disciplines. Perhaps most importantly, involvement in research enables undergraduates
to make the transition from course-directed consumption of scientific knowledge to participation in
the production of knowledge. Indeed, doing science, rather than learning science, allows students
to experience — exhilaratingly, and often for the first time — their chosen discipline as a living,
breathing, growing body of knowledge in whose evolution they can meaningfully participate, rather
than as a finished product long since developed by a small contingent of dead geniuses.

Undergraduate research in computer science offers these benefits to students and faculty no less
than does research in other sciences. Involvement in undergraduate research in computer science
has changed the course of student and faculty careers alike, spurring the former on to further
pursuit of the discipline, and adding new dimensions to the professional lives of the latter. But
while other sciences — most notably biology, chemistry, geology, and psychology — and engineering
have rich traditions of undergraduate involvement in research, computer science does not. Moreover,
surprisingly little has been written about those efforts that have been made to involve undergraduates
in computer science research. (Recent articles in this area include (Lopez & Messa, 1994, Sturm &
Glassman, 1996, Bard, Berque, & Dershem, 1996, Koelzer, 1997, Tesser, Al-Haddad, McClaugherty,
& Frame, 1998, Dima, Parent, Briggs, & Dickerson, 1998, Passos, 1999)).

In this paper, we report on our experiences in leading Lumberjack Summer Camp (LSC), a
ten-week intensive research experience for six undergraduates from Bates and Wellesley Colleges,
held at Wellesley College during the summer of 2000. Participants in LSC investigated the practical
effectiveness of a particular class of compiler-based optimization techniques for functional programs
known as fusion algorithms (Launchbury & Sheard, 1995). (Since fusion algorithms achieve their
effects by eliminating certain tree-like data structures from programs, fusion is sometimes punningly
called deforestation (Wadler, 1990). As persons committed to removing trees from programs, we
press this pun still further, calling our summer research experience “Lumberjack Summer Camp,”
and referring to ourselves as “lumberjacks.”) Like many undergraduate research experiences at small
liberal arts colleges, LSC was designed to provide an opportunity for students and faculty to work
closely together toward a common research goal. However, several features of LSC distinguish it
from more typical such experiences:

• LSC was a cross-institutional initiative. Faculty and students from two small liberal arts
colleges (Bates and Wellesley) pooled resources at the host institution (Wellesley) for the
ten week duration of the research experience. The faculty leading LSC worked collectively,
and without regard to institutional affiliation, to guide the research of each of the student
participants.

• LSC involved a relatively large group of students and faculty, with a critical mass of researchers
coming from each institution. Although some undergraduate research experiences involve six
or more students, those at small liberal arts colleges typically involve only one or two students
under the guidance of a single faculty member. Even when larger numbers of students are
involved in a research experience— as might be the case in an NSF-funded Research Experience
for Undergraduates, for example — those students are usually drawn one each from a variety of
home institutions. While this can lend some diversity to the research experience, it also makes

2



it more difficult to preserve the sense of intellectual community the experience is intended to
stimulate once the participants have all dispersed to their home institutions.

• LSC fostered both individual and collaborative research. The research experience we provided
was centered around a single, collaborative research project, a critical piece of which each
student worked on individually (with faculty guidance). An important feature of LSC was
that the students’ individual research was always done in the context of this larger project.
With a few notable exceptions (Koezler, 1997, Dima, et al., 1998, Passos, 1999), undergraduate
research experiences — especially those at small liberal arts schools — are often unable to
provide this kind of dual focus for scientific work. Instead, they tend to be structured around
individual faculty-student research (e.g., (Lopez & Messa, 1994, Sturm & Glassman, 1996)).
This may be because a research project scoped to be carried out successfully with the available
resources cannot offer multiple entry points for undergraduates. It may also be that there
simply aren’t other student researchers on the project with whom to collaborate.

This paper explores some important consequences of these features of LSC. Based on our experi-
ences, we offer LSC as a somewhat unusual, but very workable, model for undergraduate research
experiences.

The remainder of this paper is structured as follows. In Section 2 we discuss our motivation for
designing Lumberjack Summer Camp. Section 3 describes our goals for Lumberjack Summer Camp
and some design decisions we made in planning it. Section 4 briefly describes the research project
in which the participants in LSC were engaged, and Section 5 details the way in which the summer
research experience was structured around that project to achieve our pedagogical and research goals.
In Section 6 we reflect on some important lessons learned in leading LSC. We consider LSC a useful
model for improving the research infrastructure at small colleges, and conclude in Section 7 with
some LSC-inspired recommendations for colleagues considering undertaking similar undergraduate
research initiatives at other such institutions.

2 Why Lumberjack Summer Camp?

LSC was conceived as an informal pilot study to determine the feasibility of cross-institutional
undergraduate group research in computer science. It was led by two computer science faculty,
one from each of Bates and Wellesley Colleges, and provided research opportunities for two Bates
and four Wellesley computer science students: three rising juniors, two rising seniors, and one new
graduate heading for graduate school. The research experience was funded through the NSF research
grants of the individual faculty members involved, together with a grant from the Howard Hughes
Medical Institute, administered by Bates College, and a Wellesley College Science Center summer
research grant.

The organization of LSC grew out of three main considerations. First, we believe that providing
experience with cutting-edge research is one of the most effective tools educators can employ to
attract talented undergraduates to, and retain them in, scientific careers. In particular, we con-
sider undergraduate involvement in research to be a fundamental aspect of science education at
small liberal arts colleges. We further believe that these institutions are uniquely poised to offer
opportunities for undergraduates to work side-by-side with faculty in research settings. Indeed,
undergraduates at small liberal arts colleges do not compete for faculty attention with graduate
students and postdoctoral research fellows. Instead, faculty — rather than graduate students or
postdoctoral associates — take on the role of research mentor, providing undergraduate researchers
the same close interaction and individualized guidance in research that they offer in other settings
throughout the academic year.

Second, we believe that the intellectual stimulation derived from interacting with others pursuing
related ideas is critical to the success of a research endeavor — for faculty as well as for students.

3



Good ideas rarely emerge from the mind of a single individual working without the benefit of
outside influences. Accordingly, mitigating some of the effects of disciplinary isolation experienced
by students and faculty based at small liberal arts colleges was one of our key goals in designing
this research experience. Such institutions often have relatively few students undertaking advanced
study in any particular discipline at any given time, and also tend to recruit new faculty with an
eye toward broadening disciplinary coverage rather than deepening local research expertise in any
particular area. Our aim was to bring together in one physical location a critical mass of scholars
all focused on a common intellectual goal. In this way we hoped to maximize opportunity for the
“accidental collisions of ideas” which Bruce Alberts, President of the National Academy of Sciences,
maintains are essential to intellectual productivity (Boyer). We also hoped to instill among the
participants of LSC a sense of intellectual community that would persist well beyond the ten week
duration of the research experience.

Third, we were already pursuing independent, but closely related, research in compiler-based
optimization of functional programs. The discovery that the technical goals of these projects nicely
complemented one another, that we therefore stood to benefit from intensive and prolonged profes-
sional contact with one another, and that we share a commitment to involving undergraduates in our
research, led us to consider the following questions: Could our two research projects be dovetailed to
provide a single research experience suitable for undergraduate involvement? Could such a research
experience be structured in such a way as to enable us to simultaneously achieve our research and
pedagogical goals?

LSC emerged from our efforts to answer these questions. Through it, we sought to weave together
the faculty involvement with undergraduates which is the hallmark of small liberal arts colleges and
the benefits of disciplinary concentration found at larger, often more research-oriented, institutions.

3 Planning Lumberjack Summer Camp

Once we had decided to lead LSC, our first orders of business were to secure funding for student
stipends, and to hire students into the research positions these stipends made possible. Although
we sought to hire capable, interested, intellectually mature students with appropriate technical
backgrounds, good work habits, and good interpersonal skills, our primary criterion for selecting
LSC participants was that they exhibit a keen interest in the project. Lack of specific technical
knowledge — beyond a fundamental familiarity with computer science as a discipline and a basic
facility with functional programming — barred no one from participating. Of course, due to the
nature of the research to be conducted, some knowledge of programming languages and compilers
was a definite advantage for those that had it.

When approaching students about participating in the summer research we were careful to em-
phasize that conducting research is very different from working problems in a textbook or carrying
out a pre-planned laboratory experiment. By contrast with those situations, in research there is not
some already-understood answer or phenomenon that one is trying to verify or reproduce. Instead,
research is concerned with the discovery of new knowledge — ideally, new to faculty and student
researcher alike. Because of this, we felt it unrealistic for our students to expect us always to have
ready answers to their questions or to be able to guide them unequivocally. We therefore explained
to potential participants in LSC that they had to be prepared for the frustrating-but-exciting ex-
perience of understanding their individual research project as well as — if not better than — their
faculty mentors and collaborators.

We were also careful to make explicit to potential recruits our main pedagogical goals. In addition
to providing an opportunity for them to participate in the discovery of knowledge, we wanted them
to emerge from the research experience with:

• the ability to acquire the background necessary to make new discoveries,

4



• the ability to communicate — in both written and oral form — new discoveries and their
significance to specialist and non-specialist audiences alike,

• the ability to understand and explain to others the contents of research papers, and

• facility with project-specific tools, such as the HUGS Haskell interpreter and GHC Haskell
compiler, as well as general purpose tools (e.g., Linux, Emacs, LATEX) whose use has become
standard in computer science research.

In addition, we wanted our students to learn the perseverance required to move a research project
from conception to completion. We were, however, confident that circumstance would provide this
lesson without any special effort on our part.

These goals explicitly guided our planning of LSC. To increase the likelihood of achieving them,
we devoted considerable attention to two fundamental issues, namely identifying suitable collabora-
tive and individual research projects, and structuring the research experience.

Regarding the former, we specifically sought a collaborative project of sufficient technical merit to
be of interest to the functional programming community, and of sufficient breadth to accommodate
a group research effort. At the same time, we required the collaborative project to encompass a
number of substantive self-contained subprojects, each suitable for investigation by a single student
or pair of students. At the levels of both the collaborative and individual projects, we sought a
research project that could encompass the paradox of “open-ended closed-endedness.” That is, we
sought a project which was closed-ended in the sense of allowing us to state clearly what our research
aims were and understanding, in outline, how we might achieve them, but was simultaneously open-
ended in the sense that we would still have much to discover, many technical problems to address,
and more than one surprise to encounter on the path to filling in that outline.

The collaborative research we undertook is described in Section 4. The individual projects which
the students ultimately decided on, as well as the relationships of these projects to the collaborative
project, are also discussed there. The projects can be classified into four broad categories:

1. Comparing different approaches to solving a problem and evaluating which approaches work
best in which contexts. The comparison process often highlights aspects of the compared
approaches that would not stand out if the approaches were studied in isolation. In some cases,
comparative studies naturally lead to the development of hybrid approaches that combine the
best aspects of the systems studied.

2. Testing and/or analyzing a program developed by another researcher to discover its strengths
and weaknesses. Being able to articulate weaknesses is critical to the development of increas-
ingly robust programs. Ideally, the source code of the program should be available for study,
as should papers or technical reports describing the theory behind the program and its imple-
mentation. But even if the source code is not available (as was the case in one of our individual
projects), “black-box” testing can often reveal valuable information about the program.

3. Implementing (or extending toy implementations of) theoretical results developed by another
researcher. It is common for researchers, especially Ph.D. and Masters students, to develop
theory with no associated implementation, or with only toy prototypes. The development
of “real” implementations is valuable, especially if they involve extensions not considered by
the original developer. Furthermore, in the course of an implementation, it is common to
encounter questions and problems that lead to new lines of research.

4. Developing tools that enable other members of a collaborative project to work more effectively.
In group projects, it is often the case that some members could be more productive if they had
certain tools, but they do not have the time to develop the tools themselves. In these cases,
one or more group members can support other members by developing tools. Sometimes such
tools are interesting enough in their own right to be useful beyond the scope of the project.

5



These kinds of projects have three important properties that make them particularly well-suited
for research experiences like LSC. First, they are accessible to undergraduates, even in traditionally
“high barrier” subdisciplines of computer science like programming language design and implemen-
tation. Second, they push forward the frontiers of computer science knowledge, and so constitute
“real” research. This stands in contrast to many undergraduate projects, in which students often
work on a problem whose solution is well-known by researchers (but not by them). While such
projects are still valuable for the student, we strongly favor projects which lead to results which are
new to everyone. Finally, projects like those described above are especially amenable to collaborative
enterprises in which each student is working on part of a larger project. In particular, a project
focusing on comparing different techniques naturally has many subprojects that involve testing,
analysis, and implementations of the techniques. Comparison projects also create an environment
that encourages students to share the knowledge and experience gained in individual subprojects
with the larger group.

With regard to the structure of LSC we sought to accommodate a second paradox as well, namely
that of “structured flexibility.” This entailed providing enough structure for the research experience
that the students didn’t flounder, but enough flexibility that they achieved a reasonable degree of
intellectual independence. Toward this end, we encouraged our students not to consider us the final
arbiters of all things Lumberjack, but rather to learn to see themselves and one another as the
first-class decision-makers and resources for one another that they eventually became. The way in
which we structured LSC is discussed in more detail in Section 5.

4 The Research Problem

In this section we briefly describe the collaborative research project around which LSC was organized.
A detailed explanation of the research problem is beyond the scope of this paper, but we want to
give the flavor of the research we undertook, and also make clear how each student’s individual
research contributed to the collaborative project.

4.1 The Collaborative Project: An Overview

Modular program construction is widely regarded as an integral part of any reasonable software
development process. One very general way of achieving modularity in functional languages is
to construct large programs as compositions of smaller components. Each component in such a
composition generates a data structure representing its output, and this data structure is consumed
as input by the next component in the composition. These intermediate data structures emerge as
an essential kind of “glue” that enables reusable component programs to be connected together in
mix-and-match ways (Hughes, 1990).

Unfortunately, modular programs constructed in this fashion tend to consume more time and
space resources than their non-modular counterparts. The main difficulty is that the direct imple-
mentation of compositional programs literally constructs, traverses, and discards its intermediate
data structures — even when they play no computational role. When the sole purpose of an in-
termediate data structure is to specify the connection between the computations performed by
two components, the computations can be woven together into a single component. The resulting
non-modular programs may exhibit even order-of-magnitude efficiency increases over corresponding
modular ones.

Fusion is a technique for automatically transforming modular programs into more efficient, non-
modular equivalents via the elimination of intermediate data structures. Although the theoretical
foundations of fusion are fairly well understood and several techniques have been developed, sur-
prisingly little is known about their effectiveness in practice. An understanding of the issues which
arise in practical applications of fusion is, however, necessary in order to determine whether or not it

6



gives rise to sufficient program improvement to be incorporated into production-quality optimizing
compilers for functional languages.

Toward this end, our summer research experience centered around evaluating and comparing
the effectiveness of implementations of the three main state-of-the-art fusion techniques available at
present. These are: Németh’s implementation of warm fusion (Launchbury & Sheard, 1995, Németh,
2000), Chitil’s type inference-based approach to deforestation (Chitil, 1999), and the HYLO fusion
system of Onoue, Hu, Iwasaki, and Takeichi (Hu, Iwasaki, & Takeichi, 1996, Onoue, Hu, Iwasaki, &
Takeichi, 1997).

4.2 Technical Issues and the Individual Projects

Measuring the effects of fusion on substantial application programs in the context of a real compiler
is not an easy task. Significant technical issues must be dealt with in order to insure that the
measurements obtained are meaningful.

• To make meaningful comparisons of the three fusion implementations, they must all run in the
same computing environment. We have chosen the most recent and stable version the Glasgow
Haskell Compiler (GHC version 4.08) as the common platform for several reasons. GHC is
itself a Haskell program that was specifically designed to support experimentation with new
program transformations such as fusion. GHC also provides profiling tools for measuring the
time and space requirements of compiled programs. These are essential for evaluating the
efficacy of fusion on benchmarks. Another important advantage of GHC is that two of the
fusion implementations (Németh’s warm fusion engine and the HYLO system) are already
implemented in GHC, albeit in slightly older versions.

The differences between GHC versions are significant enough that updating the two existing
implementations to GHC-4.08 requires them to undergo non-trivial modification. In addition,
the third implementation (Chitil’s type-inference based approach) was not developed in GHC
at all. Instead, it runs in the Haskell interpreter HUGS and transforms programs written in a
small language that is a pared down version of Core, GHC’s intermediate language. Extending
Chitil’s implementation to handle full Haskell and porting the extended implementation to
GHC is a significant project.

Providing a common environment requires modifying all three implementations in ways which
reflect detailed knowledge about their underlying algorithms, as well as about different ver-
sions of GHC. Three different students therefore took on the tasks of understanding the three
algorithms and their implementations. Since extending Chitil’s implementation is the biggest
task and could clearly not be accomplished during the summer, it was undertaken by a student
who would be continuing her work as part of an honors thesis during the following academic
year.

• Our project requires significant program development, especially in the case of extending Chi-
til’s implementation. Although it is essential for all the fusion implementations to eventually
run in the same version of GHC, it is not necessary to do all program development using
GHC. Indeed, there are several reasons why GHC is not an ideal environment for develop-
ing extensions to the fusion implementations. First, such development requires modifying the
implementation of GHC. GHC is a very large and complex program, and adding new Core-to-
Core transformations is tricky. Second, GHC compile times can be very long, especially when
recompiling GHC itself. This results in painfully slow edit-compile-debug cycles. Finally, GHC
currently does not support any sort of interactive mode, so that any testing/debugging has to
be done in batch mode. This is very inconvenient.

We would prefer to develop new code in a more friendly, interactive environment in which
program development and experimentation can be accomplished both more easily and more

7



quickly than in GHC. The HUGS Haskell interpreter provides precisely such an environment.
However, unlike GHC, HUGS does not provide tools for manipulating Haskell programs in
Haskell — a fact which makes it difficult to test HUGS-based fusion engines using real Haskell
programs as input. Also, while HUGS is a good environment for developing programs, it is
not a good environment for benchmarking them. Because interpreter-based approaches to
program profiling do not model many complexities of real systems, they are not suitable for
studies whose goal is to measure performance in practice.

Together, these observations suggest that the development and evaluation of fusion implemen-
tations is best done using a combination of GHC and HUGS. HUGS can be used for those
stages of development where interactivity and rapid turn-around time are important. In order
to test HUGS-based fusion engines on Haskell programs as input, we imagine an IR converter
that allows the intermediate representation (IR) of programs at various stages of compilation
to be moved back and forth between GHC and HUGS. Development of such a converter was
undertaken by one of our students.

• In order to measure the effectiveness of fusion, it is necessary to have good suites of benchmark
programs. There is an existing suite of Haskell programs (the nofib suite (Partain, 1992))
that is commonly used to test the performance of Haskell implementations. This suite contains
both simple toy programs as well as real applications. While we will use the nofib suite in
our comparative study, additional test programs are also needed. There are many features
of the fusion engines that will not necessarily be exercised by standard benchmarks, and so
new benchmarks that specifically test these features must be written. Moreover, the existing
benchmarks were not written with fusion in mind; their authors might have written them in
a more modular style had they known that fusion would be performed. For this reason, it is
important to design some new benchmarks specifically designed to showcase the benefits of
fusion.

Over the summer, one of our students began construction of a new nosquares benchmark suite
containing toy programs from classic papers in the fusion literature, as well as more substantial
application programs written specifically for the purpose of testing fusion implementations. As
part of testing the HYLO system (to which we currently have only a black-box web interface),
another student developed a nofuse suite of toy programs highlighting the successes and
limitations of that system. We will use all three benchmark suites in our comparative study.

• Using existing application programs as benchmarks is essential for measuring the effects of
fusion in practice. This means that the fusion engines must fully handle all features of Haskell.
One important feature of real Haskell programs that is not handled effectively by any of the
existing fusion engines is their expression as multiple source program modules. (Chitil has
developed a technique to address cross-module fusion, but is has not been implemented.) The
existing fusion implementations all assume that each of their input programs is written as a
single module. In order to be able to test the fusion engines on existing application programs,
one of our students took on the project of building a demodulizer that automatically transforms
multi-module Haskell programs into single-module programs that can be processed by the
fusion implementations we are studying.

In designing the projects sketched above, there was a tension between scoping the project so
that it could be completed by the end of the summer and making the project a realistic part of the
larger comparative study. We tended toward the latter, expecting that it would give the students a
better sense of a real research project and make them more full-fledged participants in the project.
While we intended that the students could make reasonable progress on the projects during their
six weeks of individual research, we realized from the outset that none of the projects were likely to
be completed by the end of the summer.

8



We had hoped that most of our students would continue working on their projects during the
academic year following the summer. As discussed in more detail in Section 5, five of the six students
continue to be involved with it in some capacity. Work on the IR converter, the demodulizer, and the
test suites continues, as does the extension and incorporation into GHC of Chitil’s type inference-
based fusion implementation. Some preliminary measurements with Németh’s implementation of
warm fusion and the HYLO system have been taken, but substantial benchmarking remains to be
done once all of the necessary machinery has been constructed and put into place.

5 Structuring the Research Experience

LSC can be seen as comprising three distinct phases: (1) a mini-course on compiler-based program
optimization which occupied the first three weeks of the research experience; (2) the remaining seven
weeks of the research experience during which the students chose and worked on their individual re-
search projects; and (3) the continuing research effort. We briefly describe the salient characteristics
of each phase.

5.1 The Early Days

LSC kicked off with an informal social gathering over dinner, followed early the next morning by
our first official meeting. We began the meeting by first reminding the students of our research
and pedagogical goals for the collaborative project in which we would all be engaged, and then
providing a technical overview of the project. Over the next few days we identified a number of
possible individual projects and their relationships to the collaborative project. This information was
summarized on the LSC web page (http://cs.wellesley.edu/~deforest), which we encouraged
the students to consult frequently as they decided which of the projects they were interested in
undertaking. Students finding none of the projects we described appealing were encouraged to
propose their own. By the end of the fourth week of LSC, we explained, they were to have settled
on a project and begun work on it.

To prepare the students for selecting their projects we gave a three week mini-course covering
the background information necessary to understand, at a relatively high level of abstraction, what
each of the proposed individual projects would entail. We were particularly concerned that the
students be able to identify those projects that were most in accordance with their own intellectual
goals for the summer, that they were most interested in, that they felt best prepared to undertake,
and that they thought they would most enjoy. Consideration of these issues was necessary for each
possible project individually, since these varied widely in terms of the background and skills they
required, the degree to which they were on the critical path of the collaborative research endeavor,
and the positions they occupied on the practical-theoretical continuum. The mini-course served
another important purpose as well, providing us and our students a common language and point of
departure for the technical discussions that were to come.

A key goal of the mini-course was familiarizing students with Haskell programming and issues in
transformation-based program optimization. While all six students had some experience program-
ming in functional languages, only two had significant Haskell experience, and none had significant
experience with writing programs that transform other programs. We gave brief lectures on these
topics and posed program transformation exercises related to our collaborative research project.
Students worked in pairs to implement program transformers of increasing sophistication. Working
in pairs (which changed over time) helped the students to get to know each other, and was an ef-
fective means of having students share their background and experience. Interspersed with machine
time were group sessions during which students discussed the problems or presented their solutions
for peer review.

A second, but equally important, goal for the mini-course was to get the students up to speed
on the fusion literature. Towards this end, we established a “reading group,” a series of two- to

9



three-hour sessions held twice a week in which we read aloud and worked through — often under
student leadership — the details of research papers on various topics related to fusion. Making
significant progress in this area proved to be rather difficult given the three week time frame with
which we had to work. It involved helping the students make the transition from (perhaps) having
read textbooks and worked problems on programming language and compiler design to reading
research papers pushing the limits of knowledge about them. The leap in technical difficulty and
assumed background between the two media did not go unnoticed by our students, who came to
understand that learning to read research papers at all — even when one has the background to
make sense of them — is itself a significant achievement.

Broadly speaking, then, the mini-course was designed to help the students make the transition
from learning science to doing science. Of course, no amount of discussion of the research process
can actually impel a student to make that transition; indeed, the entire premise on which under-
graduate research programs are based is that only first-hand engagement in the research process
and the discovery of knowledge can have that effect! But we believe that it is possible to create
an environment in which the transition from student to student researcher is not only possible but
highly likely, and in which it is a pleasurable and exciting, rather than disorienting, experience.

5.2 A Day in the Life

LSC became much less structured after the mini-course had ended. The students spent the first
week after the mini-course investigating and choosing an individual research project that they would
work on for the remaining six weeks of the summer. Some group activities from the mini-course
did continue, however; reading group, for example, continued to meet twice a week for several more
weeks. We also instituted a weekly group meeting. These provided a time for all of us to catch up
on the progress others had made during the week, as well as to generate new ideas and help one
another move forward on ideas already under exploration. Still, the time devoted to whole group
activities decreased dramatically after the third week of the research experience, and the amount of
time spent engaged in independent work, or in individual or small group conversations focused on
specific technical aspects of the project, increased proportionally.

Recognizing that flexibility in work hours can often lead to a more productive work environment
(and also that research sometimes requires extended periods of long hours which can be compensated
for at other times), strict work hours were not set. Nevertheless, all eight of us were typically present
in our research area from about 9 a.m. to 5:30 p.m., Monday through Friday, and often during
evenings and weekends as well. A typical day at LSC might include a group meeting or a reading
group session, a small group or independent consultation with one or both of us, collaborative
activities between students working on related projects, and independent reading, programming,
and/or thinking.

Throughout the research experience, students attended talks, panels, and social events organized
as part of the Wellesley Science Center summer research program. They also kept research notebooks,
which we reviewed on a weekly basis. At the end of the research experience each student submitted
a formal written document to be posted on the project web page detailing the specific project they
had undertaken, together with their findings. These documents took shape over the final five weeks
of LSC; their polished versions were the result of a rigorous process of writing and revising based
on the numerous and detailed comments we provided. Each student also prepared a poster for the
poster session which marked the end of Wellesley’s summer research program. The Bates students’
posters were also presented at the Student Poster Session held during the 2000 Celebrate Bates
weekend.

10



5.3 The Story Continues

While significant progress was made on all components of the project during the summer, the scope
of the project was large enough that no part was complete by the end of the summer. Although we
had not carefully planned for this scenario, it is fortunate that most of the summer students have
been able to continue to work with us on their pieces of the collaborative project.

One student is continuing her work extending Chitil’s implementation as her honors thesis
project. Another wanted to continue work on the IR converter as a thesis project but, due to
sabbatical scheduling, cannot; instead he is continuing his work on the project for pay. Two more
students are continuing their work as paid research assistants during the academic year, while an-
other is planning to continue her work in an independent study course in the spring. Only our
newly graduated student is no longer closely associated with the project, reluctantly forsaking it for
the demands of graduate school. We are, of course, delighted that all of the students found their
summer experiences worthwhile enough to want to continue to be involved in the project. Again
due to sabbatical scheduling, it is unclear at present whether or not the project will continue next
summer.

When the empirical studies of the three deforestation techniques are complete, we plan to sub-
mit a journal paper comparing the techniques co-authored by all LSC participants. We are also
encouraging students to present their individual work in other forums. For example, four of our stu-
dents submitted abstracts for poster presentations at the Northeast Conference of the Consortium
for Computing in Small Colleges in April 2001. All four were accepted, and were chosen as among
“the top submissions” by the conference’s Student Poster Co-Chairs. We expect that several of the
individual projects will be worthy of additional workshop presentations or conference publications.

One of LSC’s grandest moments came this past September at the 2000 Haskell Workshop and
the International Conference on Functional Programming. Four of our students accompanied us to
the meetings. We were eager to introduce them to the larger functional programming community
and have them meet a larger group of people actively thinking about ideas similar to those with
which they worked all summer. Our students — who, incidentally, are the only undergraduates we
have ever seen at these conferences — and our informal descriptions of the technical and pedagogical
goals of our research project were exceedingly well-received. Involving undergraduates in research
in programming languages is virtually unheard of, and a number of researchers — including some
very big names in the field — were extremely enthusiastic about it. Their praise for our efforts to
educate early the next generation of researchers left us feeling we’re doing something of significance
for the functional programming community as a whole, as well as for our students and ourselves.

6 Lessons Learned

Leading LSC taught us a good deal about the feasibility of undergraduate group research in computer
science. We came away from the experience with a number of thoughts about its successes and
failures, the most significant of which we discuss in this section.

We were pleased with the logistical structure — mini-course, group meetings, reading group, etc.
— of the research experience. Moreover, we found that six students and two faculty members was a
very good number of each to have, and that the variety of prior experience and expertise — at both
the student level and at the faculty level — afforded by the cross-institutional nature of the research
experience was of considerable importance to its success. We saw our students take advantage of
many opportunities to teach and learn from one another, and to see how their peers (rather than
their faculty mentors) understand and experience computer science and computer science research.
Each of us also found working with another faculty member with similar professional and pedagogical
interests extremely stimulating. Precisely because our line of work can be so relentlessly solitary —
especially for those of us housed in small departments — we very much appreciated the opportunity
to engage in research and pedagogy with another faculty member.

11



The biggest problem we faced with LSC was the short duration of the summer research experi-
ence. Given our starting point for the project, ten weeks simply was not enough time to make the
technical progress we would like to have made. This was due to several factors. First, the amount of
time allocated for individual projects was very short. Discounting three weeks for the mini-course,
one week for choosing a project, and one for preparing posters and final papers at the end left
only five weeks of “prime time” research for the students. Moreover, even during these five weeks,
significant time was spent in group activities such as group meetings and reading group.

Second, as already mentioned, the individual research projects did not constitute tidy units of
research that could easily be completed during the summer. Rather, they were sizable chunks of
a larger ongoing collaborative project. We feel that the size and scope of the collaborative project
was necessary to accommodate six students’ individual research projects and a variety of technical
interests. However, a drawback of decomposing the collaborative project into sensible parts was that
the size of those parts made it unlikely for a student to achieve closure on such a part during the
summer.

A third factor was that we did not properly prepare our computing environment prior to the
start of the research experience. An unexpectedly large fraction of our time was spent installing and
understanding GHC, tracking down the source code for various fusion implementations, and getting
these implementations running. In many cases, individual progress was blocked because some part
of the computational environment was not working as expected. The fact that LSC began just two
days after the end the semester contributed to the lack of preparation, but we should have better
anticipated these sorts of difficulties. Learning from past missteps, we will be careful in the future
to have as much of the necessary software as possible running before our research experiences begin.
Doing so for LSC may not have completely alleviated the time crunch we faced, but we feel it would
have helped to large degree. Most importantly, it would have freed us to spend the time we did have
together with our students focused on fusion, rather than on the delicacies of software installation.

The time crunch we faced had consequences for the structure of LSC. For example, although
we found reading group a particularly good device for helping students develop the ability to work
through research papers, for establishing a common technical vocabulary, and for generating a body
of shared knowledge and experience, it was very time-intensive. In fact, reading group consumed
the equivalent of nearly one full day’s work each week. Toward the end of the research experience
we reluctantly discontinued it in favor of devoting the little remaining time we had available to us to
the project itself. We similarly dropped our initial plan to have the students give oral presentations
of their work to the group at the end of the summer, but given the emphasis we had placed on
oral and written communication throughout the research experience, and given that each student
presented their work orally at Wellesley’s summer research poster session, we did not consider this
particularly problematic.

It is worth remarking that, even had we made more technical progress during the summer, work
on the collaborative project would still be continuing. But because the students’ research was really
just getting going when the intensive research experience ended, it has turned out to be important
that all but one of them are willing to continue their projects into this academic year. Even were
this not the case, we suspect that having the same students involved in the same research project
for two summers, and perhaps during the academic years as well, would be ideal. Regardless, it may
be wise to prepare students for the summer research experiences in specially tailored independent
study courses during the preceding academic year, and to follow up with independent studies or
theses whenever possible.

We feel that LSC successfully enabled each of our students to make the transition from coursework
to research. Each student was able to acquire the technical expertise required to make progress
on his or her project, as well as to demonstrate the expertise acquired both orally (in individual
conversations with us and one another, in their contributions to reading group and group meetings,
and with the public during the wrap-up poster session) and in writing (in their notebooks and formal
project documents). Nevertheless, some students made more significant progress on their projects

12



than did others. In some cases, lack of student progress was largely attributable to our failure to
make the necessary tools available to them early enough in the summer; in others, student initiative
was lacking. In addition, half of our students lived off campus, and this made it somewhat difficult
for them to join us in working late in the way that we had imagined.

Despite this, all of the students exhibited a reasonable degree of commitment to the project, and
some were very enthusiastic indeed. All worked independently when appropriate, and yet seemed
always aware of themselves as contributors to a collaborative effort. We are immensely pleased that
such a strong spirit of camaraderie, inspired by the work at hand, seemed to infuse LSC; certainly
there was no shortage of technically-based jokes or good-natured teasing. The sense of intellectual
community we tried so hard to foster really did blossom and assume a life of its own.

7 Recommendations

Based on our experiences leading LSC, we offer the following recommendations to colleagues con-
sidering undertaking similar undergraduate research initiatives at other small colleges.

7.1 Collaborative Research

In many areas of computer science — and certainly in the area of programming languages — modern
research projects are rarely solitary efforts. Instead, a project will typically concentrate the efforts
of a critical mass of researchers, each of whom is pursuing one or more aspects of it. Many benefits
derive from such collaborative research. For instance, groups of researchers can collectively undertake
projects whose size and scope are beyond the reach of any one individual. In addition, the different
experiences, perspectives, and expertise that individual researchers bring to collaborative projects
can be crucial to their success. This is especially the case for modern research projects in computer
science, since these are increasingly likely to span several traditional subdisciplines. Moreover,
researchers working in collaboration with others reap the benefits — most notably, learning from and
teaching one another — of involvement in what is effectively a small, focused research community.

One important aspect of undergraduate research experiences is that they offer students a sense
of what it is like to pursue research in their chosen disciplines. Since research in graduate school
and professional settings is increasingly likely to involve collaborative research, it is important for
undergraduate research experiences to reflect this. We therefore recommend structuring undergrad-
uate research experiences around collaborative projects capable of accommodating groups of faculty
and groups of students whenever possible.

Even when it is not possible to involve more than one faculty member in a project, many of the
benefits of collaborative research can still be attained by involving a group of students. It is essential
that new researchers learn to share ideas with one another, to mentor one another, and to distill
and solve problems together. In our view, the kind of student/student peer mentoring relationships
to which these interations give rise are every bit as important as the highly touted faculty/student
mentoring relationship.

The broad scope and large number of participants in collaborative research projects make their
persistence beyond a single summer research experience quite likely. As with LSC, this can provide
researchers an opportunity to work on problems which cannot be completed within a ten-week
time frame. Longer-term involvement with a research project helps students to develop a better
understanding of the intricacies of their projects, as well as to make more progress toward their
completion. It also helps students understand the kind of commitment required to successfully
pursue research. Finally, long-term involvement with a research project helps build community bonds
between participants. Ideally, a long-lasting project can assume a life of its own, surviving even the
student turnover inherent at undergraduate institutions which do not have graduate programs.

13



7.2 Cross-Institutional Experiences

Our experiences with LSC have convinced us that cross-institutional undergraduate research col-
laborations offer many rewards for both students and faculty. This is in large part because such
experiences amplify the “community” benefits of collaborative projects discussed above. We strongly
recommend that colleagues planning undergraduate research experiences in computer science explore
possible collaborations with like-minded faculty in their areas, especially with those in their geo-
graphic areas.

Faculty who are fortunate enough to have departmental colleagues with whom they share research
interests should consider collaborating with them. Some of the very best aspects of LSC derived
from having more than one faculty member involved in the same project. But although working
with colleagues from one’s home institution can simplify many logistical problems associated with
cross-institutional research experiences, it is still worth looking outside the home institution for
collaborative partners. Faculty and students from other schools often bring with them different
backgrounds and cultures, making Alberts’ “collisions of ideas” all the more likely.

Cross-institutional collaborations require careful planning. It is important for the collaborating
faculty to meet — ideally several times and far in advance of the planned research experience —
to iron out as many details as possible. Finding common intellectual and pedagogical ground and
planning an experience well-suited to faculty and students from all participating institutions can take
a significant amount of time. Securing funding for both faculty and student researchers is also a
high priority. In our case, we already had some funding at our disposal when LSC was conceived but
we still needed to seek out additional student stipends. It is worth noting that a number of funding
agencies encourage or have special programs supporting cross-instititional collaborative research.

Although it might be possible to organize a collaborative research experience based on frequent
visits between groups of researchers stationed at their home institutions, we strongly recommend
that all participants be present at the same location during the core part of the experience. Physical
proximity is a key factor in establishing a sense of camaraderie and intellectual community. Of
course, it also raises a number of challenges, such as choosing a host institution and finding housing
for all participants near the host institution. We are nevertheless confident that the benefits of
physical proximity are well worth its costs.

7.3 Preparation

Successful undergraduate research experiences require significant planning and preparation. It is
necessary to work out logistical details — such as funding, timing, housing, and number of partici-
pants — well in advance of the planned experience. Designing a project of suitable scope and focus,
and which is accessible to undergraduates, also requires careful consideration. We have found the
kinds of projects highlighted in Section 3 particularly amenable to undergraduate research.

Early selection of student participants is extremely important to the success of a research ex-
perience. This is in part because the backgrounds of the particular individuals to be involved in a
research project must be taken into account when designing it, and in part because high-paying jobs
often lure the best and brightest students away from research experiences. One way to counteract
the latter is to identify promising students early in their undergraduate careers and prime them for
eventual participation in research experiences through relevant coursework and independent study
projects. Since time in a typical summer research experience is short, helping students gain facility
with important concepts and tools before the experience begins is a worthwhile endeavor.

In LSC we learned the hard way that appropriate support stuctures — especially software appli-
cations and program development environments — should be in place before the start of a research
experience. Again, time during a research experience is extremely valuable, and it should not be
squandered on software installation or other tasks that divert attention from the research itself.

14



7.4 Activities

Although the activities appropriate for any particular research experience depend crucially on the na-
ture of the project around which it is organized and the abilities and backgrounds of its participants,
there are some activities whose benefits are fairly universal. Frequent meetings between faculty and
students are certainly an essential part of an undergraduate research experience. Additionally, we
recommend having students produce several different artifacts — indeed, several different kinds of ar-
tifacts — during a research experience. Students might, for example, be required to keep notebooks
or design journals, write papers which summarize the research they have undertaken and the results
they have obtained, and/or present posters or give oral presentations describing their research. We
find that the production of such artifacts encourages students to reflect on their experiences, and
also helps them monitor their research progress. It is essential that the artifacts produced evolve
over the entire duration of the research experience and that their production becomes an integral
aspect of it, rather than just being generated in a mad dash at the end. Faculty members can
emphasize the importance of the artifacts — both to the students’ development as researchers and
to the future of the project itself — by offering frequent, plentiful, and thoughtful feedback on them.

We believe that several other of the activities we experimented with in LSC would be worthwhile
for many collaborative projects. A mini-course can provide an excellent opportunity for researchers
to learn to work with one another, as well as to ensure that everyone is “on the same page” with
regard to the project. On the other hand, such a course necessarily takes time away from individual
research, and so its length and scope must be carefully considered.

The benefits and drawbacks of reading groups are similar to those of mini-courses. But although
reading technical papers is a skill that is essential to the research enterprise, it is very seldom taught.
A reading group provides a forum in which those who have experience reading technical papers can
mentor others in this critical skill. Reading groups can, of course, be used effectively outside the
context of a collaborative research project. They may even be used to good effect in situations in
which there are only loose connections between individuals’ independent research projects.

Collaborative research experiences are enhanced by various kinds of group meetings. Regularly
scheduled formal group meetings provide opportunities for researchers to report on progress made,
to seek the advice and encouragement of other group members, and to learn about the work of other
members of the group. Preparing to report on progress at group meetings requires that students
develop the ability to describe their research activities to others. To build intellectual community and
encourage camaraderie, it is also important to promote informal activities involving group members.
In LSC, we often used food as a social lubricant to bring project participants together for both
technical and non-technical discussions.

7.5 Long-Term Projects

Undergraduate research experiences are often limited to eight-to-twelve week periods during the
summer. However, we have argued in this paper that there are advantages to designing longer-lived
research projects that do not strictly adhere to this convention. The standard model for under-
graduate research experiences is, of course, valuable, but it does not tell the whole story. We have
found that this model can fruitfully be enhanced by engaging students in a variety of additional
research-related activities before, during, and after the summer research experience. Such activi-
ties might include advanced courses, independent study projects, academic-year research projects,
research talks, workshops, and conferences. We are convinced that extending the standard model
for undergraduate research is essential if we are to make available to our students more varied and
more realistic opportunities to do science.

15



Acknowledgments

We heartily thank the six students who participated in Lumberjack Summer Camp: Kirsten Cheva-
lier, Nausheen Eusuf, Kate Golder, Holly Muenchow, P. Chris Staecker, and Aaron Wheeler. Our
gratitude also goes to those committees and agencies that funded the research experience, to Welles-
ley College for hosting it, and to those faculty involved in the Wellesley Science Center summer
research program who were kind enough to include us and our students in their activities. Patricia
Johann is supported, in part, by the National Science Foundation under grant CCR-9900510, and
was on the faculty at Bates College at the time of LSC. Franklyn Turbak is supported, in part, by
the National Science Foundation under grant CCR-9804053.

16



References

Bard, G., Berque, D., & Dershem, H. (1996). Finding and developing research experiences for
undergraduates in the small college setting. The Journal of Computing in Small Colleges, 12(2),
94–95.

The Boyer Commission on Educating Undergraduates in the Research University. Reinventing
undergraduate education: A blueprint for America’s research universities. Available at
http://notes.cc.sunysb.edu/Pres/boyer.nsf.

Chitil, O. (1999). Type inference builds a short cut to deforestation. In Proceedings of the 1999
ACM SIGPLAN International Conference on Functional Programming, 249–260, ACM.

Dima, C., Parent, G., Briggs, A., & Dickerson, M. (1998). Experimental analysis of polygon
placement problems: An undergraduate research project in computational geometry. The Journal
of Computing in Small Colleges, 13(5), 13–24.

Hu, Z., Iwasaki, H., & Takeichi, M. (1996). Deriving structural hylomorphisms from recursive
definitions. In Proceedings of the 1996 ACM SIGPLAN International Conference on Functional
Programming, 73–82, ACM.

Hughes, R. J. M. (1990). Why functional programming matters. In David Turner, editor,
Research Topics in Functional Programming, 17–42, Addison Wesley.

Koelzer, J. G. (1997). Undergraduate research in computer science at a small college: A case
study. The Journal of Computing in Small Colleges, 12(4), 329–332.

Lopez, A. M. & Messa, K. C. (1994). An undergraduate research program in multi-paradigm
software design. In Selected papers of the twenty-fifth annual SIGCSE Symposium on Computer
Science Education, 271–275, ACM.

Launchbury, J. & Sheard, T. (1995). Warm fusion: Deriving build-catas from recursive defini-
tions. In FPCA ’95, Conference on Functional Programming Languages and Computer Architecture,
314–323, ACM.

Németh, L. (2000). Catamorphism Based Program Transformations for Non-Strict Functional
Languages. PhD thesis draft, Department of Computing Science, University of Glasgow.

Onoue, Y., Hu, Z., Iwasaki, H., & Takeichi, M. (1997). A calculational fusion system HYLO. In
IFIP TC 2 Working Conference on Algorithmic Languages and Calculi, 76–106, Chapman & Hall.

Partain, W. (1992). The nofib benchmark suite of Haskell programs. In Glasgow Workshop on
Functional Programming, 178–194, Springer-Verlag.

Passos, N. L. (1999). Implementing a true undergraduate research experiment. The Journal of
Computing in Small Colleges, 14(3), 86–94.

Sturm, D. & Glassman, R. (1996). Mentored undergraduate projects: A research program for
women in computer science. The Journal of Computing in Small Colleges, 12(2), 19–23.

Tesser, H., Al-Haddad, H., McClaugherty, S. & Frame, J. (1998). Experience with an under-
graduate research project: Software reuse and interoperability study. The Journal of Computing in
Small Colleges, 14(1), 86–95.

Wadler, P. (1990). Deforestation: Transforming programs to eliminate trees. Theoretical Com-
puter Science, 73, 231–248.

17


