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ABSTRACT
The CIL compiler for core Standard ML compiles whole ML
programs using a novel typed intermediate language that
supports the generation of type-safe customized data repre-
sentations. In this paper, we present empirical data compar-
ing the relative efficacy of several different flow-based cus-
tomization strategies for function representations. We de-
velop a cost model to interpret dynamic counts of operations
required for each strategy. In this cost model, customizing
the representation of closed functions gives a 12–17% im-
provement on average over uniform closure representations,
depending on the layout of the closure. We also present
data on the relative effectiveness of various strategies for re-
ducing representation pollution, i.e., situations where flow
constraints require the representation of a value to be less
efficient than it would be in ideal circumstances. For the
benchmarks tested and the types of representation pollu-
tion detected by our compiler, the pollution removal strate-
gies we consider often cost more in overhead than they gain
via enabled customizations. Notable exceptions are selective
defunctionalization, a function representation strategy that
often achieves significant customization benefits via aggres-
sive pollution removal, and a simple form of flow-directed
inlining, in which pollution removal allows multiple func-
tions to be inlined at the same call site.
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1. INTRODUCTION
The efficiency of the object code generated by a compiler

depends to a large extent on the compiler’s ability to select
efficient target language representations of values manipu-
lated by the source program. For modern programming lan-
guages that make heavy use of functions and methods, such
as Standard ML or Java, efficient representation of functions
and function calling protocols is particularly important.
In this paper, we report on the performance of the CIL1

compiler for Standard ML [14, 16]. The CIL compiler is
a type- and flow-directed whole-program compiler which is
designed to generate type-safe function representations that
are customized for the contexts in which they are created
and applied. The compiler employs a novel typed inter-
mediate language [44] that integrates polyvariant flow in-
formation directly in the intermediate representation. The
compiler generates code for the SPARC V8 architecture.
The CIL compiler has the following key features:

• It performs flow-based representation customizations in a
type-directed compiler. In this paper, we restrict our at-
tention to customizing function representations, though
the CIL framework supports customizing any type of
data. The intermediate representations generated within
the compiler are guaranteed to be well-typed with respect
to a type system that encodes flow information. Thus,
we address both efficiency and reliability.

• It is parameterized with respect to a function represen-
tation strategy. We have implemented seven such strate-
gies. In this paper, we evaluate the relative efficacy of
these strategies on a variety of benchmarks based on a
cost model for function representations. We focus on se-
lective strategies in which closed functions (those with-
out free variables) are represented more efficiently than
open functions (those with free variables). Other cus-
tomizations supported by our framework are tagged en-
vironment representations of functions (in the context of
inlined open functions and defunctionalization) and flow-
based optimizations of known function calls.

1“CIL” is an acronym for “Church Intermediate Language.”
The authors are members of the Church Project (http:
//types.bu.edu/). The Church Project is investigating ap-
plications of sophisticated type systems in the implementa-
tion of higher-order typed programming languages.



• It is parameterized with respect to a flow analysis. We
have implemented four typed flow analyses that vary with
respect to precision. All are polvariant on type and one
is polyariant on variable occurrences. All of the data re-
ported in this paper is derived from instrumented code
generated from runs of the compiler using only the typed
source split analysis. This is our most accurate analysis
that is polyvariant on types but not on variable occur-
rence. It is comparable to a typed 0CFA on monomor-
phized code [4] restricted by a shallow subtyping rule [44].

• It can generate customized function representations even
in the presence of representation pollution. Pollution of
function representations occurs when a function is con-
strained to have a less efficient representation than it oth-
erwise would because it shares an application site with
an inefficiently represented function. A complementary
phenomenon occurs for function representations with pol-
lution of application sites. Although we focus on func-
tions here, representation pollution can occur with any
data type. The CIL compiler can remove pollution by
(1) generating multiple and mutually incompatible cus-
tomized representations of value definition and use forms
and (2) introducing sufficient “plumbing” to ensure that
only compatible representations flow together.

Recently, there has been growing interest in using typed
intermediate languages to ensure the integrity of complex
program transformations such as closure conversion [25, 26].
Our approach is similar to the customization strategies used
by type-based compilers that remove polymorphic higher-
order functions via monomorphization and defunctionaliza-
tion [39, 8]. These compilers maintain type correctness dur-
ing closure conversion by injecting closures with different
free variables that flow to the same application site into a
sum-of-products datatype, and performing a case dispatch
on the constructed value at the application site.2 As in
the CIL compiler, these compilers use flow analysis to cus-
tomize function representations for particular application
sites. These flow analyses are not integrated into their type
systems, although after monomorphization and defunction-
alization a flow analysis can be implicit in their types.
Customization by duplication of value construction points

is sometimes called cloning [11]. Among other applications,
it has been used for implementing lazy functional languages
[17], for resolving overloading in Haskell [23], for compiling
NESL [6], and particularly for optimizing method invocation
in object-oriented languages [9, 10, 1, 13, 31, 30].

Our Results
The CIL compiler emits instrumented code that tracks the
creation and application of functions as well as the plumbing
associated with pollution removal. We have developed a cost
model that assigns a dynamic cost to these points and have
used it to compare the costs of our function representation
strategies on a benchmark suite.3 We have experimented

2Some defunctionalizing compilers avoid this run-time cost
by using the appropriate code pointer as a “tag” in the
generated object code and replacing the case dispatch by
a jump, but their type systems do not support this as a well
typed operation and hence this must be done in the code
generator after types are erased.
3We report on compile-time space costs of the CIL compiler
in [16].

with two basic closure representations: (1) paired closures
that pair a code pointer with an environment record; and (2)
flat closures that combine the code pointer and environment
values in a single record.
We consider two function representation strategies that

perform no pollution removal: (1) a uniform strategy in
which all functions are represented by closures; and (2) a
polluted selective strategy that represents closed functions as
code pointers only when no additional plumbing is needed
to do so. Under our cost model, our data show that compil-
ing whole SML programs with the polluted selective strategy
yields SPARC code in which function representation costs
are 12% lower with flat closures, and 17% lower with paired
closures, than those observed with the uniform strategy.
For the benchmarks tested and the types of representa-

tion pollution detected by our compiler, our data show that
the plumbing costs associated with removing pollution often
outweigh the benefits of using more efficient function repre-
sentations. In particular, three pollution-removing strate-
gies (what we call selective source split, selective sink split,
and uniform defunctionalization) rarely perform better than
— and in many cases perform significantly worse than — the
polluted selective strategy.
In two other strategies, pollution removal often results in

a net gain, sometimes significant, compared to polluted se-
lective. In selective defunctionalization, aggressive splitting
of application sites enables many customizations, and the
function representation costs are often 10% or more bet-
ter (and in one case 46% better) than polluted selective. In
the inlining strategy, flow-directed inlining [45] allows cer-
tain functions to be represented as tagged environments and
splitting of application sites allows multiple functions to be
inlined at the same site. As with selective defunctionaliza-
tion, the gains for inlining can be impressive. However, in
some cases these two strategies have much higher costs than
polluted selective. In general, pollution costs are relatively
larger in flat than in paired closures.
The remainder of this paper is organized as follows. Sec-

tion 2 provides an overview of the function representations
used in the CIL compiler. Section 3 gives a brief overview
of the CIL compiler. Section 4 presents our cost model.
Section 5 presents run-time statistics for several standard
benchmark programs. Section 6 summarizes our conclusions
and describes future work.

2. REPRESENTATION CUSTOMIZATION
AND POLLUTION

An essential invariant maintained by any compiler is that
the representation chosen for a run-time value at its point
of definition must be consistent with the representation ex-
pected at every point where that value is used. We call this
the representation invariant. The simplest way to satisfy
this invariant is to adopt a uniform representation assump-
tion (URA), under which the representation of any value is
determined by the type constructor of its type and all values
are accessed through a fixed-size interface (achieved by box-
ing values larger than one machine word). The URA sim-
plifies the task of compiler writing by using a type system as
a crude form of flow analysis. Type soundness guarantees
that a value reaching an elimination form for a type con-
structor must have been defined at an introduction form for
that constructor. If the uniform representations chosen for



the introduction and elimination forms are consistent, then
the representation invariant will automatically be satisfied.
A classic example of the URA is the representation of

functions. Compilers for languages with higher-order func-
tions must at some point in the compilation process convert
every open function (one with free variables) into a closed
function (one with no free variables). One way to accom-
plish this in a uniform manner is to represent every function
uniformly as a closure, which pairs (1) a code pointer to a
closed function with (2) an environment containing the val-
ues of the free variables of the function. Each code pointer
addresses a function that expects an argument that pairs
(1) the argument of the original function with (2) the en-
vironment of the closure. The process of transforming all
functions into closures is known as closure conversion.
In this discussion, we will compare closures with several

other function representations in the context of a simple
concrete example. Figure 1(a) illustrates a fragment from
a higher-order functional program.4 The fragment shows
three function abstractions (λ) and two application sites
(@). These pieces are represented graphically to highlight
how the function values created at abstraction sites flow to
application sites. As in CIL, some sites are annotated with
flow labels that approximate the flow of values in the pro-
gram.5 In the λlψ notation, l is a source label identifying a
function definition point and ψ is a set of sink labels conser-
vatively approximating those call sites at which the function
labeled l may be used. Dually, the notation @φk specifies a
sink label k identifying a function use point and a set of
source labels φ conservatively approximating the functions
that may reach that point. In the figure, the abstraction
bodies P , Q, R are superscripted with the set of free vari-
ables they reference (not including the abstraction param-
eter). Thus, λ3

{5} is an open function with free variables a

and b, while λ1

{4} and λ
2

{4,5} are closed functions.
The result of closure converting the fragment in Figure 1(a)

is shown in Figure 1(b). Both closures and environments are
represented as tuples (parenthesized sequences of elements
separated by commas). Projections from these tuples are
implicit in the destructuring notation for λ and let bind-
ings. Although we show only untyped terms in the example,
the terms are typable, albeit with some difficulty. In a naive
approach, closure converting two functions of the same type
can yield closures whose types differ due to differences in
free variables exposed by the transformation. This problem
is usually addressed with existential types [25, 27, 12]. In
contrast, CIL uses intersection and union types to solve this
problem; as argued in [44], this has advantages over existen-
tial quantifiers for customizing data representations.
The URA simplifies compiler writing and facilitates the

support of features like type polymorphism, separate compi-
lation, and dynamic linking. However, because it effectively

4The syntactic notation used in the example is a stylized
notation chosen to simplify the presentation of the example.
This notation differs significantly from “real” CIL, as de-
scribed in [16]. In particular, typed CIL terms would require
significantly more annotations in order to be type correct.
Even untyped CIL terms would be more verbose than the
notation in the figure, since CIL does not support destruc-
turing in variable binding positions.
5In the CIL compiler, every introduction and elimination
form, as well as every type constructor, is annotated with
flow labels. To reduce visual clutter, we only highlight func-
tion value labels in the example.

requires worst-case representations to be used for all values,
the URA stands in the way of customized representations
and classical optimizations. For instance, in Figure 1(b),
the closed functions λ1

{4} and λ
2

{4,5} must be represented as
closures with empty environments, because all application
sites have been compiled assuming this representation. Ide-
ally, we would prefer to use what Wand and Steckler call a
selective function representation, in which closed functions
are represented as code pointers and function invocations
are implemented via a jump to this code pointer [41]. This
avoids allocating and projecting from a closure pair.
The key difficulty with using such customized representa-

tions is that care must be taken that they do not invalidate
the representation invariant. One approach to customiza-
tion is to relax the URA by adopting single representation
assumption (SRA), in which a single representation is in-
dependently chosen for each definition point and each use
point. Although the SRA would appear to allow flexibility
in choosing customized representations, it has two problems:

1. The single representation at a definition point must be
consistent with all use points where it could be used. Du-
ally, the single representation at a use point must be con-
sistent with definition points defining a value that could
be used there. These constraints imply that there must
be a more precise notion of where a value flows than “all
sites at which a value of the same type is used”. Thus,
some form of flow analysis [33, 21, 28, 22] is required to
perform representation customization.

2. An inefficient representation at definition point D1 of a
program can propagate through a program in a way that
constrains the choice of representation at a distant defi-
nition point D2, where D1 and D2 do not even directly
share a use point. (A dual problem holds for use points
that do not share a definition point.) Define a colleague
of a definition point D recursively as either the point it-
self, or any definition point that shares a use point with a
colleague of D. Then by the constraints of the SRA and
the representation invariant, all colleagues must share the
same representation. Figure 1(b) provides a simple ex-
ample of this. Even though closed abstractions λ1

{4} and

λ2

{4,5} share an application site (@
{1,2}
4

), they cannot be

represented as code pointers because λ2

{4,5} shares an ap-

plication site with open function λ3

{5}. By the SRA, this

constrains λ2

{4,5} to be represented as a closure, which in

turn forces λ1

{4} to be represented as a closure.

We call the ability of one “bad” representation to “spoil”
the representation of all its colleagues the representa-
tion pollution problem.6 Representation pollution is a
serious obstacle to customizing representations in a com-
piler. For instance, the selective customization suggested
by Wand and Steckler [41] can only be applied when all
colleagues of a closed function are closed.

In the CIL compiler, our solution to pollution is to break
the SRA constraints by splitting some definition and/or use
points to use multiple representations. Figure 1(c) shows the

6Other names for this problem are the poisoning problem [42]
and the “W” problem [Jens Palsberg, personal communica-
tion]. The latter is named from the shape of a simple flow
diagrams, like Figure 1, that illustrate the problem.



λ1

{4}
x.P {} λ2

{4,5}
y.Q{} λ3

{5}
z.R{a,b}

2 @
{1,2}
4

M 2 @
{2,3}
5

N

(a) Source program

(λ1

{4}
(x, ()).P {}, ()) (λ2

{4,5}
(y, ()).Q{}, ()) (λ3

{5}
(z, (a, b)).R{a,b}, (a, b))

let (c, e) = 2 in c @
{1,2}
4

(M, e) end let (c, e) = 2 in c @
{2,3}
5

(N, e) end

(b) Uniform code/environment representation

λ1

{4}
x.P {} π12 (λ2

′

{4}
y.Q{}, (λ2

′′

{5}
(y, ()).Q{}, ())) π22 (λ3

{5}
(z, (a, b)).R{a,b}, (a, b))

2 @
{1,2′}
4

M let (c, e) = 2 in c @
{2′′,3}
5

(N, e) end

(c) Selective source splitting

λ1

{4}
x.P {} λ2

{4,5′}
y.Q{} ι12 ι22 (λ3

{5′′}
(z, (a, b)).R{a,b}, (a, b))

2 @
{1,2}
4

M

case 2 of

ι1f ⇒ f @
{2}
5′

N

ι2(c, e) ⇒ c @
{3}
5′′

(N, e)

(d) Selective sink splitting

ι1() ι22 () ι12 ι2(a, b)

case 2 of

ι1() ⇒ g1 @
{1}
4′

(M, ())

ι2() ⇒ g2 @
{2}
4′′

(M, ())

case 2 of

ι1() ⇒ g2 @
{2}
5′

(N, ())

ι2(a, b) ⇒ g3 @
{3}
5′′

(N, (a, b))

where g1 bound to λ1

{4′}
(x, ()).P {}, g2 bound to λ2

{4′′,5′}
(y, ()).Q{}. and g3 bound to λ3

{5′′}
(z, (a, b)).R{a,b}

(e) Uniform defunctionalization

ι1() ι22 () ι12 ι2(a, b)

case 2 of

ι1() ⇒ g1 @
{1}
4′

M

ι2() ⇒ g2 @
{2}
4′′

M

case 2 of

ι1() ⇒ g2 @
{2}
5′

N

ι2(a, b) ⇒ g3 @
{3}
5′′

(N, (a, b))

where g1 bound to λ1

{4′}
x.P {}, g2 bound to λ2

{4′′,5′}
y.Q{}. and g3 bound to λ3

{5′′}
(z, (a, b)).R{a,b}

(f) Selective defunctionalization

ι1() ι22 () ι12 ι2(a, b)

case 2 of

ι1() ⇒ let x = M in P {}
end

ι2() ⇒ let y = M in Q{}
end

case 2 of

ι1() ⇒ let y = N in Q{}
end

ι2(a, b) ⇒ let z = N in R{a,b}
end

(g) Inlining

Figure 1: Transformations on a W-shaped flow diagram.



effect of splitting the source point λ2

{4,5} into two represen-
tations: (1) a code pointer that flows to call site 4, which is
shared with another closed function; and (2) a closure that
flows to call site 5, which is shared with an open function.
This permits call site 4 to use an optimized calling sequence
even though call site 5 uses the inefficient one. The costs of
this customization are pairing the two representations and
extracting them (via explicit projections πi) from the pair.
An alternative approach for breaking pollution constraints

is to split a sink point, as illustrated in Figure 1(d). Sink
splitting involves injecting (via ιi) inconsistent representa-
tions into a tagged variant value, and then dispatching off
the tag (via case) to an appropriate handler at a sink site.
Again, breaking the pollution constraints allows the two
closed functions to share a call site with an optimized call-
ing convention. The costs of this approach are the injections
and case analyses necessary at the other call site.
Source and sink splitting enable customizations by elimi-

nating some pollution, but also introduce manipulations of
tuples or variants that were not in the original program. In
the balance, are such customizations a good idea? This ques-
tion is a complex one that is addressed in Sections 4 and 5,
which investigate the conditions under which the customiza-
tions can improve the performance of a program.
It is important to note that closure conversion is not the

only uniform strategy for transforming higher-order func-
tions to first-order functions. Another uniform strategy is
defunctionalization, in which every function value is repre-
sented as an element of an algebraic datatype whose con-
structor uniquely identifies the abstraction of the function
and whose components are the values of the free variables of
the abstraction [32, 5]. This is similar to a closure, except
that the environment is paired not with a code pointer but
with an abstract tag denoting the function. Call sites are
transformed to dispatch off this tag to a direct call of an ap-
propriate global closed function. In the simplest approach,
there is one algebraic datatype for all functions of a given
monomorphic type, and one constructor for each abstraction
appearing in the program with this type.7 However, flow
analysis can significantly reduce the size of the datatypes
introduced by defunctionalization [39, 8].
Uniform defunctionalization is illustrated for our example

in Figure 1(e). The code portions of the functions have been
lifted to global functions g1, g2, and g3, leaving behind only
environment injections. Call sites dispatch off the injection
tags to invoke an appropriate global function. Uniform de-
functionalization can be viewed as maximally splitting each
sink according to all the functions that might flow there.
This maximal splitting effectively eliminates all represen-
tation pollution, and allows representations to be chosen
completely independently for each abstraction. Figure 1(f)
shows how selective representations can be used in conjunc-
tion with defunctionalization to improve the representations
of g1 and g2 and the three sites at which these are invoked.
Inlining can be viewed as a variant of defunctionalization

in which the known call to a global function within a branch
of a case dispatch has been reduced at compile time (see Fig-
ure 1(g)). This perspective covers the flow-directed inlining
of open functions [45], as well as the inlining of multiple
functions at a single call site.

7Polymorphic functions are handled by a monomorphiza-
tion process that specializes a polymorphic definition to each
monomorphic type at which it is used.

3. CIL COMPILER OVERVIEW

3.1 Compiler Architecture
We have constructed a whole-program compiler for core

SML based on CIL, our typed intermediate language. The
key features that distinguish CIL from other such languages
are its use of flow labels in conjunction with intersection and
union types to encode polyvariant flow analyses in the type
system of the language [44]. The resulting flow types support
the customizations presented in this report and serve as an
important sanity check in the compiler implementation. In
CIL, customization opportunities are represented by virtual
records (introduction forms for terms of intersection type)
and virtual case expressions (elimination forms for terms of
union type). The compiler enables customization by reifying
some of the virtual forms into real forms, as seen in the above
examples of source and sink splitting.
The core compiler implementation is based on the archi-

tecture specified in [14]. We have extended the simple in-
termediate language described there with numerous features
(e.g., references, arrays, exceptions, standard library func-
tions, etc.) necessary to support the compilation of SML.
In implementing the compiler, we took advantage of exist-
ing tools and other freely available SML compilers. The CIL
compiler uses the MLton source-to-source defunctorizer [8]
as a prepass to convert SML into Core SML. It then uses the
front end of the SML/NJ 110.03 compiler (somewhat modi-
fied) to produce FLINT code. The FLINT code is translated
to untyped CIL code, keeping datatype information on the
side to avoid reinference of recursive types. The untyped
CIL code is then processed by one of four flow analyses we
have implemented as part of the type inference/flow analysis
stage that transforms it into flow-typed CIL code.
The representation transformations detailed in [14] are

parameterized over seven function representation strategies
that heuristically choose the representation for each abstrac-
tion and call site. The CIL compiler uses flow types to man-
age the “plumbing” of the chosen representations, splitting
sources and sinks as needed to ensure that all representa-
tions are used consistently relative to type and flow infor-
mation. Despite complex types powerful enough to encode
polyvariant flow analyses and term representations that du-
plicate the components of virtual records and the branches
of virtual case expressions, the size of the intermediate rep-
resentations of CIL programs is tractable in practice [16].
The CIL compiler back-end transforms typed CIL pro-

grams into assembly code for the SPARC processor. It does
not currently add any type annotations, or assertions, to
the assembly code, although this is planned for future work.
The produced assembly code is linked with a runtime library
providing the environment in which CIL programs are exe-
cuted. The back-end is based on MLRISC, a framework for
building portable optimizing code generators [18].
The runtime library is written in C and provides mem-

ory management, exception handling, basis functions and
a foreign function interface for CIL programs at runtime.
The runtime library currently manages memory using the
Boehm-Demers-Weiser conservative garbage collector for C
[7]. CIL programs use stack-allocated activation records,
which have a layout similar to C stack frames. The code
generator does not yet implement tail recursion.
CIL data representations are straightforward. Records,

arrays, references, and strings are heap-allocated and in-



clude size headers8. Exception identifiers and all other con-
stants are immediate. Injections may either be immediate
or heap allocated, depending on the number and types of
summands in their type.

3.2 Function Representation Strategies
The CIL compiler currently implements the following seven

function representation strategies:

• uniform (uni): represents all functions as closures. We
investigate two uniform closure representations: (1) a
paired closure that is a record of a code pointer and en-
vironment, which is itself a record of free variable values;
and (2) a flat closure (see [2]) that is a single record con-
taining both code pointer and free variable values.

• polluted selective (pse): represents a closed abstraction
as a code pointer if and only if all the colleagues of the
abstraction are closed. This implements the approach
proposed by Wand and Steckler in [41].

• selective source splitting (src): generates a code-only rep-
resentation for a closed function flowing to call sites that
are not shared with open functions. If a closed function
shares some application sites with other closed functions
but shares other application sites with open functions,
then the framework will “split the source” by generating
a record containing multiple copies of the function.

• selective sink splitting (snk): generates a selective repre-
sentation when the function has no free variables. This
representation is called “sink splitting” because if the
function shares call sites with open functions, the trans-
formation framework will inject the function representa-
tions into a sum type and the application site will be split
into multiple sites governed by a case dispatch.

• defunctionalization (dfn): represents all functions as in-
jected environments and all call sites as dispatches to an
invocation of an appropriate global function on the ar-
gument and the environment. Functions not sharing call
sites with other functions are not injected.

• selective defunctionalization (sdf): like dfn, but repre-
sents closed functions as code pointers to functions that
expect just an argument (but no environment).

• inlining (inl): inlines (possibly open) functions at the call
site. The run-time representation of an inlined function
is a record of the function’s free variable values. Call sites
may be split to allow non-inlined and (possibly multiple)
inlined representations at the same call site. Thus far,
we have investigated only one point in a huge space of
possible inlining heuristics: any non-recursive function
flowing to two or fewer call sites will be inlined; when
inlining is not possible, the strategy falls back to pse.

The results of using these strategies to transform the exam-
ple in Figure 1(a) are shown in Figures 1(b)-(g). Note that
the pse strategy does not have its own figure because the
result is the same as that for uni due to pollution.

8Such headers are currently unnecessary since we use con-
servative GC. But we expect to develop customized memory
management in the future.

3.3 Optimizations
The CIL compiler is currently a research tool and is far

from an industrial-strength program. In particular, beyond
the function customizations described in this report, some
standard “partial-evaluation style” optimizations, and some
back-end optimizations performed by MLRISC, there are
few optimizations performed in CIL.
One important optimization we do implement is known

function variable elimination (KVFE). If at representation
choice time it is guaranteed that a function f will not have a
closure, then we do not consider a reference to f to be free in
g for any other function g in the program. Since invocations
of known functions can be compiled as a jump to an address
known at compile-time, the name of a known function ap-
pearing in the rator position of an application need not be
treated as a free variable. This optimization significantly
increases the number of closed functions in our compiler,
which in turn creates more customization opportunities. In
early versions of our compiler, the free variables of a func-
tion included every externally defined function name used
within the body of the function. This hobbled customiza-
tion because very few functions were closed.
We use a slightly different version of KFVE than other

compilers. First, we use a flow-based calculation for KFVE
rather than the standard syntax-based algorithm, so we need
not worry about tracking names through copy propagation
or about functions escaping their scope of definition. In this
respect our algorithm is similar to one hinted at in [3]. Sec-
ond, we do not currently use KFVE to eliminate closures
where the function pointer is known and the environment
is empty. We have postponed this work until we have de-
veloped a more general flow-based known value elimination
algorithm that handle constants, unused values, and records
of known values in a single framework.
The KFVE algorithm enables the compiler to find more

empty environments and to decrease the environment size
in many cases. For uni, KFVE has no effect on the cost,
since all variables are bound to closures and none is bound
to a known function. For dfn, KFVE has been disabled to
maintain its status as a “straw man” strategy comparable
to uni. In other strategies, KFVE results in a roughly 13%
decrease in cost for paired closures under our cost model
(see the next section), depending on both the strategy and
the benchmark.

4. COST MODEL
An important goal of this paper is to evaluate and com-

pare the seven function representation strategies presented
in Section 3.2 using benchmark programs. Although one
way to do this is to measure running times, our compiler
does not yet implement numerous optimizations (see Sec-
tion 3.3) so such measurements would not represent the pos-
sible costs and benefits of the various representations. Fur-
thermore, we want some way to dissect the costs of function
creation, function application, and pollution removal in or-
der to better understand where the time charged to function
representations is being spent.
Based on these considerations, our approach in this paper

is to instrument the CIL compiler to track intermediate code
points related to function representation, count the dynamic
number of times these points are reached when executing the
compiled code, and use a cost model to attribute a cost to



these points. Our approach models only those costs directly
related to packaging, unpackaging, and otherwise manipu-
lating the code pointer, argument, and free variables of a
function when creating or invoking it. It does not model
costs of manipulating values of non-function type, nor does it
account for other operations associated with functions, such
as preserving live registers on the stack across a function
call. Moreover, our model does not reflect many optimiza-
tions commonly associated with functions, such as storing
some free variables on the stack or stack-allocating some clo-
sure and environment records, nor does it reflect many other
compiler optimizations (e.g., loop optimizations, tuple flat-
tening, cheap representations of certain variant values) that
could affect the costs we charge to function representations.
In light of these disclaimers, we stress that there may be

little correlation between the relative costs of function repre-
sentation strategies under our cost model and those obtained
in optimizing compilers. Nevertheless, we believe that our
model gives some sense for the benefits and drawbacks of
various function representation strategies and suggests that
certain strategies are worthy of further exploration.
This section develops the cost model for comparing func-

tion representation choices made by the CIL compiler. The
model abstracts low-level implementation details, and fo-
cuses on cost as the number of abstract assembly language
instructions of three classes: register-to-register (r), register-
to-memory (m), and memory allocation (a). This metric
captures the relative cost of customized representations, and
can be applied to a particular implementation to account
for architectural details such as cache and branch prediction
(see section 4.4 below).
Our model handles both paired and flat closures. For

paired closures we assume that the code references a single
argument register holding a pointer to a tuple of the function
argument and the environment. For flat closures we assume
that the code references two argument registers holding (1)
the function argument and (2) the closure record itself.9

4.1 Function De£nition
Record Creation Environments and closures are repre-
sented as heap-allocated records. The cost of creating a
record includes an allocation cost a plus a store cost m for
each field of the record. We assume that a record includes
a one-word header (to facilitate garbage collection); it costs
r +m to store the header. A zero-field record can be rep-
resented specially as a null pointer.10 The total cost RC(n)
of creating an n-field record is:

RC(0) = r
RC(n) = r + (n+ 1) ∗m+ a, if n > 0

Closure Creation Paired closures require both a pair record
and an environment record. Flat closures require only a sin-
gle record. The cost of creating a closure with n free variable

9Whether the function argument and record of free variable
values are passed in separate registers or as a tuple in one
register is orthogonal to the paired vs. flat distinction. To
avoid considering four combinations, we associate the more
efficient two-register strategy with the more efficient flat rep-
resentation to yield the two “extreme” combinations.

10A one-field record can sometimes be represented as the
field itself. CIL’s parallel contexts [44] prevent performing
this optimization in all cases. Our cost model (but not our
compiler) implementation assumes this optimization for one-
element environments (where it is always safe).

values is:

CCpaired (n) = RC(2) +RC(n)
CCflat(n) = RC(n+ 1)

4.2 Function Invocation
Known Function Call Calling a function known at com-
pile time jumps directly to the function address with a cost
of KF = 3r11.
Unknown Function Call Calling a function unknown at
compile time loads the function address into a register and
jumps indirectly with a cost of UF = 4r.
Record Projection Extracting closure and environment
components requires accessing a slot of a heap-allocated
record with cost RP = m.
Closure Application The cost of applying a closure de-
pends on the paired vs. flat representation, the number
of free variable values, and whether or not the function is
known. Paired closures with unknown functions require pro-
jecting both the code pointer and environment and invoking
an unknown function; for known functions, the code pointer
projection is avoided. In either case, an argument/environment
record is constructed and deconstructed, and the n environ-
ment components are projected. The cost of applying a
paired closure with n free variables is:

CApaired/known(n) = RC(2) +KF + (3 + n) ∗ RP
CApaired/unknown(n) = RC(2) + UF + (4 + n) ∗ RP

For flat closures with unknown functions, the code pointer
is projected before the call and free variables are projected
after the call; the code pointer projection is avoided for a
known function. By assumption, there are no allocation or
projection costs for passing the argument and closure:

CAflat/known(n) = KF + n ∗RP
CAflat/unknown(n) = UF + (n + 1) ∗RP

4.3 Pollution Removal
Virtual Tuples Virtual tuples that are reified into real tu-
ples incur the cost of record creation (RC) and record pro-
jection (RP ). We see an example of pollution removal cost
due to virtual tuples in Figure 1(c) (selective source split-
ting). Here the λ2

{4,5} abstraction has been split into two
different representations, incurring the cost of a record cre-
ation at definition and record projection at invocation.12

Virtual Variants Virtual variants which are reified into
real variants incur the cost of injection (IN) and case dis-
patch (CD). An example of pollution removal cost due to
virtual variants is Figure 1(d) (selective sink splitting).
Injections are allocated on the heap, and contain the in-

jection tag and the injected value. Assuming headers on
records as above, then injections have the same cost as 1-
field records (where the tag is the header and the field is the
value): IN = RC(1).13

11The actual cost of known and unknown function calls
is implementation-dependent. For example, on the Ultra-
SPARC a branch misprediction can cost as many as 18 cy-
cles. But since KF and UF are taken to be constant in the
model, they can be defined according to the implementation.

12It is possible to lift abstractions (but not necessarily clo-
sures) out of tuples to top-level and remove the correspond-
ing projections. The CIL compiler does not yet do this, nor
does the cost model implementation, except in the defunc-
tionalization strategies.

13In some cases the injection may be represented only as an



The cost of a case dispatch with n clauses (CD(n)) in-
cludes m to load the discriminant tag, r + m to load and
bind the discriminant value, r to branch after a clause, and
the cost of dispatching using the better of a conditonal tree
or jump table (depending on the number of clauses; see [40]):

CD(n) = 2r + 2m+ cases(n), where
cases(0|1) = 0r; cases(2) = 3r; cases(3) = 4r;
cases(4) = 5r; cases(5) = 7r; cases( ) = 4r + 1m.

4.4 Example
Consider the representations of the example program in

Figure 1. Assuming paired closures, we can use the cost
model to calculate the static costs of different representa-
tions along particular paths in the program. For example,

along the path from λ1

{4} to @
{1,2}
4

in Figure 1(d), we have
no function definition cost, a function invocation cost of UF ,
and no pollution removal cost. This results in a cost of 4r.
Along the same path in Figure 1(f), we have no definition
cost, an invocation cost of KF , and a pollution removal cost
of IN + CD(2)14, for a total cost of 9r + 4m+ a.
Using this cost model and reasonable weights wr, wm, and

wa for the r, m and a operations for a particular implemen-
tation, we can calculate the actual cost of different represen-
tations. For example, on a typical SPARC implementation
[35] with a fast memory allocator we might choose: wr = 1,
wm = 3 and wa = 16 to represent machine cycles. In the
example, we find that the selective sink splitting represen-
tation costs 4 cycles using these weights, and the selective
defunctionalization representation costs 37 cycles.
The costs for each of the four paths in the program, and

for each of the representations in Figure 1 are given in the
following table, using the weights given above.

Representation (1,4) (2,4) (2,5) (3,5)
uni 88 88 88 100
src 7 33 117 103
snk 4 4 37 130
dfn 69 69 69 101
sdf 37 37 37 69
inl 34 34 34 66

Cache effects may be accounted for by adding an expected
miss cost to the base cost for a memory operation. The ex-
pected miss cost is the product of the miss rate and miss
penalty for the implementation [29]. For example, a typi-
cal UltraSPARC implementation has a first level cache miss
penalty of 6 cycles and a second level cache miss penalty
of 13 cycles [37]. So in the example above, selective sink
splitting has no data miss cost (having no memory opera-
tions), and selective defunctionalization has a total cost of
9r+4m+a+((4/14)∗l1missrate∗6)+((4/14)∗l1missrate∗
l2missrate ∗ 13).
The results reported in the next section are based on the

simpler instantiation of the cost model, without modeling
cache misses or branch mispredictions.
-*-LaTeX-*-

immediate tag, and not allocated on the heap. The CIL
compiler supports this, but we do not account for this opti-
mization in the cost model.

14An optimization in defunctionalization with uniform rep-
resentation at an invocation site is to use the code pointers
themselves as the tag, avoiding the injection altogether. The
CIL compiler does not currently use this optimization.

5. MEASUREMENTS
To determine the effect of customizations and pollution

removal on the dynamic costs of function representations,
we use the cost model to measure the performance of our
function representation strategies for a set of kernel codes
and small benchmarks of 50 to 3000 lines of source code.
The SML benchmarks that we use in this paper are:

Source dynamic dynamic
Name lines From function function

of code creations applications
msort 55 TIL 1.8m 13m
church 73 Church 2.7k 188m
soli 115 O’Caml 1.7m 3.1m
quicksort 120 O’Caml 1.6m 4.7m
life 147 SML/NJ 643k 6.5m
matmult 156 TIL 40k 40.m
fft 194 O’Caml 1.4m 2.8m
tsp 249 SML/NJ 4.9m 10m
barnes-hut 401 SML/NJ 502k 9.2m
kb 467 O’Caml 7.3m 13m
frank 487 TIL 36m 60m
ratio-regions 505 SML/NJ 36m 162m
tyan 856∗ TIL 29k 594k
boyer2 856 Church 551k 1.2m
lexgen 1067 SML/NJ 1.5m 5.2m
simple 1228∗ SML/NJ 2.2m 22m
pia 2081∗ TIL 2.5m 5.1m
nucleic 2923 O’Caml 1.1m 2.5m

The source lines count does not include comments or blank
lines. Source lines marked with an asterisk are the out-
put of the MLton defunctorizer, which tends to insert more
line breaks than a human programmer. The “dynamic func-
tion creations” column shows the number of closure cre-
ations when the program is run after being compiled with
the uni strategy. The “dynamic function applications” col-
umn shows the number of function applications when the
program is run after being compiled with the uni strategy.
The letter “k” means 103 and “m” means 106.
Most of the benchmarks are from standard benchmark

suites. Some occur in slight variations in more than one
suite. We have contributed two new benchmarks showing
extremes of programming style. The boyer2 benchmark
is a variant of the O’Caml boyer benchmark modified to
be entirely first-order; church is a library of arithmetic on
Church numerals, a simple example of a program built out
of many very small higher-order functions.
Table 1 and the bar charts in Figure 2 summarize the

results of running the benchmarks using the seven repre-
sentation strategies presented in Section 3.2. Table 1 lists
the average costs of each strategy in our cost model relative
to that for uni, which is given a cost of 100. Because the
church benchmark is such an extreme case, averages for
the benchmarks without church are also presented. Fig-
ure 2 presents the costs of each strategy for each benchmark
for the two closure representations, and displays the cost as
a bar broken into three segments:

1. the segment filled with represents the (relative) cost
of function creation;

2. the segment filled with represents the (relative) cost
of calling a function, including the cost of unpacking the
environment if an environment is used;



closures uni pse src snk inl dfn sdf

paired 100 83 83 90 73 111 86
w/o church 100 76 76 76 62 87 66

flat 100 88 88 157 89 180 171
w/o church 100 86 86 87 88 100 89

Table 1: Average relative costs of function represen-
tation strategies as % of cost of uni strategy.

3. the segment filled with represents the (relative) cost
of pollution removal, accounting for the new record cre-
ations/projections and variant creations/case dispatches
introduced by splitting.

Based on data not shown here, the uni strategy using flat
closures on average incurs only 68% of the cost of the uni
strategy using paired closures. The actual costs of pollu-
tion removal are independent of the closure representation.
As seen in Figure 2, the lower total costs when using flat
closures makes the costs of pollution removal proportionally
larger than when using paired closures.
There is a wide variation in the relative cost of using any

of the selective representations vs. the uniform representa-
tion: from 9% for msort to > 99% for church, matmult,
and quicksort. In the cases of matmult and quicksort,
most of the functions are open, so we always have to accept
the cost of using environments. In the case of church, a
substantial amount of representation pollution precludes us-
ing optimized representations in the most frequently called
functions. In both church andmatmult, the cost of build-
ing closures is not visible in the bar charts due to the high
ratio of function calls to closure creations.
Because it never pays any plumbing costs but in some

cases still enjoys the benefits of more efficient closed function
representations, pse is never worse than, and is sometimes
significantly better than, uni. On average, the cost of using
pse is 83% (for paired closures) and 88% (for flat closures)
of the cost of using uni. There does not seem to be any
strong correlation between the size of the benchmark and
the cost savings, although there is an obvious correlation
between small size and large variation. The actual speedup
in a program would be less, since we are only modeling costs
of function closing and invocation. But it seems that the
advantage of specialized function representations is clear,
and that even a simple representation customization such
as selective closure conversion is worthwhile.
Our experimental results show that for the simple function

representations and cost models we consider, several pollu-
tion breaking strategies are rarely more effective than pse
and can be far worse due to the cost of breaking pollution.
What follows is an explanation of these results.
For certain programs in our benchmark set, our flow anal-

ysis finds that no call site has more than a single function
flowing to it. In this case there is no pollution to remove.
There is also no overhead involved in using a defunctionaliza-
tion strategy. Benchmarks matmult, fft, tsp, and boyer2
fall into this category.
There are some benchmarks in which some call sites have

more than a single function flowing to them – so there is
some overhead involved in a defunctionalization strategy –
but all functions flowing to a given call site have the same
representation. In this case there is no pollution to remove
in src and snk. Benchmarks in this category are soli, quick-
sort, frank, ratio-regions, and lexgen.

Paired Excluding pollution Including pollution
closures: removal costs removal costs

benchmark src snk src snk

msort 0.00 1.37 0.00 -8.20
church 0.00 46.66 0.00 -26.67

life 0.68 1.15 0.65 0.28
barnes-hut 0.00 0.00 0.00 0.02

kb 0.10 0.11 0.08 0.11
tyan 0.37 0.84 0.33 -3.09

simple 4.99 5.33 4.55 3.40
pia 0.60 0.60 0.60 0.60

nucleic 0.00 3.11 0.00 0.57

Table 2: Improvements and costs of pollution re-
moval as % of cost of the pse strategy.

The src strategy will clone a copy of a closed function if it
shares one call site with an open function and another call
site with only closed functions. If every closed function has
an open function as an immediate colleague at every shared
application site, then src is identical to pse. Benchmarks in
this category are msort, barnes-hut, and nucleic.
This leaves church, life, kb, tyan, simple, and pia to

explore as to whether src gives improved performance over
pse. To evaluate snk, we need to additionally investigate
msort, barnes-hut, and nucleic.
Table 2 summarizes the improvements due to pollution

removal for src and snk, using paired closures, as well as the
total cost of pollution removal. The first two columns of
numbers show the percentage improvement in the cost over
pse if the cost of pollution removal itself is excluded. The
last two columns show the percentage improvement when
the pollution removal costs are included.
The first two data columns show that if pollution removal

were “free”, it could reduce (in some cases, significantly) the
cost of function creation and application. However, when
the cost of creating and manipulating the values required
by pollution removal is included, these benefits vanish in
almost all cases. Indeed, the cost of pollution removal typ-
ically makes the snk strategy less effective than pse. This
result is clearest with church, where a lot of representation
specialization is blocked by pollution but the cost of remov-
ing pollution turns out to be prohibitive. There is one ex-
ception: simple shows non-trivial gains for paired closures,
even when the costs of pollution removal are factored in.
While the conservative partial pollution removal by src

never loses for paired closures on our benchmark set, it sel-
dom improves performance by much, and the very aggressive
snk may actually significantly degrade performance. For flat
closures, the data in Figure 2(b) shows that the larger rela-
tive cost of pollution removal can cause the src strategy to
have higher cost than the pse strategy in some cases, even
in simple. Clearly the space of heuristics for pollution re-
moval requires further exploration. There are some record
creations and projections that the CIL compiler creates for
pollution removal that can be eliminated. However, much
of the cost of pollution removal for snk is due to injections
and case dispatches, which are not obviously removable.
Our inlining strategy generally results in lower costs than

pse for both paired and flat closures. The fact that inl ex-
hibits pollution removal costs in some benchmarks indicates
that sinks are being split to allow inlined functions to share
call sites with other functions representations. When using
flat closures, the cost of pollution removal sometimes out-
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Figure 2: Relative costs of function representation strategies. In each benchmark, the number is the total
cost as % of uni cost, and bar lengths are normalized to the length of the longest of the seven bars.



weighs the benefits of inlining (kb,ratio-regions,simple).
The lexgen benchmark shows a case where inl appears more
costly than pse even before pollution removal; this is a re-
sult of variations of the KFVE algorithm for various strate-
gies. For the pse strategy, which introduces no splitting,
and for sdf, which introduces maximal splitting, the KFVE
algorithm is more aggressive than for the src, snk, and inl
strategies, which may or may not introduce splitting at a
given function definition or invocation.
The defunctionalization strategies dfn and sdf split all call

sites, so it is easily possible to have a specialized represen-
tation per function definition. The dfn strategy realizes two
benefits from splitting: (1) record manipulations involving
code pointers are eliminated; and (2) all function calls be-
come known calls. It does not distinguish between closed
and open functions, and passes empty environments at call
sites rather than discarding them. In many cases, dfn can
beat uni because its benefits outweigh the costs of the injec-
tions and case dispatches due to splitting. Occasionally, dfn
even beats pse, as in tsp, frank, and boyer2.
Unlike dfn, the sdf strategy handles closed functions spe-

cially. Our data show that this leads to significant gains
over dfn and, in many cases, over pse. The costs of sdf are
between 70% and 93% of the pse strategy in 16 of the 18
benchmarks using paired closures and between 54% and 91%
in 8 of the 18 benchmarks using flat closures. If we do not
consider the outlier church benchmark, then the sdf strat-
egy out-performs pse on the average for paired closures, and
is close to pse’s performance for flat closures.
We expect the combination of inlining and selective de-

functionalization to prove a very cost-effective strategy for
most of the benchmarks, except for cases where the high
cost of pollution removal would make pse the most effective
strategy (such as (1) the church benchmark for both closure
representations and (2) the simple, and quicksort bench-
marks with flat closures). However, we have not actually
collected numbers for this combination.
We emphasize that our results include only the costs of

function representations in our cost model, and that our con-
clusions are dependent on the architecture being modeled,
on the presence or absence of compiler optimizations, and
on the closure representations used by the compiler.

6. CONCLUSIONS AND FUTURE WORK
Our results suggest that flow-based customization of func-

tions based on the presence or absence of free variables (our
polluted selective strategy) is worthwhile. It remains to be
seen how effective this customization is in a production com-
piler, and whether it (and other flow-based customizations)
can be adapted to frameworks for separate compilation.
Our experiments with removing function representation

pollution are less conclusive. In three strategies (selective
source splitting, selective sink splitting, and uniform defunc-
tionalization), there is little or no function representation
pollution to remove in many benchmarks, and for bench-
marks with pollution, the costs of removing the pollution
often outweigh the benefits. In the selective defunctional-
ization strategy, pollution removal leads to significant gains
for many benchmarks, but there are still cases where it does
not pay off. This suggests that it would be worthwhile to
characterize situations where pollution removal is beneficial
and use it only in these situations. Note that we have not
yet explored optimization opportunities enabled by our cus-

tomizations that might give rise to additional benefits not
reflected in our current data; these might affect our conclu-
sions regarding pollution removal.
Our inlining strategy is very effective, but it is unclear

how much this depends on the flow-based nature of the in-
lining and the fact that pollution removal allows multiple
functions to be inlined at the same call site. In a future
study, we plan to compare various heuristics for inlining in
our framework (varying fan-in, fan-out, and fall-back strat-
egy) with each other and with classical syntax-based inlining
techniques (e.g., [2, 38]) to gain insight into the factors that
make this strategy effective.
While pollution removal does not seem very helpful in the

context of selecting closed vs. open functions, it may very
well be effective for other representation decisions. In terms
of function representations, we are currently investigating:
(1) uncurrying [19], which can increase the number of closed
functions; (2) closure representations that exclude free vari-
ables from an environment if their values are available at all
call sites [36]; and (3) register allocation and calling con-
ventions informed by flow information. There are numerous
other closure representation tricks (e.g., those discussed in
[24, 2, 34]) to investigate in the context of our framework.
We have yet to explore customized representations for other
structures, but CIL is rich enough to support flow-directed
customizations for all types of data. For instance, we believe
it can be used to treat certain data structures as fictitious,
as in [34], and can be extended to encode polyvariant usage-
based customizations, such as Haskell’s used-once thunk op-
timization [42]. Much work remains to be done to optimize
customized representations and develop heuristics for choos-
ing between allowable representations.
There are many areas for improvement in the CIL com-

piler as a whole. The compiler can benefit from numerous
standard optimizations not yet implemented (e.g., tuple flat-
tening, loop optimizations, passing arguments in registers)
as well as some important non-standard optimizations (e.g.,
the complete removal of polymorphic equality, a type system
to formalize the code-pointer-as-tag optimization, general-
ized known value elimination). Several existing algorithms
can be more efficiently implemented: e.g., our algorithm
to produce clones and multiway dispatches for pollution re-
moval currently fails to re-combine identical clones. There
are also many opportunities for improvement in the repre-
sentation of the intermediate language: e.g., although we
can model the effect of multi-argument functions, we have
yet to implement them in the compiler.
The CIL compiler currently maintains type and flow in-

formation through code generation, but its output is un-
typed. We plan to eventually produce typed assembly lan-
guage (TAL) [27] from the CIL compiler.
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