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ABSTRACT

Traditionally, loops are a central topic in a CS1 course but recursion is
viewed as an advanced topic that is either taught near the end of the course or
not taught at all. Taking a cue from the function-oriented programming
community, we argue that there are strong pedagogical reasons for teaching
recursion before loops in a CS1 course, regardless of what programming
paradigm is taught. In our approach, recursion is presented as an instance of
the classic "divide, conquer, and glue" problem solving strategy. Iteration is
then presented as a particular pattern of recursion. Finally, loop constructs are
presented as concise idioms for iterative patterns. We describe our positive
experience in adopting this approach in a CS1 course and highlight the
aspects of the course that we think contribute to its success.

1. INTRODUCTION
Discussions of CS1 pedagogy are enlivened by perennial debates on the choice of

programming language and the choice and order of topics.  The area of topic order is
marked by various early/late debates: Should procedures be taught early or late? Should
objects be taught early or late (if at all)?  In this context, it is surprising that there has
been relatively little debate on where (or whether) recursion belongs in CS1.  We wish
to spark a new debate on whether recursion should be taught early or late in CS1.  Our
position is that recursion should be taught early and should be taught before loops.

This idea is unusual, if not heretical, but it is not without precedent.  Many
function-oriented languages (e.g., Scheme, ML, and Haskell) do not have imperative
looping constructs.  Instead all iterations are expressed via tail recursion, a particular
form of recursion (see Section 3.1).  Textbooks teaching such languages (e.g.,
[AbSu95, Bir98, Pau96]) necessarily present recursion before iteration.  

(Note: In our discussion, it is necessary to distinguish iterative computational
processes from the syntactic means for expressing them. We use "iteration" to describe a
step-by-step computational process that determines the next values of a set of state
variables from their previous values.  A "loop" is a particular control construct, denoted
by special syntax, for expressing an iteration, such as Java's while  and for  loop
constructs.  An iteration can also be expressed using tail recursion.)

If loops were easier to learn than recursion, then it would be more difficult to teach
a function-oriented language in CS1 than a language with explicit looping constructs.
Are people who teach function-oriented languages in CS1 crazy?  On the contrary, there
is a method to their madness, and we would like to incorporate some of their madness
into our methods!  In 1997, we completely overhauled our CS1 course, changing from
Pascal to Java.  As a part of the revamped course, we decided to follow the lead of the
function-oriented programming community by experimenting with teaching recursion
before loops.  Some of us with experience in teaching loops before recursion were
skeptical about the wisdom of such a non-traditional approach.  However, when we saw
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how well the approach worked in practice, the skepticism evaporated.  Below, we argue
that there are strong pedagogical reasons for teaching recursion before loops in CS1,
regardless of the programming language or paradigm employed.

The paper is organized as follows.  Section 2 summarizes the status quo in most
CS1 courses, where loops are treated as a focus and recursion as an afterthought.
Section 3 argues why this situation should be reversed.   Section 4 describes our
approach to teaching recursion before loops in Java, though the techniques are
applicable to any programming language.  Section 5 addresses some frequently asked
questions about our approach.  Section 6 concludes with a summary of our experience
in implementing these ideas.

2. THE STATUS QUO
Since we teach Java in CS1, we examined a sampling of CS1 Java textbooks

([ArWe98, Bis97, Cul98, DeDe97, DeHi98, GaMa98, Hor97, LeLo98, WiNa96]) to
review their coverage and ordering of recursion and loops.  Most of the books ([Bis97,
Cul98, GaMa98, Hor97, WiNa96]) treat recursion as an advanced topic that receives
only cursory coverage, usually near the end of the book, in a single chapter, and in the
context of a few classic examples (e.g., the factorial and Fibonacci functions, the tower
of Hanoi puzzle, binary search, mergesort, and quicksort).  One [DeHi98] does not
mention recursion at all.  Only a few ([ArWe98, DeDe97, LeLo98]) cover recursion in
more depth and explore recursion examples that are more compelling.  In contrast, all
the books have significant coverage of while  and for  loops, which are typically
introduced early and used frequently throughout the remainder of the book.  In all books
but one, loops were introduced before recursion, and the exception ([Hor97]) covered
all but one of its recursion examples after extensive loop coverage.

Based on our experience with introductory C, C++, and Pascal textbooks, the Java
textbooks we examined are representative of CS1 textbooks in general.  Even as staunch
a proponent of recursion as Eric Roberts (see [Rob86]) chooses to discuss recursion
only in the very last chapter of his introductory C textbook [Rob95b].

This state of affairs is consistent with the ACM/IEEE task force recommendations
for the CS curriculum in a liberal arts setting.  For example, [GiTu86] dictates that CS1
"should include all control constructs of a language" (including loops), but takes a
weaker stand on recursion: "Recursion should also be given at least cursory treatment
even though a full understanding might not take place until CS2."  More recent
recommendations [WaSc96] are vague, indicating that both iteration and recursion
should be covered somewhere in the CS1 and CS2 curriculum.

3. WHY TEACH RECURSION BEFORE LOOPS?
Here we argue that there are strong theoretical, practical, and pedagogical reasons

to teach recursion before loops.

3.1 Recursion is a Natural Consequence of Divide, Conquer, and Glue
One of the most important ideas taught in CS1 is the divide, conquer, and glue

(DCG) problem solving strategy:
• divide a problem P into subproblems P1, ..., Pn;

• conquer the subproblems by solving them, yielding subsolutions S1, ...,Sn;

• glue subsolutions S1, . . . ,Sn together into the solution S  to the whole problem.
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The DCG decomposition is applied until the problems are so small that their solution is
trivial. In traditional presentations of this strategy, the "glue" step is implicit, but we
think it is very important to make this step explicit because it is a common source of
confusion (see Section 3.5) and is also needed to define tail recursion

In CS1, it is standard to teach that functions (or procedures or methods) are the
unit of encapsulating the DCG strategy.  The input to a function is the problem P to be
solved; the output of the function is the solution S  to P; and the body of the function
performs the divide, conquer, and glue steps. The conquer step is achieved by invoking
functions appropriate for solving the subproblems of P.

Recursion is an instance of DCG in which some subproblems are the same kind of
problems as the original problem.  A natural function for solving these subproblems is
the one being defined to solve the whole problem. The notion of a function calling itself
causes initial confusion for many students, but the fact that it is an instance of a more
general pattern with which they are already comfortable helps to resolve this confusion.

Just as recursion can be viewed as an instance of DCG, iteration can be viewed as
an instance of recursion in which (1) there is at most one subproblem to be solved and
(2) the glue step is trivial (i.e., the identity operator). This pattern of recursion, in which
no work is done in the glue step (i.e., between the return of an inner call and the return
of an outer call to the recursion) is known as tail recursion. If we (1) view the iteration
problem as being the values of a set of state variables v1(t) ...vk(t) parameterized by the
time t; (2) consider the divide step to update the state variables to their values at time t+1
based on their values at time t ; and (3) dictate that the glue step is empty, then tail
recursion is isomorphic to iteration, as suggested by the following picture:
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It is worth noting that the description of the DCG strategy is itself recursive when
DCG is used as the subproblem-solving strategy. If we expect students to understand
the DCG strategy, we are implicitly expecting them to understand recursion! It is not
unreasonable to expect that they should also be able to understand recursive programs.

3.2 Recursion is More Fundamental than Looping
Not only does recursion naturally arise out of DCG, but it is in some sense more

fundamental and powerful.  It is possible to program comfortably using recursion to the
exclusion of loops, but not vice versa.  Using loops to encode recursion is more
challenging; it requires simulating an explicit call stack, a topic that is normally the
domain of CS2, not CS1.  There is even a technical sense in which recursion is more
powerful than looping. In a language with first-order functions and no data structures,
recursion can express computations that are not expressible with loops [PaHe70].
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3.3 Tail Recursion is Simpler than Looping

Iterations expressed via tail recursion are often easier to read, write, and reason
about than loops. The rigid structure of looping constructs makes it tricky to express
iterations that may terminate under multiple conditions, especially if some of the
conditions occur in the middle of a loop body or require special finalization actions. As
discussed in [Rob95a], such situations are usually addressed by adding extra boolean
variables to control the loop or by jumping out of the middle of a loop using a
constrained form of goto . In contrast, tail recursive solutions to these problems tend to
be remarkably simple and elegant, because they require none of these special tricks.

For instance, consider a function that returns the index of the first occurrence of a
given character in a character array, or -1 if it is not found.  Here is a Pascal function
that uses a local tail recursive function to express the two separate exit conditions:

type Ints = array [0..HI-1] of char;

function search (c:char; var A: Ints): integer;
  function searchLoop (i : integer): integer;
    begin
      if i >= HI then
        searchLoop := -1
      else if c = A[i] then
        searchLoop := i
      else
        searchLoop := searchLoop(i+1)
    end
  begin
    search := searchLoop(0)
  end

In contrast, expressing the same iteration in a Pascal while  loop requires introducing a
boolean loop control variable that obscures the logic of the iteration:

function search (c:char; var A: Ints) : integer;
  begin
    done: boolean := false;
    i: integer := 0;
    search := -1;
    while (not done) and (i < HI) do
      if c = A[i] then
        begin
          done := true;
          search := i
        end
      else
        i := i + 1
  end

Some versions of Pascal support a "short-circuit" boolean conjunction operator (&) that
can make the iteration more perspicuous by obviating the need for the done variable:

function search (c: char; var A: Ints): integer;
  begin
    i: int := 0;
    while (i < HI) & (not (c = A[i])) do
      i = i + 1;
    if (i >= HI) then
      search := -1
    else
      search := i
  end

However, when the while  loop exits, an additional test must be performed to see how
the loop terminated.  This test is not implied by the specification of the iteration, but is
an artifact of its implementation.
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Finally, the iteration can be more succinctly expressed in languages (e.g, C, C++,

and Java) with constructs that jump out of the middle of a loop.  E.g, in Java:
public static int search (char c, char [] A) {
  for (int i = 0; i < A.length; i++)
   {if (c = A[i]) return i;}
  return -1;
}

Although the Java solution is very concise, it requires a solid understanding of control
flow and the semantics of return .  Also, this solution may be unacceptable to
instructors who consider goto  harmful [Rob95a].

Of the above solutions, the tail recursive one best expresses the intrinsic problem-
solving logic of the iteration because it avoids the ad hoc hackery required in all of the
solutions that use loops. The tail recursive approach is expressible in all general-purpose
programming languages, regardless of what non-local exit constructs they support, so it
is easier for students to transfer their understanding of tail recursive solutions to other
languages they encounter after CS1.  Given these advantages, the question is not how to
justify teaching iteration via tail recursion but rather how to justify teaching it otherwise!

Although the tail recursive strategy described above works in all languages
supporting recursion, there is one fly in the ointment, which we call the non-block-
structure gotcha.  Block structure is a language feature that can significantly simplify the
expression of many recursions.  In a block structured language, any declaration that can
appear at top-level can also appear within the body of a function/procedure/method.  In
particular, a block structured language allows functions to be declared locally within
other functions.  Block structured languages include Scheme,  ML, and Pascal but not
C, C++, or Java. (The inner class feature of Java 1.1 supports a kind of block structure,
but may be too complex to introduce to CS1 students.)

Block structure allows a locally declared function to refer to variables of enclosing
functions as free variables, rather than requiring them to be passed as explicit arguments
to the local function. For example, in the tail recursive Pascal search function above,
the inner searchLoop function need not take c and A as parameters. However,  since
Java does not have block structure, the tail recursive approach requires the analogous
searchLoop static method to take c and A as explicit parameters, as shown below:

public static int search (char c, char [] A) {
  return searchLoop(c,A,0);
}

public static int searchLoop(char c, char [] A, int i) {
  if (i >= A.length)
    return -1;
  else if (c == A[i])
    return i;
  else
    return searchLoop(c, A, i+1);
}

(An alternative is to make c and A instance variables of an object for which search and
searchLoop are instance methods. This "object oriented" approach provides no clear
benefit over passing extra parameters but is considerably more verbose and complex.)

Thus, expressing iteration via tail recursion in non-block-structured languages can
require passing numerous explicit parameters that would be implicit in the analogous
loop. However, we believe that the non-block-structure gotcha is a relatively minor
inconvenience when compared to the benefits of tail recursion.

3.4 Recursion Requires Fewer Prerequisites Than Loops
The formal relationship between recursion and iteration has practical import for

how CS1 is taught.  Assuming that the goal of CS1 is to teach "big ideas", not details, it
is desirable to introduce the minimal number of programming constructs that allow the
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exploration of these ideas.  Recursive programs require only two language features: (1)
functions/procedures/methods, which are often covered early in CS1 courses, especially
those emphasizing the DCG strategy; and (2) some form of conditional, also typically
covered early in CS1.  Certainly, (1) is nontrivial.  But since both prerequisites are
usually taught anyway for other reasons, no new language features are necessary to
explore recursion or iteration.  The execution models for explaining function invocation
suffice to explain recursion, so no new models are necessary, either (see Section 4).

In contrast, using loops requires understanding (1) the syntax and semantics of the
loop construct(s), as well as (2) the subtleties of assignment.  Assignment is not a
prerequisite to understanding recursion; in fact, we delay the introduction of assignment
until after recursion is taught. (Note that the ":=" in the tail recursive Pascal search
function above is not a standard variable assignment, but part of Pascal's quirky
mechanism for returning a value from a function.)  The difficulties of understanding
assignment and the flow of control through a loop are often underestimated relative to
the difficulty of understanding an activation frame model that explains function calls
(and recursion). Understanding loops requires new language details and new conceptual
models, yet the resulting tool is nowhere near as powerful or elegant as recursion.  In
our experience, the notion of updating state variables in a loop is easier to motivate and
teach when the concept of iteration is already familiar from tail recursion.

3.5 Avoiding the Iteration Trap
We believe that a key reason that recursion is considered difficult is precisely

because it is traditionally taught after students have built up preconceptions about self-
referential processes based on their experience with looping. As noted above, looping is
an instance of DCG in which a problem divides into a single subproblem without a glue
step. This lulls students into expecting that all self-referential processes should have
these features, and makes it more difficult for them to understand the non-trivial glue
steps (pending operations) in more general recursive processes.

This "iteration trap" can be circumvented by emphasizing from the start that non-
trivial glue steps are a general feature of DCG, not just some quirky property of
recursion. I.e., some model explaining pending operations must be used to explain the
evaluation of any expression that exhibits nesting, whether it exhibits recursion or not.

For example, consider the following mathematical function definitions:
p(a) = 1 + f(q(a))
q(b) = 2 * g(r(b))
r(c) = h(c) - 4

(This is a contrived example ill-suited for CS1, but space does not permit a more
compelling one.) Understanding the evaluation of the function application p(3) requires
a model that somehow explains the process of unwinding the function definitions, e.g:

p(3)
-> 1 + f(q(3))
-> 1 + f(2 * g(r(3)))
-> 1 + f(2 * g(h(3) - 4))

The unwinding process leaves behind pending operations (+, *, f, g, and h) that cannot
be performed until their arguments are known. Any model sufficient to explain the
dynamic construction and removal of pending operations in the evaluation of non-
recursive function calls like p(3) is sufficient to explain the evaluation of recursive
function calls.  Such models include the expression rewriting model shown above as
well as activation frame models used to explain the semantics of function calls (e.g.
[AbSu95, Rob86]). We believe that many problems students have in understanding
recursion can be ameliorated by emphasizing examples that involve pending operations
and teaching models that explain pending operations before recursion is introduced.

3.6 Deep Ideas Take Time To Absorb
Recursive thinking is one of the deepest ideas taught in CS1. Deep ideas should be

introduced early in order to give students time to become familiar with them.  The usual
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approach of teaching recursion at the tail end of a course seriously short-changes
students. They often get just cursory exposure, sometimes without even writing a
recursive function on their own. Also, they are typically so saturated with end-of-
semester work that it is a struggle to absorb new ideas. Recursion is such an important
idea that every CS1 student, regardless of whether or not she is continuing on to CS2,
should finish CS1 without a good grasp of recursion. This level of understanding
requires time for the idea to germinate and grow.

4. HOW TO TEACH RECURSION BEFORE LOOPS
Since the fall semester of 1997, we have taught recursion before loops in a CS1

course based on Java. This approach works remarkably well. The success of this
approach is not just a consequence of the change in topic order, but is due in large part
to the way we present the material. In this section, we highlight the aspects of our
course that we think contribute to the success of the approach. Although we use Java to
teach this approach, there is nothing Java-specific to any of our suggestions.

4.1 Teach Explicit Structural Models
We believe that the single most important factor in teaching recursion before loops

is using an explicit execution model that explains function/procedure/method
invocations. For our course, we developed a Java Execution Model (JEM) that explains
Java method and constructor invocations in a high-level way that abstracts away from
any details of computer architecture. The model explains object creation, parameter
passing, the allocation, initialization, and assignment of both local and instance
variables, the meaning of the Java keyword this , the execution of the statements in the
method body, and the return of a result for methods with a non-void  return type.

The JEM explains the invocation of any method, not just recursive ones, so we
introduce it as part of understanding methods.  In particular, the JEM explains pending
operations, a notion essential for understanding recursion. Empirical studies confirm the
importance of execution models for students learning recursion [WDB98].

In our review of Java textbooks, we were flabbergasted by how few present an
explicit execution model of method invocation. Those that do often wait until recursion
to introduce such a model, which is too late. An execution model is necessary not only
to understand recursion, but to understand many other subtle aspects of Java execution.
Students must have some model to understand execution, and if you do not teach them
one, they will invent one (or several) on their own. The problem is that the models they
intuit are not likely to handle all of the subtleties of execution correctly. A host of
problems can be avoided by teaching such a model explicitly.

4.2 Emphasize Divide, Conquer, and Glue (DCG)
It is difficult for students to see the connection between DCG and recursion if it is

not taught explicitly. When we show how Java methods can be used to decompose
problems, we emphasize how methods are the embodiment of the DCG strategy. This
paves the way for motivating recursion as an instance of DCG.

4.3 Use Recursion Early and Often
Many CS1 books have a single chapter on recursion, and do not use recursion

after this chapter. This compartmentalized approach to recursion suggests that it is an
optional topic that is peripheral to the goals of CS1. We believe recursion is integral to
CS1, and must be taught in a way that emphasizes its central importance.  We introduce
recursion in four lectures beginning with the 13th lecture in a 26-lecture course.  Many
of the previous lectures focus on methods and their relationship to the DCG problem
solving strategy (4 lectures) and conditionals (2 lectures). Loops are introduced in the
two lectures following the four recursion lectures. Students are given two homework
assignments on recursion and one on loops (details below).
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Both recursion and loops are used often in the lectures and assignments in the

remainder of the course. For example, array and linked list algorithms are expressed
using both recursion and loops. This emphasizes that recursion is a fundamental
technique that is useful beyond the examples in which it is introduced.

4.4 Just Say No to Factorial
In our course, we develop students' interest in recursion by showcasing it in

examples that are more compelling than the traditional examples of factorial and
Fibonacci.  Specifically, we introduce recursion in the context of three "microworlds"
that are already familiar to the students from their study of methods and conditionals:
• BuggleWorld is a microworld, inspired by Karel the Robot [BSRP97], in which

"creatures" known as buggles populate a grid of cells. Each buggle is characterized
by its position, heading, color, and the state of a pen (up/down) that leaves a mark
when it moves.  Buggles can turn and move from cell to cell, except when they are
facing a wall, which they can detect.  They can also sense, pick up, and drop their
favorite food: bagels. Whereas [BSRP97] considers recursion to be an advanced
topic that is not covered until the final chapter, we teach recursion with buggles
early on using examples that students find motivating (see the next subsection).

• TurtleWorld is a Java implementation of the turtle graphics microworld pioneered in
LOGO [Pap80].  Recursion examples include drawing polygons, spirals, grids,
and self-similar fractals like trees, snowflakes, and Sierpinski's gasket [PJS92].

• PictureWorld is a coordinateless graphics microworld inspired by the Escher picture
language used in [AbSu95]. In this microworld, complex pictures can be
expressed by transforming (e.g., scaling, rotating, flipping) and combining (e.g.,
overlaying, vertically and horizontally juxtaposing) simple shapes (e.g. lines,
triangles, rectangles).  Recursion examples include recursive quilt patterns, archery
targets, and pictures of binary trees.

Such graphical microworlds have two advantages over traditional examples as vehicles
for introducing recursion. First, students find them more exciting. Second, since each
action gives visual feedback, incorrect recursive methods are easier to debug.

Examples from the above microworlds are used in the first three lectures and two
labs on recursion.  Only in the very last of four lectures on recursion do we cover classic
examples of recursion like factorial, Fibonacci, and the towers of Hanoi. We do this
partially for cultural reasons  and partially as an means for introducing static methods,
which have not been used earlier in the course.

4.5 Pedagogical Progression
The microworlds mentioned above are natural contexts in which to implement a

pedagogical sequence based on DCG that culminates in recursion and iteration. Below
we describe the pedagogical progression leading to recursion in terms of BuggleWorld
examples, though we also use TurtleWorld and PictureWorld examples at every stage.
• Students are introduced to buggles via simple programs that exercise their capabilities.

To accomplish tasks, students write straight-line programs in the body of a single
distinguished run() method in a subclass of the BuggleWorld class.

• Methods are introduced as the tool for decomposing buggle tasks according to the
DCG strategy. The JEM is introduced as a way to explain method invocation,
especially the concept of pending operations. Students experiment with adding
methods (but not instance variables) to numerous subclasses of the Buggle class.

• Conditionals are introduced as a way to programmatically use a buggle's sensors.
They are used within a buggle step() method that is invoked some large but fixed
number of times in order to accomplish tasks involving the traversal of many grid
cells. In this "pseudo-loop", the buggle is programmed to do nothing within the
step() method once it reaches a desired state. Tasks include dropping bagels in
every grid cell, following a bagel trail, and finding a bagel in an acyclic maze.
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• Dissatisfied by the inelegance of the pseudo-loop, students are ready to learn a

mechanism in which the buggle performs no more steps than necessary in order to
accomplish a task.  This mechanism is recursion! Examples at this stage include
tail recursive processes (e.g., leave a trail of bagels to the wall, walk forward until
finding a bagel or wall) as well as non-tail recursive processes in which pending
operations are used to undo certain changes to the buggle's state (e.g., leave a trail
of bagels to the wall and return to the initial position and heading, jump over a wall
of unknown height, find a bagel in an acyclic maze and return to the starting
position). We illustrate both tail recursive and non-tail recursive methods in the
very first recursion lecture to help avoid the iteration trap. We also use the already
familiar JEM to explain the pending operations in the non-tail recursive case. A key
aspect of this stage is that the previously learned execution model completely
explains all aspects of recursion without any modifications.

• The next stage focuses on the return of values from recursive buggle methods.
Examples include determining if there are any bagels in the line of sight of the
buggle and determining the number of steps to the wall the buggle is facing. In
each of these examples, the final position and heading of the buggle should be the
same as the initial position and heading. The solutions to these problems have
general cases with the following form:
To return the value for a buggle in state S:
    1. Change the state of the buggle from S  to S' ;
    2. Determine the result R'  of recursively invoking the method at S' ;
    3. Undo the state change in 1, from S'  back to S;
    4. Perform any glue on R'  to produce the final result R, which is returned.
These sorts of recursions are far more complex than those typically covered in a
CS1 course. Indeed, there are several pitfalls for students (e.g., forgetting to name
R'  to communicate it from step 2 to step 4; neglecting to undo the state change in
step 3). We have found it important to teach the above idiom explicitly, to present
many examples of this idiom, and to use the JEM to show in detail how some of
the examples work.
Note that we do not introduce instance variables, or even assignment to local
variables, before we cover recursion. This narrows the space of possible solutions
by precluding solutions that store the result of the recursion in a buggle instance
variable. This forces students to understand the idiom of returning recursive values
without relying on instance variables as a crutch. When instance variables are
introduced later, we explain how instance variables provide an alternative solution
to this class of problems. Delaying the introduction of assignment and instance
variables is another influence of function-oriented programming on our course.

• Iteration is introduced as a means of calculating one row of a two dimensional table
from the previous row. Each column of the table represents the values in a
particular state variable over time, and each row represents the values of all state
variables at a particular point in time. The connection between iteration and tail
recursion is made: any iteration can be expressed as a tail recursive method that has
one parameter for each state variable. Buggle tail recursions are viewed as
iterations on state variables.

• while  and for  loops are introduced as a concise way of expressing common patterns
of iteration. It is now necessary to introduce assignment so that the value of a
variable may change during the execution of a loop body. A correspondence is
made between the values of the loop state variables at a particular point in time and
the parameters to a particular invocation of the corresponding tail recursive
method. Familiar buggle tail recursions are re-expressed using loops.

• Later in the course, arrays and linked list structures are presented and are manipulated
via recursive methods (tail recursive and non-tail recursive) and loops.  Recursive
data structures are normally not introduced until CS2, but teaching simple ones in
CS1 dovetails nicely with our approach of teaching recursion before loops.
Programs that build and/or traverse recursive data structures are perhaps the most
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compelling and practical use of recursion, so it is important to see some examples
in CS1. In fact, in the future we plan to experiment with teaching binary trees in
CS1, because their branching structure leads to patterns of recursion that are not
encountered with linear lists and are difficult to express via iteration.

5. FREQUENTLY ASKED QUESTIONS
Here we answer some questions that are, or we expect to be, asked about our

approach. It is worth noting we raised many of these questions ourselves before
teaching the approach advocated by this paper.

Isn't recursion too complex and advanced to learn early in CS1?
Ask this question of the thousands of grade schoolers who have successfully

written recursive turtle programs in Logo [Pap80]. If grade school students can
routinely learn recursion, it is not too much to expect of college students!  This is not to
say that recursion is simple to learn. There are many challenges and potential pitfalls.
But it is our experience that most students can work through these difficulties if they are
taught appropriate models and motivating examples. Finally, we contend that the
"recursion is hard" belief is partially a cultural phenomenon that is perpetuated by
instructors and textbook writers who were themselves indoctrinated with this belief. If
students are told enough times that something is difficult, then it is not surprising that
they will believe that it is difficult.

Aren't loops easier to read/write than recursions?
A main reason loops are considered to be simpler than recursion is that they can be

introduced via a few standard idioms,  such as the "repeat N times" idiom in C and Java:
for (int i = 0; i < N; i++) {
   statements that use i
}

Students can often effectively use such idioms without necessarily understanding all of
the details of the looping construct.

However, similar idioms can be taught in a recursive style. The above example can
be expressed via a tail recursion:

... repeatMethod (0) ...

void repeatMethod (int i) {
  if (i < N) {
    statements that use i;
    repeatMethod(i + 1);
  }
}

It is true that looping constructs are often more concise than their recursive analogs, that
their organization highlights aspects of the iteration better than the recursive idiom, and
that they avoid the non-block-structured gotcha (see Section 3.3). These are all reasons
why we do eventually teach looping constructs in our course.

There are too many topics in CS1 already. How can I devote the amount of time to
recursion that your approach requires?

It is difficult to emphasize how important recursive thinking is to successfully
navigating the rest of the computer science curriculum. We believe that allocating time
and energy to teaching recursion early can have handsome payoffs in later courses.

It is our experience that much time in traditional CS1 courses is spent on secondary
details rather than primary ideas. It is not necessary to study every control construct,
every data structure, and every primitive operator supplied by a language. Features
should only be presented to the extent that they help teach a big idea. For example,
conditionals are a big idea. In Java, you can express all conditionals with the if
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construct. Conditionals can also be expressed via the switch  construct. We feel the
added detail of the switch  statement is unimportant. The time it takes to teach this can
be better spent on other big ideas, like recursion.

Many CS2 courses have significant coverage of recursion. Some time can be
gained in CS1 by swapping CS1 material with the CS2 recursion material.

Doesn't encouraging recursion promote inefficient programming?
In many languages, recursion, even tail recursion, implies significant time and

space overheads relative to looping constructs. However, this sort of inefficiency does
not concern us for three reasons: (1) While we teach recursion before loops, we still do
teach loops, so students eventually use them in their programs. (2) We believe that
premature emphasis on efficiency in CS1 is detrimental to the spirit of experimenting
with various approaches to solving a problem. Too often students ignore elegant
solutions or focus on irrelevant details because they are overly concerned about
efficiency. We believe that efficiency is an appropriate focus in subsequent courses, but
not in CS1. (3) Implementations of recursion are not necessarily inefficient. It is
possible to implement tail recursion so that it executes precisely like a loop [Ste77]; in
fact, Scheme implementations are required to have this behavior.  By training more
students to understand and use tail recursion, we hope to encourage future language
designers and implementers to support efficient tail recursive calls in all  programming
languages.

Aren't languages like Lisp, Logo , and ML better for teaching recursion than Pascal, C,
C++, Java, etc.?

Modulo the non-block-structured gotcha (see Section 3.3), any recursive algorithm
can be expressed in any of these languages in almost exactly the same way. Many
dialects of Lisp provide imperative looping constructs, so the proclivity of Lisp
programmers to use recursion is more a matter of culture than of language. We hope that
teaching recursion early will help to spread the elegant programming aesthetics of the
functional programming culture to other programming language communities.

If Lisp (and similar languages) can be considered to have any advantages relative
to recursion they are that (1) it is block structured, and so avoids the non-block-
structured gotcha; (2) some dialects (namely Scheme) require that all implementations
execute tail recursive function calls as efficiently as loops; and (3) function-oriented
languages are typically garbage collected, which makes recursive functions that take or
return dynamically allocated structures like lists and trees more convenient, since these
structures need not be manually deallocated. Advantage (1) is shared by many languages
that are not function-oriented, e.g. Pascal and its descendants. Note that Java already
has feature (3) and may one day have feature (2).

6. EXPERIENCE
It is our experience that introducing recursion before loops as sketched above is a

preferable alternative to the traditional approach. Judging by their office hour visits and
their performance on problem sets and exams, we believe that most of our students
finish the course with a firm understanding of both recursion and loops. Some students
still harbor confusion about recursion at the end of the course. The kind of example
most likely to still be confusing is a recursion that involves both returning a value and
undoing a state change.

We have observed that students seem to leave our CS1 course with better problem-
solving skills than in the previous incarnation of CS1.  We believe that this is largely
due to the fact that we now place much more emphasis on the divide, conquer, and glue
strategy. Explicitly viewing recursion and iteration as instances of this strategy dovetails
nicely with this emphasis.  Students see that recursion and iteration are not ad hoc
techniques, but examples of already familiar principles.
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The fact that no existing CS1 textbook (at least in Java) teaches recursion before

loops or even has extensive coverage of recursion is a barrier to adopting our approach.
Since we have not found an adequate textbook, we expect students to rely on notes they
take in lecture for learning the material on the Java Execution Model, DCG, recursion,
and iteration. Eventually, we hope to produce on-line notes that we can share with the
community at large.

The lack of textbook also implies a lack of readily available examples. In addition
to implementing the microworlds described above, we have developed a series of
examples and exercises based on these microworlds. We encourage other members of
the community to use these microworlds and examples (with proper attribution, of
course). Please contact us or visit the following web site:

http://nike.wellesley.edu/~cs111/it's-nice-to-share.html

We strongly encourage other CS1 instructors to experiment with teaching
recursion before loops, and to share their experiences with the CS1 community.
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