
Faithful Translations between
Polyvariant Flows and Polymorphic Types

Torben Amtoft1 and Franklyn Turbak2 �

1 tamtoft@bu.edu, Boston University, Boston MA 02215, USA
2 fturbak@wellesley.edu, Wellesley College, Wellesley MA 02481, USA

Abstract. Recent work has shown equivalences between various type
systems and flow logics. Ideally, the translations upon which such equiv-
alences are based should be faithful in the sense that information is not
lost in round-trip translations from flows to types and back or from types
to flows and back. Building on the work of Nielson & Nielson and of Pals-
berg & Pavlopoulou, we present the first faithful translations between a
class of finitary polyvariant flow analyses and a type system supporting
polymorphism in the form of intersection and union types. Addition-
ally, our flow/type correspondence solves several open problems posed
by Palsberg & Pavlopoulou: (1) it expresses call-string based polyvari-
ance (such as k-CFA) as well as argument based polyvariance; (2) it
enjoys a subject reduction property for flows as well as for types; and (3)
it supports a flow-oriented perspective rather than a type-oriented one.

1 Introduction

Type systems and flow logic are two popular frameworks for specifying program
analyses. While these frameworks seem rather different on the surface, both de-
scribe the “plumbing” of a program, and recent work has uncovered deep connec-
tions between them. For example, Palsberg and O’Keefe [PO95] demonstrated
an equivalence between determining flow safety in the monovariant 0-CFA flow
analysis and typability in a system with recursive types and subtyping [AC93].
Heintze showed equivalences between four restrictions of 0-CFA and four type
systems parameterized by (1) subtyping and (2) recursive types [Hei95].

Because they merge flow information for all calls to a function, monovari-
ant analyses are imprecise. Greater precision can be obtained via polyvariant
analyses, in which functions can be analyzed in multiple abstract contexts. Ex-
amples of polyvariant analyses include call-string based approaches, such as
k-CFA [Shi91,JW95,NN97], polymorphic splitting [WJ98], type-directed flow
analysis [JWW97], and argument based polyvariance, such as Schmidt’s anal-
ysis [Sch95] and Agesen’s cartesian product analysis [Age95]. In terms of the
flow/type correspondence, several forms of flow polyvariance appear to cor-
respond to type polymorphism expressed with intersection and union types
� Both authors were supported by NSF grant EIA–9806747. This work was conducted
as part of the Church Project (http://www.cs.bu.edu/groups/church/).

[Ban97,WDMT97,DMTW97,PP99]. Intuitively, intersection types are finitary
polymorphic types that model the multiple analyses for a given abstract closure,
while union types are finitary existential types that model the merging of ab-
stract values where flow paths join. Palsberg and Pavlopoulou (henceforth P&P)
were the first to formalize this correspondence by demonstrating an equivalence
between a class of flow analyses supporting argument based polyvariance and a
type system with union and intersection types [PP99].

If type and flow systems encode similar information, translations between
the two should be faithful, in the sense that round-trip translations from flow
analyses to type derivations and back (or from type derivations to flow analyses
and back) should not lose precision. Faithfulness formalizes the intuitive notion
that a flow analysis and its corresponding type derivation contain the same infor-
mation content. Interestingly, neither the translations of Palsberg and O’Keefe
nor those of P&P are faithful. The lack of faithfulness in P&P is demonstrated
by a simple example. Let e= (λ1x.succ x)@ ((λ2y.y)@ 3), where we have labeled
two program points of interest. Consider an initial monovariant flow analysis in
which the only abstract closure reaching point 1 is v1 = (λx.succ x, []) and the
only one reaching point 2 is v2 = (λy.y, []). The flow-to-type translation of P&P
yields the expected type derivation:

· · ·
[] � λ1x.succ x : int → int

· · ·
[] � λ2y.y : int → int · · ·

[] � (λ2y.y)@ 3 : int

[] � (λ1x.succ x)@ ((λ2y.y)@ 3) : int

However, P&P’s type-to-flow translation loses precision by merging into a
single set all abstract closures associated with the same type in a given derivation.
For the example derivation above, the type int → int translates back to the
abstract closure set V = {v1, v2}, yielding a less precise flow analysis in which
V flows to both points 1 and 2. In contrast, Heintze’s translations are faithful.
The undesirable merging in the above example is avoided by annotating function
types with a label set indicating the source point of the function value. Thus,

λ1x.succ x has type int
{1}→ int while λ2y.y has type int

{2}→ int.
In this paper, we present the first faithful translations between a broad class

of polyvariant flow analyses and a type system with polymorphism in the form
of intersection and union types. The translations are faithful in the sense that a
round-trip translation acts as the identity for canonical types/flows, and other-
wise canonicalizes. In particular, our round-trip translation for types preserves
non-recursive types that P&P may transform to recursive types. We achieve
this result by adapting the translations of P&P to use a modified version of the
flow analysis framework of Nielson and Nielson (henceforth N&N) [NN97]. As
in Heintze’s translations, annotations play a key role in the faithfulness of our
translations: we (1) annotate flow values to indicate the sinks to which they flow,
and (2) annotate union and intersection types with component labels. These an-
notations can be justified independently of the flow/type correspondence.

Additionally, our framework solves several open problems posed by P&P:

1. Unifying P&P and N&N: Whereas P&P’s flow specification can readily han-
dle only argument based polyvariance, N&N’s flow specification can also
express call-string based polyvariance. So our translations give the first type
system corresponding to k-CFA analysis where k ≥ 1.

2. Subject reduction for flows: We inherit from N&N’s flow logic the property
that flow information valid before a reduction step is still valid afterwards.
In contrast, P&P’s flow system does not have this property.

3. Letting “flows have their way”: P&P discuss mismatches between flow and
type systems that imply the need to choose one perspective over the other
when designing a translation between the two systems. P&P always let types
“have their way”; for example they require analyses to be finitary and to
analyze all closure bodies, even though they may be dead code. In contrast,
our design also lets flows “have their way”, in that our type system does not
require all subexpressions to be analyzed.

Due to space limitations, the following presentation is necessarily somewhat
dense. Please see the companion technical report [AT00] for a more detailed
exposition with additional explanatory text, more examples, and proofs.

2 The Language

We consider a language whose core is λ-calculus with recursion:

ue ∈ UnLabExpr ::= z | µf.λx.e | e@ e | c | succ e | if0 e then e else e | . . .
e ∈ LabExpr ::= uel l ∈ Lab z ∈ Var ::= x | f x ∈ NVar f ∈ RVar

µf.λx.e denotes a function with parameter x which may call itself via f ; λx.e is
a shorthand for µf.λx.e where f does not occur in e. Recursive variables (ranged
over by f) and non-recursive variables (ranged over by x) are distinct; z ranges
over both. There are also integer constants c, the successor function, and the
ability to test for zero. Other constructs might be added, e.g., let1.

All subexpressions have integer labels. We often write labels on constructors
(e.g., write λlx.e for (λx.e)l and e1 @l e2 for (e1 @ e2)

l).

Example 1. The expression P1 ≡ (λ6g.((g3 @2 g4)@1 05))@0 (λ8x.x7) shows the
need for polyvariance: λ8x.x7 is applied both to itself and to an integer.

Like N&N, but unlike P&P, we use an environment-based small step se-
mantics. This requires incorporating N&N’s bind and close constructs into our
expression syntax. An expression not containing bind or close is said to be pure.
Every abstraction body must be pure. A program P is a pure, closed expression
where each label occurs at most once within P ; thus each subexpression of P (∈
SubExprP) denotes a unique “position” within P .

1 Let-polymorphism can be simulated by intersection types.

3 The Type System

Types are built from base types, function types, intersection types, and union
types as follows (where ITag and UTag are unspecified):

t ∈ ElementaryType ::= int |
∧

i∈I{Ki : ui → u′
i}

u ∈ UnionType ::=
∨

i∈I{qi : ti}
K ∈ P(ITag) k ∈ ITag q ∈ UTag

Such grammars are usually interpreted inductively, but this one is to be viewed
co-inductively. That is, types are regular (possibly infinite) trees formed accord-
ing to the above specification. Two types are considered equal if their infinite
unwindings are equal (modulo renaming of the index sets I).

An elementary type t is either an integer int or an intersection type of the
form

∧
i∈I{Ki : ui → u′

i}, where I is a (possibly empty) finite index set, each ui

and u′
i is a union type, and the Ki’s, known as I-tagsets, are non-empty disjoint

sets of I-tags. We write dom(t) for ∪i∈IKi. Intuitively, if an expression e has
the above intersection type then for all i ∈ I it holds that the expression maps
values of type ui into values of type u′

i.
A union type u has the form

∨
i∈I{qi : ti}, where I is a (possibly empty)

finite index set, each ti is an elementary type, and the qi are distinct U-tags. We
write dom(u) for ∪i∈I{qi}, and u.q= t if there exists i ∈ I such that q= qi and
t= ti. We assume that for all i ∈ I it holds that ti = int iff qi = qint where qint

is a distinguished U-tag. Intuitively, if an expression e has the above union type
then there exists an i ∈ I such that e has the elementary type ti.

If I = {1 · · ·n} (n ≥ 0), we write
∨
(q1 : t1, · · · , qn : tn) for

∨
i∈I{ti : qi} and

write
∧
(K1 : u1 → u′

1, · · · ,Kn : un → u′
n) for

∧
i∈I{Ki : ui → u′

i}. We write
uint for

∨
(qint : int).

The type system is much as in P&P except for the presence of tags. These
annotations serve as witnesses for existentials in the subtyping relation and play
crucial roles in the faithfulness of our flow/type correspondence. U-tags track
the “source” of each intersection type and help to avoid the precision-losing
merging seen in P&P’s type-to-flow translation (cf. Sect. 1). I-tagsets track the
“sinks” of each arrow type and help to avoid unnecessary recursive types in the
flow-to-type translation.

3.1 Subtyping

We define an ordering ≤ on union types and an ordering ≤∧ on elementary types,
where u≤u′ means that u′ is less precise than u and similarly for ≤∧. To capture
the intuition that something of type t1 has one of the types t1 or t2, ≤ should
satisfy

∨
(q1 : t1)≤

∨
(q1 : t1, q2 : t2). For ≤∧, we want to capture the following

intuition: a function that can be assigned both types u1 → u′
1 and u2 → u′

2

also (1) can be assigned one of them2 and (2) can be assigned a function type

2 I.e., for i ∈ {1, 2},
∧
(K1 : u1 → u′

1, K2 : u2 → u′
2) ≤∧

∧
(Ki : ui → u′

i).

that “covers” both3. The following mutually recursive specification of ≤ and ≤∧
formalizes these considerations:

∨
i∈I{qi : ti}≤

∨
j∈J{q′j : t′j}

iff for all i ∈ I there exists j ∈ J such that qi = q′j and ti ≤∧ t′j

int≤∧ int
∧

i∈I{Ki : ui → u′
i}≤∧

∧
j∈J{K ′

j : u′′
j → u′′′

j }
iff for all j ∈ J there exists I0 ⊆ I such that

K ′
j =∪i∈I0Ki and ∀i ∈ I0. u

′
i ≤u′′′

j and
∀q ∈ dom(u′′

j).∃i ∈ I0. q ∈ dom(ui) and u′′
j .q≤∧ ui.q.

Observe that if t≤∧ t′, then dom(t′)⊆ dom(t). The above specification is not yet
a definition of ≤ and ≤∧, since types may be infinite. However, it gives rise to a
monotone functional on a complete lattice whose elements are pairs of relations;
≤ and ≤∧ are then defined as the (components of) the greatest fixed point of
this functional. Coinduction yields:

Lemma 1. The relations ≤ and ≤∧ are reflexive and transitive.

Our subtyping relation differs from P&P’s in several ways. The U-tags and
I-tags serve as “witnesses” for the existential quantifiers present in the specifica-
tion, reducing the need for search during type checking. Finally, our ≤ seems
more natural that the P&P’s ≤1 , which is not a congruence and in fact has the
rather odd property that if ∨(T1, T2)≤1 ∨(T3, T4) (with the Ti’s all distinct),
then either ∨(T1, T2)≤1 T3 or ∨(T1, T2)≤1 T4.

3.2 Typing Rules

A typing T for a program P is a tuple (P, ITT ,UTT , DT), where ITT is a finite
set of I-tags, UTT is a finite set of U-tags, and DT is a derivation of [] � P : u
according to the inference rules given in Fig. 1. In a judgement A � e : u, A is
an environment with bindings of the form [z �→ u]; we require that all I-tags in
DT belong to ITT and that all U-tags in DT belong to UTT .

Subtyping has been inlined in all of the rules to simplify the type/flow cor-
respondence. The rules for function abstraction and function application are
both instrumented with a “witness” that enables reconstructing the justification
for applying the rule. In [app]w

@
, the type of the operator is a (possibly empty)

union, all components of which have the expected function type but the I-tagsets
may differ; the app-witness w@ is a partial mapping from dom(u1) that given
q produces the corresponding I-tagset. In [fun]w

λ

, the function types resulting
from analyzing the body in several different environments are combined into an
intersection type t. This is wrapped into a union type with an arbitrary U-tag q,

3 I.e.,
∧
(K1 : u1 → u′

1, K2 : u2 → u′
2) ≤∧

∧
(K1 ∪ K2 : u12 → u′

12), where any value
having one of the types u′

1 or u′
2 also has type u′

12, and where any value having type
u12 also has one of the types u1 or u2.

[var] A � zl : u if A(z)≤u

[fun](q:t)
∀k ∈ K : A[f 	→ u′′

k , x 	→ uk] � e : u′
k

A � µf.λlx.e : u

if t=
∧

k∈K{{k} : uk → u′
k}

∧
∨
(q : t)≤u

∧ ∀k ∈ K.
∨
(q : t)≤u′′

k

[app]w
@ A � e1 : u1 A � e2 : u2

A � e1 @l e2 : u
if ∀q ∈ dom(u1). u1.q≤∧

∧
(w@(q) : u2 → u)

[con] A � cl : u if uint ≤u

[suc]
A � e1 : u1

A � succ
l e1 : u

if u1 ≤uint ≤u

[if]
A � e0 : u0 A � e1 : u1 A � e2 : u2

A � if0
l e0 then e1 else e2 : u

if u0 ≤uint ∧ u1 ≤u ∧ u2 ≤u

Fig. 1. The typing rules

Ag � g
3 : ux Ag � g

4 : u′
x

Ag � g
3 @2 g

4 : u′
x Ag � 05 : uint

Ag � (g3 @2 g
4)@1 0

5 : uint

[] � λ6
g.((g3 @2 g

4)@1 0
5) : ug

Ax � x
7 : uint A′

x � x
7 : u′

x

[] � λ8
x.x7 : ux

[] � (λ6
g.((g3 @2 g

4)@1 0
5))@0 (λ

8
x.x7) : uint

Fig. 2. A derivation DT1 for the program P1 from Example 1.

which provides a way of keeping track of the origin of a function type (cf. Sects. 1
and 5). Accordingly, the fun-witness wλ of this inference is the pair (q : t). Note
that K may be empty in which case the body is not analyzed.

Example 2. For the program P1 from Ex. 1, we can construct a typing T1 as
follows: ITT1 = {0, 1, 2}, UTT1 = {qx, qg}, and DT1 is as in Fig. 2, where

u′
x=

∨
(qx :

∧
({1} : uint → uint))

ux=
∨
(qx :

∧
({1} : uint → uint, {2} : u′

x → u′
x))

ug=
∨
(qg :

∧
({0} : ux → uint))

Ag= [g �→ ux] Ax= [x �→ uint] A′
x= [x �→ u′

x]

Note that ux≤u′
x, and that ux.qx≤∧

∧
({2} : u′

x → u′
x) so that {qx �→ {2}} is

indeed an app-witness for the inference at the top left of Fig. 2.

The type system in Fig. 1 can be augmented with rules for bind and close
such that the resulting system satisfies a subject reduction property. The sound-
ness of the type system follows from subject reduction, since “stuck” expressions
(such as 7@9) are not typable.

In a typing T for P , for each e in SubExprP there may be several judgements
for e in DT , due to the multiple analyses performed by [fun]. We assign to each

judgement J for e in DT an environment ke (its address) that for all applications
of [fun] in the path from the root of DT to J associates the bound variables with
the branch taken. In DT1 (Fig. 2), the judgement Ax � x7 : uint has address
[x �→ 1] and the judgement A′

x � x7 : u′
x has address [x �→ 2].

The translation in Sect. 5 requires that a typing must be uniform, i.e., the
following partial function AT must be well-defined: AT (z, k)=u iff DT contains
a judgement of the form A � e : u′ with address ke, where ke(z)= k and
A(z)=u. For T1 we have, e.g., AT1(x, 1)=uint and AT1(x, 2)=u′

x.

4 The Flow System

Our system for flow analysis has the form of a flow logic, in the style of N&N.
A flow analysis F for program P is a tuple (P,MemF , CF , ρF , ΦF), whose com-
ponents are explained below (together with some auxiliary derived concepts).

Polyvariance is modeled by mementoes, where a memento (m ∈ MemF)
represents a context for analyzing the body of a function. We shall assume
that MemF is non-empty and finite; then all other entities occurring in F will
also be finite. Each expression e is analyzed wrt. several different memento en-
vironments, where the entries of a memento environment (me ∈ MemEnvF)
take the form [z �→ m] with m in MemF . Accordingly, a flow configuration
(∈ FlowConf F) is a pair (e,me), where FV (e) ⊆ dom(me).

The goal of the flow analysis is to associate a set of flow values to each
configuration, where a flow value (v ∈FlowValF) is either an integer Int or of the
form (ac,M), where ac (∈AbsClosF) is an abstract closure of the form (fn,me)
with fn a function µf.λx.e and FV (fn)⊆ dom(me), and where M ⊆MemF . The
M component can be thought of a superset of the “sinks” of the abstract closure
ac, i.e. the contexts in which it is going to be applied. Our flow values differ from
N&N’s in two respects: (i) they do not include the memento that corresponds
to the point of definition; (ii) they do include the mementoes of use (the M
component), in order to get a flow system that is almost isomorphic to the
type system of Sect. 3. This extension does not make it harder to analyze an
expression, since one might just let M =MemF everywhere.

A flow set V (∈FlowSetF) is a set of flow values, with the property that if
(ac,M1)∈V and (ac,M2)∈V thenM1 =M2. We define an ordering on FlowSetF
by stipulating that V1 ≤V V2 iff for all v1 ∈ V1 there exists v2 ∈ V2 such that
v1 ≤v v2, where the ordering ≤v on FlowValF is defined by stipulating that
Int≤v Int and that (ac,M1)≤v (ac,M2) iff M2 ⊆ M1. Note that if V1 ≤V V2 then
V2 is obtained from V1 by adding some “sources” and removing some “sinks” (in
a sense moving along a “flow path” from a source to a sink), so in that respect
the ordering is similar to the type ordering in [WDMT97].

ΦF is a partial mapping from (LabsP ×MemEnvF)×AbsClosF to P(MemF),
where LabsP is the set of labels occurring in P . Intuitively, if the abstract closure
ac in the context me is applied to an expression with label l, then ΦF ((l,me), ac)
denotes the actual sinks of ac.

CF is a mapping from LabsP × MemEnvF to (FlowSetF)⊥. Intuitively, if
CF (l,me)=V (�= ⊥) and CF is valid (defined below) for the flow configuration
(uel,me) then all semantic values that uel may evaluate to in a semantic en-
vironment approximated by me can be approximated by the set V . Similarly,
ρF (z,m) approximates the set of semantic values to which z may be bound when
analyzed in memento m.

Unlike N&N, we distinguish between CF (l,me) being the empty set and being
⊥. The latter means that no flow configuration (uel,me) is “reachable”, and so
there is no need to analyze it. The relation ≤V on FlowSetF is lifted to a relation
≤V on FlowSetF ⊥.

Example 3. For the program P1 from Ex. 1, a flow analysis F1 with MemF1 =
{0, 1, 2} is given below. We have named some entities (note that vx≤v v

′
x):

meg= [g �→ 0] acg=(λg.· · ·, []) vg=(acg, {0})
mex1 = [x �→ 1] acx=(λx.x7, []) v′x=(acx, {1})
mex2 = [x �→ 2] vx=(acx, {1, 2})

CF1 and ρF1 are given by the entries below (all other are ⊥):

{vg} = CF1(6, [])
{Int} = ρF1(x, 1) = CF1(7,mex1) = CF1(5,meg) = CF1(1,meg) = CF1(0, [])
{v′x} = ρF1(x, 2) = CF1(7,mex2) = CF1(4,meg) = CF1(2,meg)
{vx} = ρF1(g, 0) = CF1(3,meg) = CF1(8, [])

Thus (g3 @2 g4)@1 05 is analyzed with g bound to 0, and x7 is analyzed twice:
with x bound to 1 and with x bound to 2. Accordingly, ΦF1 is given by

ΦF1((8, []), acg) = {0}, ΦF1((5,meg), acx) = {1}, ΦF1((4,meg), acx) = {2}.

4.1 Validity

Of course, not all flow analyses give a correct description of the program being
analyzed. To formulate a notion of validity, we define a predicate F |=me e
(to be read: F analyzes e correctly wrt. the memento environment me), with
(e,me) ∈ FlowConf F . The predicate must satisfy the specification in Fig. 3,
which gives rise to a monotone functional on the complete lattice P(FlowConf F);
following the convincing argument of N&N, we define F |=me e as the greatest
fixed point of this functional so as to be able to cope with recursive functions.

In [fun], we deviate from N&N by recording me, rather than the restriction
of me to FV (µf.λx.e0). As in P&P, this facilitates the translations to and from
types. In [app], the set M corresponds to P&P’s notion of cover, which in turn
is needed to model the “cartesian product” algorithm of [Age95]. In N&N’s
framework, M is always a singleton {m}; in that case the condition “∀v ∈
CF (l2,me). . . . ” amounts to the simpler “CF (l2,me)≤V ρF (x,m)”.

By structural induction in uel we see that if F |=me uel then CF (l,me) �= ⊥.
We would also like the converse implication to hold:

[var] F |=me zl iff ⊥ = ρF (z, me(z)) ≤V CF (l, me)

[fun] F |=me µf.λlx.e0 iff {((µf.λx.e0, me),MemF)}≤V CF (l, me)

[app] F |=me ue1
l1 @l ue2

l2 iff

CF (l, me) = ⊥ ∧ F |=me ue1
l1 ∧ F |=me ue2

l2 ∧
∀(ac0, M0)∈CF (l1, me)

let M =ΦF ((l2, me), ac0) and (µf.λx.ue0
l0 , me0)= ac0 in

M ⊆ M0 ∧ ∀v ∈ CF (l2, me).∃m ∈ M. {v}≤V ρF (x, m) ∧
∀m ∈ M : F |=me0[f,x �→m] ue0

l0 ∧
CF (l0, me0[f, x 	→ m])≤V CF (l, me) ∧
ρF (x, m) = ⊥ ∧ {(ac0,MemF)}≤V ρF (f, m)

[con] F |=me cl iff Int ∈ CF (l, me)

[suc] F |=me succl e1 iff F |=me e1 ∧ Int ∈ CF (l, me)

[if] F |=me if0l e0 then ue1
l1 else ue2

l2 iff

F |=me e0 ∧ F |=me ue1
l1 ∧ F |=me ue2

l2 ∧
CF (l1, me)≤V CF (l, me) ∧ CF (l2, me)≤V CF (l, me)

Fig. 3. The flow logic

Definition 1. Let a flow analysis F for P be given. We say that F is valid iff
(i) F |=[] P ; (ii) whenever e=uel ∈SubExprP with (e,me)∈FlowConf F and
CF (l,me) �= ⊥ then F |=me e.

Using techniques as in N&N, we can augment Fig. 3 with rules for bind and
close and then prove a subject reduction property for flows which for closed E
reads: if E reduces to E′ in one evaluation step and F |=[] E then F |=[] E′.

So far, even for badly behaved programs like P =7@9 it is possible (just as
in N&N) to find a F for P such that F is valid. Since our type system rejects
such programs, we would like to filter them out:

Definition 2. Let a flow analysis F for P be given. We say that F is safe
iff for all uel in SubExprP and for all me it holds: (i) if ue=ue1

l1 @ e2 then
Int /∈ CF (l1,me); (ii) if ue= succ ue1

l1 then v ∈ CF (l1,me) implies v= Int; (iii)
if ue= if0 ue0

l0 then e1 else e2 then v ∈ CF (l0,me) implies v= Int.

Example 4. Referring back to Example 3, it clearly holds that F1 is safe, and it
is easy (though a little cumbersome) to verify that F1 is valid.

4.2 Taxonomy of Flow Analyses

Two common categories of flow analyses are the “call-string based” (e.g., [Shi91])
and the “argument-based” (e.g., [Sch95,Age95]). Our descriptive framework can
model both approaches (which can be “mixed”, as in [NN99]).

A flow analysis F for P such that F is valid is in CallStringP
β , where β is a

mapping from LabsP×MemEnvF intoMemF , iff whenever ΦF ((l2,me), ac) is de-

fined it equals {β(l,me)} where l is such that4 e1 @l ue2
l2 ∈SubExprP . All k-CFA

analyses fit into this category: for 0-CFA we take MemF = {•} and β(l,me)= •;
for 1-CFA we take MemF =LabsP and β(l,me)= l; and for 2-CFA (the gener-
alization to k > 2 is immediate) we take MemF =LabsP ∪ (LabsP ×LabsP) and
define β(l,me) as follows: let it be l if me= [], and let it be (l, l1) if me takes
the form me′[z �→ m] with m either l1 or (l1, l2).

A flow analysis F for P such that F is valid is in ArgBasedP
α iff for all non-

recursive variables x and mementoes m it holds that whenever ρF (x,m) �= ⊥
then εV (ρF (x,m))=α(m) where εV removes the M component of a flow value.
For this kind of analysis, a memento m essentially denotes a set of abstract
closures. To more precisely capture specific argument-based analyses, such as
[Age95] or the type-directed approach of [JWW97], we may impose further de-
mands on α.

Example 5. The flow analysis F1 is a 1-CFA and also in ArgBasedP1
α , with α(0)=

α(2)= {acx} and α(1)= {Int}.

Given a program P , it turns out that for all β the class CallStringP
β , and for

certain kinds of α also the class ArgBasedP
α , contains a least (i.e., most precise)

flow analysis; here the ordering on flow analyses is defined pointwise5 on CF , ρF

and ΦF . This is much as in N&N where for all total and deterministic “instan-
tiators” the corresponding class of analyses contains a least element, something
we cannot hope for since we allow ΦF to return a non-singleton.

4.3 Reachability

For a flow analysis F , some entries may be garbage. To see an example of this,
suppose that µf.λx.uel in SubExprP , and suppose that ρF (x,m) = ⊥ for all
m ∈ MemF . From this we infer that the above function is never called, so for all
me the value of CF (l,me) is uninteresting. It may therefore be replaced by ⊥,
something which is in fact achieved by the roundtrip described in Sect. 7.1.

To formalize a notion of reachability we introduce a set ReachF
P that is in-

tended to encompass6 all entries of CF and ρF that are “reachable” from the root
of P . Let AnalyzesFm(µf.λx.ue0l0 ,me) be a shorthand for CF (l0,me[f, x �→ m]) �=
⊥ and ρF (x,m) �= ⊥ and {((µf.λx.ue0l0 ,me),MemF)}≤V ρF (f,m). We define
ReachF

P as the least set satisfying:

[prg] (P, []) ∈ ReachF
P

[fun]
(
(µf.λlx.ue0

l0 ,me) ∈ ReachF
P ∧ AnalyzesFm(µf.λx.ue0l0 ,me))

)
⇒(

(ue0l0 ,me[f, x �→ m]) ∈ ReachF
P ∧ (x,m) ∈ ReachF

P ∧ (f,m) ∈ ReachF
P

)

4 It is tempting to write “ΦF ((l, me), ac0)” in Fig. 3 (thus replacing l2 by l), but then
subject reduction for flows would not hold.

5 Unlike [JWW97], we do not compare analyses with different sets of mementoes.
6 This is somewhat similar to the reachability predicate of [GNN97].

[app] (e1 @l e2,me) ∈ ReachF
P ⇒ (e1,me) ∈ ReachF

P ∧ (e2,me) ∈ ReachF
P

[suc] (succl e1,me) ∈ ReachF
P ⇒ (e1,me) ∈ ReachF

P

[if] (if0l e0 then e1 else e2,me) ∈ ReachF
P ⇒

(e0,me) ∈ ReachF
P ∧ (e1,me) ∈ ReachF

P ∧ (e2,me) ∈ ReachF
P

Example 6. It is easy to verify that for uel ∈SubExprP1
it holds that CF1(l,me) �=

⊥ iff (uel,me) ∈ ReachF1
P1
, and that ρF1(z,m) �= ⊥ iff (z,m) ∈ ReachF1

P1
.

Lemma 2. Let F be a flow analysis for P such that F is valid. If (uel,me) ∈
ReachF

P then (i) CF (l,me) �= ⊥ and (ii) whenever (z �→ m) ∈ me then (z,m) ∈
ReachF

P holds. Also, if (z,m) ∈ ReachF
P then ρF (z,m) �= ⊥.

5 Translating Types to Flows

Let a uniform typing T for a program P be given. We now demonstrate how to
construct a corresponding flow analysis F =F(T) such that F is valid and safe.
First define MemF as ITT ; note that then an address can serve as a memento
environment. Next we define a function FT that translates from UTypT , that is
the union types that can be built using ITT and UTT , into FlowSetF :

FT (
∨

i∈I{qi : ti}) =
{((µf.λx.e,me),M) | ∃i ∈ I with M = dom(ti):

a judgement for µf.λlx.e occurs in DT with address me
and is justified by [fun](qi:t) where t≤∧ ti}

∪ (if ∃i. such that qi = qint then {Int} else ∅)

The idea behind the translation is that FT (u) should contain all the closures
that are “sources” of elementary types in u; it is easy to trace such closures
thanks to the presence of U-tags. The condition t≤∧ ti is needed as a “sanity
check”, quite similar to the “trimming” performed in [Hei95], to guard against
the possibility that two unrelated entities in DT incidentally have used the same
U-tag qi. As the types of P&P do not contain fun-witnesses, their translation
has to rely solely on this sanity check (at the cost of precision, cf. Sect. 1).

Lemma 3. The function FT is monotone.

Definition 3. With T a typing for P , the flow analysis F =F(T) is given by
(P, ITT , CF , ρF , ΦF), where CF , ρF , and ΦF are defined below:

CF (l,me)=FT (u) iff DT contains a judgement A � uel : u with address me

ρF (z,m)=FT (u) iff u=AT (z,m)
ΦF ((l2,me), (µf.λx.e0,me′))=M iff there exists q such that DT contains

a judgement for µf.λx.e0 at me′ derived by [fun](q:t),
a judgement for e1 @ue2

l2 at me derived by [app]w
@
where w@(q)=M .

Example 7. With terminology as in Examples 2 and 3, it is easy to check that
FT1(u

′
x)= {v′x} and that FT1(ux)= {vx}, and that F1 =F(T1).

We have the following result, where the proof that F is valid is by coinduction.

Theorem 1. With T a uniform typing for P , for F =F(T) it holds that
– F is valid and safe
– (uel,me) ∈ ReachF

P iff CF (l,me) �= ⊥ (for ue∈SubExprP)
– (z,m) ∈ ReachF

P iff ρF (z,m) �= ⊥

6 Translating Flows to Types

Let a flow analysis F for a program P be given, and assume that F is valid
and safe. We now demonstrate how to construct a corresponding uniform typing
T = T (F). First we define ITT as MemF and UTT as AbsClosF ∪ {qint}. Next
we define a function TF that translates from FlowSetF into UTypT ; inspired by
P&P (though the setting is somewhat different) we stipulate:

TF (V)=
∨

v∈V {qv : tv} where
if v=Int then qv = qint and tv = int
if v=(ac,M) with ac=(µf.λx.e0l0 ,me)

then qv = ac
and tv =

∧
m∈M0

{{m} : TF (ρF (x,m)) → TF (CF (l0,me[f, x �→ m]))}
where M0 = {m ∈ M | AnalyzesFm(ac)}.

The above definition determines a unique union type TF (V), since recursion
is “beneath a constructor” and since FlowSetF is finite (ensuring regularity).

Example 8. With terminology as in Examples 2 and 3, it is easy to see—provided
that qx is considered another name for acx—first that TF1({v′x})=u′

x, and then
that TF1({vx})=ux since TF1({vx}).qx can be found as

∧
({1} : TF1(ρF1(x, 1)) → TF1(CF1(7, mex1)), {2} : TF1(ρF1(x, 2)) → TF1(CF1(7, mex2)))

=
∧

({1} : TF1({Int}) → TF1({Int}), {2} : TF1({v′
x}) → TF1({v′

x}))

=
∧

({1} : uint → uint, {2} : u′
x → u′

x).

Note that without the M component in a flow value (ac,M), vx would equal v′x
causing TF1({vx}) to be an infinite type (as in P&P).

Lemma 4. The function TF is monotone.

For z and m such that (z,m) ∈ ReachF
P , we define T ρ

F (z,m) as TF (ρF (z,m))
(by Lemma 2 this is well-defined). And for e=uel and me such that (e,me) ∈
ReachF

P , we construct a judgement T J
F (e,me) as

T A
F (me) � e : TF (CF (l,me))

where T A
F (me) is defined recursively by T A

F ([])= [] and T A
F (me[z �→ m])=

T A
F (me)[z �→ T ρ

F (z,m)] (by Lemma 2 also this is well-defined).

Definition 4. With F a flow analysis for P , the typing T = T (F) is given by
(P,MemF ,AbsClosF ∪{qint}, DT), where DT is defined by stipulating that when-
ever (e,me) is in ReachF

P then DT contains T J
F (e,me), and that T J

F (e′,me′) is
a premise of T J

F (e,me) iff (e,me) ∈ ReachF
P is among the immediate conditions

(cf. the definition of ReachF
P) for (e

′,me′) ∈ ReachF
P .

Example 9. It is easy to check that T1 = T (F1), modulo renaming of the U-tags.

Clearly DT is a tree-formed derivation, and T J
F (e,me) has address me in DT .

We must of course also prove that all judgements in DT are in fact derivable
from their premises using the inference rules in Fig. 1:

Theorem 2. If F is valid and safe then T = T (F) as constructed by Definition 4
is a uniform typing for P . The derivation DT has the following properties:
– if DT contains at address me a judgement for µf.λx.e, it is derived using

[fun]w
λ

where wλ =(ac : (TF ({(ac,MemF)})).ac) with ac=(µf.λx.e,me);
– if DT contains at address me a judgement for e1 @ue2

l2 with the leftmost
premise of the form A � e1 : u1, then it is derived using [app]w

@
where for

all q ∈ dom(u1) it holds that w@(q)=ΦF ((l2,me), q).

7 Round Trips

Next consider the “round-trip” translations F ◦T (from flows to types and back)
and T ◦F (from types to flows and back). Both roundtrips are idempotent7: they
act as the identity on “canonical” elements, and otherwise “canonicalize”.

Example 10. Exs. 7 and 9 show that F ◦ T is the identity on F1 and that T ◦ F
is the identity (modulo renaming of U-tags) on T1. In particular T ◦F does not
necessarily introduce infinite types, thus solving an open problem in P&P.

7.1 Round Trips from the Flow World

F ◦ T filters out everything not reachable, and acts as the identity ever after.

Theorem 3. Assume that F is valid and safe for a program P , and let F ′ =
F(T (F)). Then F ′ is valid and safe for P with MemF ′ =MemF , ReachF ′

P =
ReachF

P , and CF ′(l,me) �= ⊥ iff
(
CF (l,me) �= ⊥ and (uel,me) ∈ ReachF

P

)
in

which case CF ′(l,me)=filterFP (CF (l,me)) where filterFP (V) is given by
{(ac,M ′) | (ac,M) ∈ V and (µf.λx.e0,me0) ∈ ReachF

P where
ac=(µf.λx.e0,me0) and M ′ = {m ∈ M | (e0,me0[f, x �→ m]) ∈ ReachF

P }
∪(if Int ∈ V then {Int} else ∅).

Finally, if F ′′ =F(T (F ′)) then F ′′ =F ′.

7 However, T (F(T (F)))= T (F) does in general not hold.

Clearly everything not reachable may be considered “junk”. However, simple
examples demonstrate that some junk is reachable and is hence not removed by
F◦T . That our flow/type correspondence can faithfully encode such imprecisions
illustrates the power of our framework.

7.2 Round Trips from the Type World

The canonical typings are the ones that are strongly consistent :

Definition 5. A typing T is strongly consistent iff for all u that occur in DT

and for all q ∈ dom(u) with q �= qint the following holds: DT contains exactly one
judgement derived by an application of [fun]w

λ

with wλ taking the form (q : t),
and this t satisfies t≤c

∧ u.q. Here ≤c
∧ is a subrelation of ≤∧, defined by stipulating

that int≤c
∧ int and that

∧
i∈I{Ki : ui → u′

i}≤c
∧

∧
i∈I0

{Ki : ui → u′
i} iff I0 ⊆ I.

Theorem 4. Assume that T is a uniform typing for a program P , and let T ′ =
T (F(T)). Then T ′ is a uniform typing for P with ITT ′ = ITT , and
– DT ′ contains a judgement for e with address ke iff DT contains a judgement
for e with address ke (i.e., the two derivations have the same shape);

– DT ′ is strongly consistent;
– if DT is strongly consistent then DT ′ =DT (modulo renaming of U-tags).

Example 11. Let T be the typing8 of the motivating example put forward in
Sect. 1. Then T is not strongly consistent, but T ′ = T (F(T)) is: the two fun-
witnesses occurring inDT ′ are of the form (qx : uint → uint) and (qy : uint → uint).
Nevertheless, T ′ is still imprecise: both function abstractions are assigned the
union type

∨
(qx : uint → uint, qy : uint → uint).

8 Discussion

Our flow system follows the lines of N&N, generalizing some features while omit-
ting others (such as polymorphic splitting [WJ98], left for future work). That
it has substantial descriptive power is indicated by the fact that it encompasses
both argument-based and call-string based polyvariance. In particular, the flow
analysis framework of P&P can be encoded into our framework. Unlike P&P, our
flow logic has a subject reduction property, inherited from the N&N approach.

The generality of our type system is less clear. The annotation with tags gives
rise to intersection and union types that are not associative, commutative, or
idempotent (ACI). This stands in contrast to the ACI types of P&P, but is similar
to the non-ACI intersection and union types of CIL, the intermediate language of
an experimental compiler that integrates flow information into the type system
[WDMT97,DMTW97]. Indeed, a key motivation of this work was to formalize
the encoding of various flow analyses in the CIL type system. Developing a
translation between the the type system of this paper and CIL is our next goal.
8 We convert it to our framework by substituting uint for int and by substituting∨

(q• :
∧
({•} : uint → uint)) for int → int.

References

[AC93] R. Amadio and L. Cardelli. Subtyping recursive types. ACM Trans. on
Prog. Langs. and Systs., 15(4):575–631, 1993.

[Age95] O. Agesen. The cartesian product algorithm. In Proceedings of ECOOP’95,
Seventh European Conference on Object-Oriented Programming, vol. 952,
pp. 2–26. Springer-Verlag, 1995.

[AT00] T. Amtoft and F. Turbak. Faithful translations between polyvariant flows
and polymorphic types. Technical Report BUCS-TR-2000-01, Comp. Sci.
Dept., Boston Univ., 2000.

[Ban97] A. Banerjee. A modular, polyvariant, and type-based closure analysis. In
ICFP ’97 [ICFP97].

[DMTW97] A. Dimock, R. Muller, F. Turbak, and J. B. Wells. Strongly typed flow-
directed representation transformations. In ICFP ’97 [ICFP97], pp. 11–24.

[GNN97] K. L. S. Gasser, F. Nielson, and H. R. Nielson. Systematic realisation of
control flow analyses for CML. In ICFP ’97 [ICFP97], pp. 38–51.

[Hei95] N. Heintze. Control-flow analysis and type systems. In SAS ’95 [SAS95],
pp. 189–206.

[ICFP97] Proc. 1997 Int’l Conf. Functional Programming, 1997.
[JW95] S. Jagannathan and S. Weeks. A unified treatment of flow analysis in

higher-order languages. In Conf. Rec. 22nd Ann. ACM Symp. Princ. of
Prog. Langs., pp. 393–407, 1995.

[JWW97] S. Jagannathan, S. Weeks, and A. Wright. Type-directed flow analysis for
typed intermediate languages. In Proc. 4th Int’l Static Analysis Symp.,
vol. 1302 of LNCS. Springer-Verlag, 1997.

[NN97] F. Nielson and H. R. Nielson. Infinitary control flow analysis: A collecting
semantics for closure analysis. In Conf. Rec. POPL ’97: 24th ACM Symp.
Princ. of Prog. Langs., pp. 332–345, 1997.

[NN99] F. Nielson and H. R. Nielson. Interprocedural control flow analysis. In
Proc. European Symp. on Programming, vol. 1576 of LNCS, pp. 20–39.
Springer-Verlag, 1999.

[PO95] J. Palsberg and P. O’Keefe. A type system equivalent to flow analysis.
ACM Trans. on Prog. Langs. and Systs., 17(4):576–599, 1995.

[PP98] J. Palsberg and C. Pavlopoulou. From polyvariant flow information to
intersection and union types. In Conf. Rec. POPL ’98: 25th ACM Symp.
Princ. of Prog. Langs., pp. 197–208, 1998. Superseded by [PP99].

[PP99] J. Palsberg and C. Pavlopoulou. From polyvariant flow information to in-
tersection and union types. A substantially revised version of [PP98]. Avail-
able at http://www.cs.purdue.edu/homes/palsberg/paper /popl98.ps.gz.,
Feb. 1999.

[SAS95] Proc. 2nd Int’l Static Analysis Symp., vol. 983 of LNCS, 1995.
[Sch95] D. Schmidt. Natural-semantics-based abstract interpretation. In SAS ’95

[SAS95], pp. 1–18.
[Shi91] O. Shivers. Control Flow Analysis of Higher Order Languages. PhD thesis,

Carnegie Mellon University, 1991.
[WDMT97] J. B. Wells, A. Dimock, R. Muller, and F. Turbak. A typed intermedi-

ate language for flow-directed compilation. In Proc. 7th Int’l Joint Conf.
Theory & Practice of Software Development, pp. 757–771, 1997.

[WJ98] A. Wright and S. Jagannathan. Polymorphic splitting: An effective poly-
variant flow analysis. ACM Trans. on Prog. Langs. and Systs., 20:166–207,
1998.

