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Abstract

We present a call-by-value module calculus that serves as a framework for formal reasoning about
simple module transformations. The calculus is stratified into three levels: a term calculus, a core
module calculus, and a linking calculus. At each level, we define both a calculus reduction relation
and a small-step operational semantics and relate them by a computational soundness property: if two
terms are equivalent in the calculus, then they have the same observable outcome in the operational
semantics. This result is interesting because recursive module bindings thwart confluence at two levels of
our calculus and prohibit application of the traditional technique for showing computational soundness,
which requires confluence (in addition to other properties, the most important being standardization).
We show that it is sufficient to replace confluence by a weaker property that we call confluence with

respect to evaluation. We introduce a new technique for proving computational soundness based on a
pair of related properties that we call lift and project. The project property, under certain conditions,
implies confluence with respect to evaluation, while the lift property is equivalent to standardization.
In our multi-layer calculus, terms at one level serve as components of terms at the same or higher

level. This leads to a notion of embedding: calculus X is embedded in calculus Y if calculus steps of X
are preserved when wrapped in a context of Y . Two terms in X have the same meaning with respect to
Y if they have the same observational outcome in all contexts of Y . In our framework, computational
soundess of Y implies an observational soundness property: two terms that are equivalent in X have
the same meaning with respect to Y . Thus, calculus-based transformations in one calculus are meaning
preserving in any embedding calculus.
Our modules have both public and private components. We formalize the notion of privacy by

identifying modules up to alpha-renaming of hidden (i.e., private) labels. Because of this identification,
module linking can be defined without the need to resolve naming conflicts between the hidden labels of
two modules. In addition to alpha-renaming at the core module level, we also formalize alpha-renaming
in namespaces at the term and linking levels of our calculus. This is important, because many properties
of our module calculus hold only for alpha-equivalence classes of terms and not for concrete terms.
A particularly important domain for module transformations is link-time compilation, where many

optimization opportunities are not apparent until two modules are linked together. We present a simple
model of link-time compilation and introduce the weak distributivity property for a meaning-preserving
transformation T operating on modules D1 and D2 linked by ⊕: T (D1 ⊕ D2) = T (T (D1) ⊕ T (D2)).
We argue that this property finds promising candidates for link-time optimizations, and present simple
conditions that imply weak distributivity. We use these to demonstrate that some meaning preserving
module transformations are weakly distributive.
This reports expands upon our earlier work reported in [MT00]. We make several corrections to the

earlier work, the most important of which concerns the rule for garbage collection at the core module
level. Our rigorus treatment of alpha renaming in this report allows us to improve the treatment of
several linking operations and simplify the characterization of term behavior.
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1 Introduction

1.1 Meaning Preserving Module Transformations

Most modern programming languages provide some sort of module system that facilitates “programming in
the large” – i.e., composing large, complex programs out of smaller units, modules, that can be independently
specified, written, tested, debugged, and — ideally — reused.

While composing programs out of modules has numerous clear software engineering benefits, one draw-
back is that module boundaries often stand in the way of program optimizations. As an example of how
modules can block optimizations, consider the following modules D1 and D2:

D1 = [A 7→ 3, B 7→ A ∗ C], D2 = [C 7→ 4, D 7→ A+ C ]

Here we use a notation for modules formally introduced in section 2. In this notation, modules are bracketed
collections of bindings that associate labels with expressions. Consider the result of performing on each of
these modules a constant propagation optimization (CP ):

CP (D1) = [A 7→ 3, B 7→ 3 ∗ C], CP (D2) = [C 7→ 4, D 7→ A+ 4]

Now suppose that the two optimized modules are linked via the linking operation ⊕, which in this case
effectively takes the union of their bindings:

CP (D1)⊕ CP (D2) = [A 7→ 3, B 7→ 3 ∗ C,C 7→ 4, D 7→ A+ 4]

Linking exposes new opportunities for constant propagation that were unknown when the modules were
independently optimized. Unless more optimizations are performed after linking, these opportunities are
lost. In contrast, in non-modular whole-program approaches, optimizations such as CP would be performed
on an entire program after merging all of its pieces:

CP (D1 ⊕D2) = CP ([A 7→ 3, B 7→ A ∗ C,C 7→ 4, D 7→ A+ C])
= [A 7→ 3, B 7→ 3 ∗ 4, C 7→ 4, D 7→ 3 + 4]

Our goal in this work is to present a formal framework for studying a simple class of module transfor-
mations for a module calculus for a purely functional language. Ideally, a module transformation should
provably preserve the meaning of its input. Meaning preservation is usually phrased in terms of a notion
of observational equivalence. Two program fragments are observationally equivalent if they behave indis-
tinguishably in every context (modulo some notion of observable behavior). A program transformation is
meaning preserving if the result of transforming a program fragment is observationally equivalent to the
original fragment.

Meaning preservation is challenging to prove for general transformations. But for transformations ex-
pressible in the calculus of a language, meaning preservation holds if the language satisfies the following
computational soundness property1: if two fragments are equal in the calculus, then they have the same ob-
servable outcome relative to evaluation. We show that this property holds at all three levels of our module
calculus, and use it to prove that several classical program transformations are meaning preserving, both
within and across modules: constant folding and propagation, function inlining, and a simple form of dead
code elimination.

An example of a practical module transformation that can be shown to be meaning preserving in our
framework is cross-module lambda-splitting, a transformation described by Blume and Appel in [BA97] and

1We will often abbreviate the name of this property as “soundness”.
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used in the SML/NJ compiler. Suppose a module exports a function named F which may be used in one or
more other modules. We would like to inline F into a module that uses it, but it may be the case that the
definition of F is too large for inlining to be efficient. (If we consider a calculus with side effects, then side
effects may also prevent F from being inlined.). The proposed solution is to extract from F the expensive
part of its definition, add it to the module as a separately named component Fexp, and fill the former location
of the expensive part by a reference to the name Fexp. This transformation makes F cheap enough to inline
into other modules.

As a concrete example of this technique, consider the following module expression written in the syntax
of our calculus:

[F 7→ λx.C{λy.M ′}]⊕ [X 7→ A{F @ N}].

Here, C and A are expression contexts – expressions with single holes that are filled using the squiggly
bracket notation. Assume that the expensive part of the definition of F is λy.M ′, which is assumed to be
a closed abstraction (i.e., it has no free variables). Also assume that the name Fexp does not appear free
in C{λy.M ′} or in A{F @ N}. Then we can extract the expensive part as a separate module component
bound to Fexp and inline F in the second module to yield:

([F 7→ λx.C{Fexp}, Fexp 7→ λy.M ′]⊕ [X 7→ A{λx.C{Fexp} @ N}]){hide Fexp}.

The operator L{hide v} makes a label v exported by expression L inaccessible to the “outside world”. In the
above example, it is used to hide the name Fexp, which should not be observable outside of the transformed
expression. If it were, then the transformed expression would not be observationally equivalent to the original
one, because a context that uses Fexp would distinguish the original and final expressions.

Intuitively, the original and transformed expressions have the same meaning. But how can this intuition
be formalized? In our calculus we can formally prove this fact by showing that the expressions are equivalent
in the calculus, and therefore have the same meaning due to computational soundness (see section 2.6).

It turns out to be rather tricky to show that our module calculus has computational soundness. The
problem is that traditional techniques for showing this property (e.g., [Plo75, AF97]) require the language
to be confluent, but the recursive nature of module bindings destroys confluence. In order to show that
our module calculus has computational soundness, we introduce a new technique for proving this property
based on a weaker notion of confluence that we call confluence with respect to evaluation. Our technique
depends on pair of related properties that we call lift and project. After discussing computational soundness
in the context of our three-level module calculus, section 3 reviews the traditional approach to proving
computational soundness and introduces our new technique.

1.2 Link-time Compilation and Weak Distributivity

Our work was motivated in large part by an interest in link-time compilation. Link-time compilation is a
model of compilation that lies in the relatively unexplored expanse between whole-program compilation, in
which the entire source program is compiled to an executable, and separate compilation, in which source
program modules are independently compiled into fragments, which are later linked to form an executable.2

In the link-time compilation model (1) source program modules are first partially compiled into intermediate
language modules; (2) intermediate modules are further compiled when they are combined, taking advantage
of usage information exposed by the combination; and (3) when all intermediate modules have been combined
into a final closed module, it is translated into an executable.

Link-time compilation is worth exploring because it can potentially provide more reusability than whole-
program compilation and more efficiency than separate compilation. While separate compilation offers well-
known benefits for program development and code reuse, a drawback is that the compilation of one module
cannot take advantage of usage information in the modules with which it is later linked. In contrast, link-time
compilation can use this information to perform optimizations and choose specialized data representations

2In our categorization, code for virtual machines (such as Java’s JVM) is lumped together with with code for “real” machines
in the “binary” category.

4



more efficient than the usual uniform representations for data passed across module boundaries. The link-
time compilation model requires partitioning the work of program analysis and translation into pre-link-time,
link-time, and post-link-time passes. How to perform this partitioning in a way that is both practical (i.e.,
the cost of linking is acceptable) and non-trivial (i.e., does not degenerate into the whole-program model or
separate compilation model) is a fertile area for research.

In our study of module transformations, we have identified a property – weak distributivity – that suggests
promising candidates for link-time optimizations. Suppose that T is a module transformation, D1 and D2

are modules, and ⊕ links two modules into one. Then we say that T is weakly distributive if and only if

T (D1 ⊕D2) = T (T (D1)⊕ T (D2)).

Why should such a T be a candidate for link-time optimization? Imagine that a program is a binary
tree whose nodes are ⊕ and whose leaves are the modules of the program. For a weakly distributive
transformation, the effect of transforming the whole program obtained by first linking all the modules together
can instead be obtained by first transforming the leaf modules of the program, and then transforming the
modules obtained after each link step. The intermediate modules are transformed to take advantage of
information exposed in the combination that was not apparent in the individual components.

An example of a weakly distributive module transformation is the constant propagation transformation
CP introduced in section 1.1. For the example given there, note that:

CP (D1 ⊕D2) = CP ([A 7→ 3, B 7→ A ∗ C,C 7→ 4, D 7→ A+ C])
= [A 7→ 3, B 7→ 3 ∗ 4, C 7→ 4, D 7→ 3 + 4]
= CP ([A 7→ 3, B 7→ 3 ∗ C,C 7→ 4, D 7→ A+ 4])
= CP ([A 7→ 3, B 7→ 3 ∗ C]⊕ [C 7→ 4, D 7→ A+ 4])
= CP (CP (D1)⊕ CP (D2))

In this paper, we present simple conditions that imply weak distributivity for module transformations.
Examples of such transformations include those mentioned for meaning preservation, except for function
inlining, which fails to meet the conditions.

1.3 Summary of Contributions

The main contributions of this paper are as follows:

• We present an untyped call-by-value module calculus stratified into three levels: a term calculus, a
core module calculus, and a linking calculus. At each level, we show that the reduction relation of the
calculus is computationally sound with respect to a small-step operational semantics defined in terms
of an evaluation relation that is a subset of the reduction relation.

• We develop a formal framework for reasoning about a multi-level calculus, which includes a notion of one
calculus being embedded in another. This notion allows us to show that calculus-based transformations
at one level of the calculus are meaning preserving with respect to another level.

• We formalize the privacy of module components via alpha-renaming and resolve a thorny interaction
between alpha-renaming and module contexts with fixed private labels.

• We summarize the traditional technique for proving computational soundness based on confluence and
standardization and introduce a new technique for proving it via a pair of related properties we call
lift and project. This new technique employs a notion of confluence with respect to evaluation that is
weaker than confluence, allowing us to handle the non-confluence of module evaluation in the presence
of recursive module bindings.

5



• We sketch a simple model of link-time compilation and introduce the weak distributivity property as
one way to find promising candidates for link-time optimizations. We show that module transforma-
tions satisfying certain conditions are weakly distributive, and demonstrate these conditions for some
examples of meaning preserving transformations.

1.4 Differences from [MT00]

This technical report expands upon our earlier work presented in [MT00]. While the module calculus
presented here is in essence very similar to that in [MT00], we have simplified several link-level operations
by considering these operations at the level of α-equivalence classes of linking expressions, rather than on
concrete expressions, improved and made consistent classification at the three level of our calculus, corrected
an error of [MT00] related to garbage collection rule for the core module calculus, and introduced some new
definitions which clarify reasoning about meaning preservation. Specifically, the changes are as follows:

• The theoretical framework presented in this work distinguishes between computational soundness, a
property of a calculus that calculus equivalence of two terms implies their observational equivalence, and
observational soundness of one calculus with respect to another, a property that two terms equivalent
in a calculus X produce two observationally equivalent terms in X ′ when enclosed into the same
context of X ′. A simplified definition of observational equivalence of two terms in a calculus relates the
terms by their outcomes in all contexts of the calculus, while [MT00] uses a more complex definition
which takes into account only values as observables, but ignores other aspects of behavior of terms, for
instance it does not distinguish between divergence and error. The new definition is consistent with
the notion of computational soundness, which is the main focus of our study.

• In the current report we formally define confluence with respect to evaluation and show its relation to
the properties lift and project introduced in [MT00]. See section 3.6 for a detailed discussion.

• The most significant difference of the calculus here from that of [MT00] is that terms at each level are
identified up to a corresponding notion of α-renaming. While in the old version of the calculus the user
had explicit control over the names of hidden components of a module, here modules are identified
up to renaming of such components, and the user deals with entire α-equivalence classes of modules.
Having introduced such α-renaming for modules, we have lifted it to the next level of the calculus –
that of linking expressions. We have also identified terms up to renaming of λ-bound variables, and
linking expressions up to renaming of let-bound module identifiers (in [MT00] such identification was
assumed but not formalized).

The new identification allows us, in particular, to define a linking of two modules that automatically
resolves conflicts between the names of hidden components of the two modules by choosing a pair of
representatives of the α-equivalence classes of the two modules which do not have a conflict. We also
replaced a general (rename) rule of [MT00], which, in particular, allows explicit renaming of hidden
labels and renaming of a visible label to a hidden, by a pair of rules: (rename) for renaming of one
visible label to another, and (hide) for hiding a visible label. In the latter rule a new hidden name that
the visible label gets renamed to is chosen automatically.

It turns out that most claims that we have made about the calculus in [MT00] only hold at the level of
α-equivalence classes, but not at the level of concrete terms (see examples 2.18 and 2.19). While the
proofs of [MT00] are done with an implicit assumption that we are in fact working with α-equivalence
classes rather than concrete terms, in this presentation we felt that a rigorous treatment of renaming
of hiddens must be supported by the same level of formalism for the other α-renamings.

This approach is similar to (and partly inspired by) the identification of modules up to structural
rewrite rules in [WV99], which includes α-renaming of variables, i.e. internal names of components,
corresponding to our hidden names. Other structural rewrite rules of [WV99] include reordering of
module components (which in our calculus are unordered in a module by definition) and swapping
arguments of a linking operation.
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• In this presentation we correct the error of [MT00], where the rule (GC) for garbage collection of
hidden module bindings not referenced elsewhere in the module was introduced as an evaluation step.
It turns out that this reduction rule defined as an evaluation step destroys computational soundness of
the calculus (see section 2.6.2 for details). We have corrected the error by defining garbage collection
as a non-evaluation step. The change has prompted some changes in the classification functions for
the core module calculus and the linking calculus (see below).

• In the current presentation we redefine a classification function for the core module calculus and the
linking calculus. Unlike the componentwise classification defined in [MT00], the new classification of
modules has three classes: evaluatable (for modules in the domain of the evaluation function), a value
(for modules all of whose components are values), and an error (for all other modules). Module values
are further characterized by the componentwise classifications of their visible components. Similar
classes are introduced for linking expressions. We fixed the inconsistency of the classification of linking
expressions in [MT00] which considered an expression “linkable” (we have replaced the name “linkable”
by “evaluatable” in the current work) if it had a linking operation in it, regardless of whether there
were linking operations that could actually be performed. For instance, linking of two modules cannot
be performed if there is a conflict between visible labels of the two modules. In the new classification
expressions in which linking operation are present, but cannot be performed, are correctly considered
to be errors. Another significant change in classification of linking expressions is that it is defined at the
level of α-equivalence classes of expressions. This allows us to ignore the conflicts between the names
of hidden components in expressions invloving (link), because at the level of α-equivalence classes such
conflicts are resolved automatically. We show that the new classification functions for modules and
linking expressions are well-defined with respect to α-renaming.

• While in [MT00] the reduction of link-level (let) expression is allowed at any point of evaluation, the
current rule requires that the let-bound expression is evaluated to a module before it gets substituted
into the body of the let. The change makes the reduction of let more consistent with the call-by-value
nature of our calculus. However, this is not a truly call-by-value reduction rule, since we do not require
that a module evaluates to a module value before the reduction can take place. Such a requirement
would have caused module evaluation steps and linking steps to be interleaved, thus destroying the
staged behavior of evaluation at the linking level. See section 2.5.7 for a more detailed discussion.

• In addition to module-level contexts which can be filled with terms (defined in [MT00]), we also
introduce module contexts filled with other modules (denoted M). These contexts are convenient for
formalizing α-renaming of modules and garbage collection rule (GC). A meaningful definition of filling
such contexts with modules includes cases when the module that fills a context imports hidden labels.
Thus we have extended the class of modules to include those with imported hidden labels. Modules
that do not import hiddens are called h-closed, and are denoted by H . In the linking calculus we
restore the restriction that all modules which form a linking expression are h-closed. The restriction
guarantees that no capture of hidden labels occurs during linking. Besides the new module contexts,
we have introduced other kinds of contexts for technical reasons.

• We have made several changes in notations, the most significant are that we have unified notations for
reduction arrows on the diagrams and in the text (we use ◦−−→ instead of ↪→ for non-evaluation step). L
and L are used instead of F and F for linking expressions and linking contexts, and the linking calculus
is denoted L instead of F . We also use pairs of the form (C,M), where C is a context and M is a
term, to denote subterm occurrences in terms, which allows us to specify a particular redex in a term.

1.5 Relation to Other Work

Our work follows a long tradition of using untyped calculi for reasoning about programming languages
features: e.g., call-by-name vs. call-by-value semantics [Plo75], call-by-need semantics [AFM+95, AF97],
state and control [FH92], and sharing and cycles [AK97, AB97]. Our notion of confluence with respect to
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evaluation avoids cyclic substitutions in the operational semantics, and so is related to the acyclic substitution
restriction of Ariola and Klop [AK97]. Even though confluence in our calculus fails in the same way as in
[AK97], our way of dealing with this problem is different. Instead of prohibiting cyclic substitutions in the
calculus, as it is done in [AK97, WV99], we allow such substitutions in the calculus but do not consider
them to be evaluation steps in the operational semantics. This turns out to be sufficient for achieving our
goal of proving the computational soundness of the calculus. A different approach is taken in [AB97], which
addresses the lack of confluence for unfolding operations on recursive terms by identifying such terms up to
information content – i.e., a term has a unique infinite normal form.

This work is part of a renewed interest in linking issues that was inspired by Cardelli’s call to arms
[Car97]. Recent work on module systems and linking has focused on such issues as: sophisticated type
systems for modules [HL94, Ler94, Sha99, Rus99]; the expressiveness of module systems (e.g., handling
features like recursive modules [FF98, DS98, CHP99, AZ99], inheritance and mixins [DS96, DS98, AZ99,
FRR00], and dynamic linking [FF98, WV99, Dug01, HWC01]); module systems for typed assembly language
[GM99, Dug01, HWC01] binary compatibility in the context of program modifications [SA93, DEW99];
and modularizing module systems [Ler96, AZ99]. There has been relatively little focus on issues related
to link-time optimization and cross-module transformations; exceptions are Fernandez’s work on link-time
optimization [Fer95], techniques for cross-module optimization in ML [BA97, Sha98], and work on just-in-
time compilers (e.g, [PC97]). While these projects consider module systems and transformations that are
considerably more sophisticated than the ones we study, they skirt the issue of meaning preservation, which
is one of our main goals.

Our work stands out from other work on modules in two important respects:

1. Distinguishing the calculus from the operational semantics: We partition the reduction relation of the
calculus (−−→) into evaluation (sometimes called standard) steps (==⇒) that define a small-step operational
semantics and non-evaluation (non-standard) steps (◦−−→). While this partitioning is common in the
calculus world (e.g., [Plo75, FH92, AF97]), it is rare in the module/linking world. Typical work on
modules (e.g., [Car97, AZ99]) gives only an operational semantics for modules. Yet in the context of
link-time compilation, the notion of reduction in a calculus is essential for justifying meaning preserving
program transformations. Without non-evaluation steps, even simple transformations like transforming
[F 7→ λx.(1 + 2)] to [F 7→ λx.3] or [A 7→ 4, F 7→ λx.x+A] to [A 7→ 4, F 7→ λx.x + 4] are difficult
to prove meaning preserving. Meaning preservation is difficult to discuss in the context of module
research that is based on a calculus with no associated operational semantics (e.g.,[WV99]), for then
there is no well-defined notion of observational equivalence. The only recent work on linking that we
are aware of that considers both a calculus and an operational semantics is [FRR00], which presents a
calculus intended to serve as an intermediate language for compiling object-oriented languages.

2. Untyped calculus: Unlike most recent work on modules and linking (with the notable exceptions of
[WV99, FRR00]), our work considers only an untyped module language. This is not because we
think types are unimportant, but for other reasons. First, types are orthogonal to our focus on
computational soundness and weak distributivity; considering types at this point would only complicate
the presentation. Second, introducing types often requires imposing restrictions that we would like to
avoid. For example, to add types to their system, [AZ99] need to impose several restrictions on
their untyped language: no components with recursive types, and no modules as components to other
modules. Finally, we do not yet have anything new to say in the type dimension. We believe that it
is straightforward to adapt an existing simple module type system (e.g., [Car97, FF98, AZ99]) to our
calculus, and that type soundness and subject reduction would hold. On the other hand, we think that
enriching our module system with polymorphic types is a very interesting avenue for future exploration.
In particular, polymorphism based on union and intersection types has modularity properties that may
make it particularly well-suited to the area of link-time compilation (see [Jim96, Ban97, KW99]).
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2 The Module Calculus

In this section, we present a stratified calculus with three levels: a term calculus T , a core module calculus C,
and a linking calculus L. The three calculi are summarized in figure 1 and described in detail in sections 2.3–
2.5. We first consider a core module calculus without a garbage collection rule; section 2.6 discusses how
to extend it with garbage collection. Before presenting the details of the three calculi, we define some
mathematical concepts and notations in section 2.1 and introduce notational conventions and properties
relevant to all three levels of the module calculus in section 2.2.

2.1 Mathematical Preliminaries

2.1.1 Relations

A binary relation R over sets S and T is a subset of S × T , and the notation x R y means (x, y) ∈ R. We
say x is in the domain of R, written x ∈ dom(R), iff there exists a y such that x R y. We say that R is
injective if x R y1 and x R y2 implies y1 = y2

A binary relation R over S ×S is transitive iff x R y and y R z imply x R z, symmetric iff x R y implies
y R x, and reflexive iff x R x for all x ∈ S. We use R? to stand for the reflexive closure of R, R+ to stand
for the transitive closure of R, R∗ to stand for the reflexive, transitive closure of R, and R= to stand for the
reflexive, symmetric, and transitive closure of R. For a relation written as an arrow, →, we also use ↔ for
its reflexive, symmetric, and transitive closure. A binary relation R over S is an equivalence relation iff R
is reflexive, symmetric, and transitive; R= is necessarily an equivalence relation.

Below we formulate and prove some general properties of relations that will be used later in our presen-
tation.

Lemma 2.1. If R is symmetric, then xR∗y iff xR=y.

Proof. If xR∗y, then by definition xR=y.
Suppose xR=y. Let xR−1y denote the fact that yRx, and let R± = R∪R−1. xR=y by definition implies

that there exist x1, . . . , xn, n ≥ 0, such that x = x1R
±x2R

± . . . R±xn = y. By symmetry of R R± = R,
therefore x = x1Rx2R . . . Rxn = y.

Definition 2.2. We say that a binary relation R is independent from a binary relation S if xRy, ySz implies
that there exists y′ such that xSy′, y′Rz.

Lemma 2.3. Let R1 and R2 be two symmetric binary relations such that R1 is independent from R2, and
let R = R1 ∪ R2. Then xR=y implies that there exists z such that xR∗1z, zR

∗
2y.

Proof. By symmetry of R1 and R2 xR=y implies that xR∗y by lemma 2.1. If the sequence is of the form
xR∗1zR

∗
2y, then we are done, otherwise there exist x1, x2, x3 such that xR∗1x1R2x2R1x3R

∗y. Suppose the
length of the sequence xR∗1x1 is n, where n ≥ 0, and the length of the entire sequence xR∗y is m (m ≥ 2).
By definition 2.2 there exists x′2 such that x1R1x

′
2R2x3, then in the sequence xR∗1x1R1x

′
2R2x3R

∗y the length
of the subsequence xR∗1x1R1x

′
2 of only R1 steps is n+ 1, and the length of the entire new sequence is still

m. If the new sequence is of the form xR∗1zR
∗
2y, then we are done, otherwise we transform the sequence

again in the same way. The length of the sequence of only R1 steps (before the first R2 step) originating
at x increases by 1 after every transformation, but it cannot exceed m, therefore the process will terminate,
and the resulting sequence is of the form xR∗1zR

∗
2y.

2.1.2 Functions

A (partial) function is a triple (A,B, g), where A and B are sets, respectively called the source and target
of the function, and g, the graph of the function, is an injective binary relation over A×B. In the following
definitions, let f be the function (A,B, g). We say that the signature of f is f : A→ B and that x ∈ dom(f)
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iff x ∈ dom(g). If x ∈ dom(f), we use the function application notation f(x) to stand for the unique y ∈ B
such that x g y; otherwise, we say that f is undefined at x. We say that f is a total function if dom(f) = A.

Let B⊥ denote B ∪ {⊥B}, where ⊥B (pronounced “bottom”) is a distinguished element not in B. Any
function (A,B, g) that is not total can be extended to a total function (A,B⊥, g

′) where g′ = g ∪ {(x,⊥
) | x 6∈ dom(g)}.

2.1.3 Sequences

Let P stand for the positive integers {1, 2, . . .}. A sequence S over some set X is a function from P to X⊥
such that if S(i) 6=⊥X and j ≤ i then S(j) 6=⊥X .

Given a sequence S, let the length of S be 0 if S(1) =⊥X , or the largest integer i such that S(i) 6=⊥X ,
or ω if S(i) 6=⊥X for all i ∈ N. Let Xω be the set of all sequences over X , and X∗ be the set of all finite
sequences over X . Let [x1, . . . , xn] denote the sequence S such that S(i) = xi for i ≤ n and S(i) =⊥X
otherwise. In particular, [] is the empty sequence. Given S ∈ X∗ and S′ ∈ Xω, let S;S′ be the sequence that
begins according to S and then continues with S ′, i.e., (S;S′)(i) = S(i) if i ≤ |S| and (S;S ′)(i) = S′(i− |S|)
otherwise. We shall assume that, where appropriate, there is an implicit coercion from X into Xω which
maps every element x ∈ X into the length 1 sequence [x]. For example, using this implicit coercion, when
S ∈ Xω and x ∈ X the notation S;x stands for S;[x] and x;S stands for [x];S.

2.2 Calculus Notations and Properties

Let X range over {T , C,L}. The definition for each calculus X consists of the following:

• The syntax for calculus terms TermX and for one or more sets of one-hole contexts ContextX ′,X ,
where X ′ may or may not be the same as X . A set ContextX ′,X ranges over one-hole contexts X that
are filled with terms Y ∈ TermX ′ such that the result, written X{Y }, is an element of TermX . Due
to the hierarchical structure of our module calculus, X ′ may be different from X . For instance, in our
hierarchy T contexts are filled with T terms; C contexts are filled with T or C terms; and L contexts
are filled with L terms (which include C terms as a special case). We assume that the notation X{Y }
is only used with such X and Y that the result of the filling is a well-formed term in TermX . For
instance, given a module context D and a term M , the notation D{M} is defined only if the resulting
module is well-defined element of TermC .

Given a set of contexts CX ′,X ⊆ ContextX ′,X and a relation R on TermX ′ , we say that a relation S
on TermX is a contextual closure of R w.r.t. CX ′,X iff S = {(X,X ′) | X = X{Y }, X ′ = X{Y ′},X ∈
CX ′,X , (Y, Y

′) ∈ R}.

Given a term X ∈ TermX , a subterm of X is a term Y ∈ TermX ′ such that X = X{Y } for some
X ∈ ContextX ′,X . It is often important to specify the “position” at which a subterm occurs in an
enclosing term. For this purpose, we define a subterm occurrence of X ∈ TermX as a a pair (X, Y )
such that X ∈ ContextX ′,X , Y ∈ TermX ′ , and X = X{Y }. We use = to denote componentwise
equality on subterm occurrences.

• A small-step operational semantics of X is defined via an evaluation step relation ==⇒X . We also define
a complementary non-evaluation step relation ◦−−→X , and for each of the three calculi we define a one-

step reduction relation −−→X
def
===⇒X ∪ ◦−−→X .

3 A term X ∈ TermX is reducible if there is a term Y
such that X −−→X Y ; otherwise it is an X normal form. Similarly, X is evaluatable if there is a term Y
such that X ==⇒X Y ; otherwise it is an X eval normal form. The set NF−−→X

contains exactly the X
normal forms, and the set NF==⇒X

contains exactly the X eval normal forms.

The relation ==⇒X is often defined in terms of an evaluation context EvalContextX ′,X ⊆ ContextX ′,X ,
along the lines of [FF86]. Note that since the redex of a calculus may be a term of another calculus

3Alternatively we could have defined the rules for −−→X explicitly and then set ◦−−→X to be −−→X \ ==⇒X . However, giving
explicit rules for ◦−−→X clarifies the presentation.
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Syntax for the Term Calculus (T ):

c ∈ Const = constant values x ∈ Variable = term variables

v ∈ Visible = external labels h ∈ Hidden = internal labels

k, l ∈ Label = Visible∪Hidden
M,N ∈ TermT ::= c | x | l | (λx.M) |M1 @M2 |M1 opM2

C ∈ ContextT ,T ::= 2 | (λx.C) | C @M |M @ C | C op M |M op C
V ∈ ValueT ::= c | x | λx.M

Notion of Reduction on Terms:
(λx.M @ V ) ÃT M [x := V ] (β)

c1 op c2 ÃT c, where c = δ(op, c1, c2) (δ)

Evaluation and Non-evaluation Steps:

E ∈ EvalContextT ,T ::= 2 | E @M | (λx.M) @ E | E op M | c op E
E{R} ==⇒T E{Q} , where RÃT Q, (term-ev)

E{R} ◦−−→T E{Q} , where RÃT Q. (term-nev)

Syntax for the Core Module Calculus (C):

D ∈ TermC ::= [l1 7→M1, . . . , ln 7→Mn] (abbreviated [li
n
7→
i=1

Mi]),

provided FV (D) = ∅ and li = lj implies i = j.
H ∈ HTermC = {D | Imports(D) ∩Hidden = ∅}

M ∈ ContextC,C ::= [li
n
7→
i=1

Mi,2]

D ∈ ContextT ,C ::= M{[l 7→ C]}
ValueC ::= [vi

n
7→
i=1

Vi, hj
m
7→
j=1

V ′
j ]

Projection Notation: [li
n
7→
i=1

Mi] ↓ lj =Mj , if 1 ≤ j ≤ n, and otherwise undefined.

Evaluation and Non-evaluation Steps:

G ∈ EvalContextT ,C ::= M{[l 7→ E]}

G{R} ==⇒C G{Q}, where RÃT Q. (comp-ev)
G{l} ==⇒C G{V }, where G{l} ↓ l = V . (subst-ev)

G{R} ◦−−→C G{Q}, where RÃT Q. (comp-nev)

G{l} ◦−−→C G{V }, where G{l} ↓ l = V . (subst-nev)

Syntax for the Linking Calculus (L):

I ∈ModIdent ::= module identifiers

L ∈ TermL ::= H | I | L1 ⊕ L2 | L[v
ren
←v′] | L{hide v} | let I = L1 in L2

L ∈ ContextL,L ::= 2 | L⊕ L | L⊕ L | L[vren
←v′] | L{hide v} | let I = L in L | let I = L in L

ValueL = ValueC

Evaluation and Non-evaluation Steps:

H ==⇒L H ′, where H ==⇒C H
′ (mod-ev)

L{[ki
n
7→
i=1

Mi] ⊕ [lj
m
7→
j=1

Nj ]} ==⇒L L{[ki
n
7→
i=1

Mi, lj
m
7→
j=1

Nj ]}, (link)

where [ki
n
7→
i=1

Mi], [lj
m
7→
j=1

Nj ] ∈ HTermC

and (∪ni=1ki) ∩ (∪
m
j=1lj) = ∅.

L{H[vren
←v′]} ==⇒L L{H[v := v′]}, (rename)

where v ∈ BL(H) implies v′ 6∈ BL(H).
L{H{hide v}} ==⇒L L{H[v := h]}, (hide)

where v 6∈ Imports(H), h 6∈ Hid(H).
L{let I = H in L} ==⇒L L{L[I := H]}, (let)

L{H} ◦−−→L L{H ′}, where H −−→C H
′ (mod-nev)

and L 6= 2 or H ◦−−→C H
′

Figure 1: The three levels of the module calculus without GC. See section 2.2 for notational conventions and
sections 2.3–2.5 for details on each level.
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(for instance, redexes of the core module calculus C range over terms of T ), an evaluation context has
two subscripts: one for the calculus of the redex, and one for the calculus of the term being evaluated.
If X ranges over EvalContextX ′,X , then X ranges over ContextX ′,X \ EvalContextX ′,X (i.e. the
set of non-evaluation contexts). For pairs of rules such as (comp-ev) and (comp-nev), which only differ
by the use of an evaluation versus a non-evaluation context, we introduce a notation for the combined
calculus rule. For instance, we say that D −−→C D′ by the rule (comp) if either D ==⇒C D′ by (comp-ev)
or D ◦−−→C D′ by (comp-nev).

In our calculi, all reduction steps are specified in terms of a basic rewriting step that takes place in an
unchanging context. In a one-step reduction Y −−→X Z, it is sometimes necessary to indicate “where” in
Y the basic rewriting step occurs. We indicate this location, known as a redex, by a subterm occurrence
(X, R) of Y such that (X, Q) is a subterm occurrence of Z and the basic rewriting step rewrites R to Q.

The notation Y
(X,R)
−−→X Z indicates the redex reduced by a reduction step. The notations Y

(X,R)
==⇒X Z and

Y
(X,R)
◦−−→X Z are used to highlight the redex reduced in evaluation and non-evaluation steps, respectively.

• A set ValueX ⊆ NF==⇒X
of values, terms which intuitively are “results” for computations in X .

• A set ObsX of observables, tokens that summarize the “observable properties” of a computation in
X . The set ObsX must contain the token evaluatableX , which is used to classify evaluatable terms,
and the token ⊥X , which is used to classify a diverging evaluation sequence (and sometimes errors).
ObsX differs from ValueX in that (1) a single observable token may denote a set of values and (2)
observable tokens can denote non-value terms, such as evaluatable terms and error terms.

• A classification function ClX that maps each term to a token in ObsX that summarizes its state w.r.t.
evaluation. The ClX function must satisfy the following two properties:

Property 2.4. ClX maps every evaluatable term (and no eval normal form) to evaluatableX .

Property 2.5. The image of ValueX under ClX is disjoint from that of TermX \ValueX .

We sometimes summarize the image of ValueX under ClX using the single token valueX .

The following are general properties of calculi. As we shall see in section 3, they are important for proving
that certain classes of program transformations are meaning preserving.

Definition 2.6 (Confluence). The −−→ relation is confluent if M1 −−→∗ M2 and M1 −−→∗ M3 implies the
existence of M4 such that M2 −−→∗ M4, M3 −−→∗ M4. A calculus X has confluence if −−→X is confluent.

Definition 2.7 (Standardization). A calculus X has the standardization property if for any sequence
M1 −−→∗X M2 there exists M3 such that M1 ==⇒∗X M3 ◦−−→∗X M2. A sequence of the form M1 ==⇒∗X M3 ◦−−→∗X M2

is called standard.

Remark 2.8. Our definition of standardization is not the traditional one. Traditionally, a standard reduc-
tion sequence is defined as a sequence satisfying certain relation between redexes (see [CF58, Plo75, Bar84]).
Our definition is based only on definition of ==⇒X and ◦−−→X in a calculus X . However, the definitions in the
literature above, as well as our definition, capture the same idea: a standard sequence is such that it reduces
first the redexes “needed” for a term to reach a normal form of certain kind, for instance a value, and after
that the redexes that do not contribute to reaching a normal form, such as redexes under a lambda. See
section 3.5.2 for a more detailed discussion.

In a calculus with a confluent ==⇒X every non-diverging (w.r.t. ==⇒X ) term evaluates to a unique X eval
normal form. This leads to the following definitions:

Definition 2.9 (Evaluation). Assume that ==⇒X is confluent. The partial function EvalX : TermX →
NF==⇒X

is defined so that EvalX (X) is the unique term Y ∈ NF==⇒X
(if it exists) such that X ==⇒∗ Y . If

EvalX (X) is undefined, X is said to diverge.
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Definition 2.10 (Outcome). Assume that ==⇒X is confluent. The total function OutcomeX : TermX →
ObsX maps a term X to the classification of its X eval normal form ClX (EvalX (X)) if it exists, and to the
symbol ⊥X otherwise.

Remark 2.11. In some calculi with a confluent ==⇒X , it is possible that a term has a unique X eval normal
form and also has a ==⇒X -diverging path. This does not contradict confluence of ==⇒X , since it is possible
that every term on a diverging path can be reduced to the normal form. In this case, according to our
definition, the outcome of the term is the classification of the X eval normal form, so OutcomeX (X) =⊥X
only if a term diverges on every evaluation path. However, this is a technical issue which does not arise in our
calculi: we show that for all calculi introduced in this presentation for which X eval normal form is defined
(X eval normal form is not defined for calculi of concrete terms, only for calculi of α-equivalence classes), if
a term has an X eval normal form, then it does not have a diverging evaluation path. See lemma 2.62 for
the calculus C\α and lemma 2.113 for L\α.

We shall see that for all X ∈ {T , C,L}, ==⇒X and −−→X are not confluent and X does not have the
standardization property at the level of the concrete terms defined in figure 1. These properties fail to hold
for technical reasons involving the choice of new names in certain reduction steps. However, it turns out
that these properties do hold at the level of “α-equivalence” classes of terms in these calculi. That is, for
all X ∈ {T , C,L}, there is a binary α-equivalence relation =Xα on TermX that identifies terms in X modulo
various kinds of renaming in X . We shall show in each of the three calculi we study that notions like ==⇒X ,
◦−−→X , −−→X , ValueX , and ClX can be “lifted” from the level of concrete terms to the level of α-equivalence
classes of terms (i.e., terms modulo =Xα ). This means that we can sensibly consider each of the three calculi
at the level of α-equivalence classes in addition to the level of concrete terms. We shall use the notation X\α
to stand for the the calculus X considered at the α-equivalence level, in contradistinction with the notation
X , which we shall assume always indicates the calculus at the level of concrete terms. For instance, ==⇒X\α

stands for the lifting of ==⇒X to the α-equivalence classes of a calculus X .

Remark 2.12. For all X ∈ {T , C,L}, the lack of confluence for ==⇒X means that EvalX and OutcomeX
functions do not make sense at the level of concrete terms. However, we shall see that ==⇒X\α is confluent
for all three calculi, so that EvalX\α and OutcomeX\α are defined.

2.3 Term Calculus (T )

2.3.1 Syntax of Terms

The module calculus is built on top of a term calculus T , a typical call-by-value λ-calculus that includes
constants (assumed to include integers) and binary operators (op is assumed to include standard arithmetic
operations on integers). It could easily be extended to include other standard values and constructs (e.g.,
additional operators, binding constructs, conditionals, sums, and products) without affecting the results
presented in this paper. Term-level recursion is unnecessary because recursion is supported at the core
module calculus level.

The free variables of a term M , written FV (M), are defined as usual.

Definition 2.13 (Free variables in T ). The set of free variables of a term M ∈ TermT , written FV(M),
is defined as follows:

FV (x) = {x},
FV (c) = ∅,
FV (l) = ∅,

FV (λx.M) = FV (M) \ {x},
FV (M1 @ M2) = FV (M1) ∪ FV (M2),
FV (M1 op M2) = FV (M1) ∪ FV (M2).
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The following definition of substitution is also traditional (e.g., see [Plo75]). We give it here because it
is important for the definition of α-renaming in section 2.3.3.

Definition 2.14 (Substitution in T ). The result of a capture-avoiding substitution of a term M ′ for a
variable x in term M is written M [x := M ′] and is defined as follows:

x[x := M ] = M,
y[x := M ] = y , if x 6= y,
c[x := M ] = c,
l[x := M ] = l,

(N @ N ′)[x := M ] = (N [x :=M ]) @ (N ′[x := M ]),
(N op N ′)[x := M ] = (N [x :=M ]) op (N ′[x := M ]),

(λx.N )[x := M ] = λx.N,
(λy.N)[x := M ] = λy.(N [x := M ]) if x 6= y and (x 6∈ FV (N) or y 6∈ FV (M)),
(λy.N)[x := M ] = λz.(N [y := z][x := M ]),where z 6∈ (FV (M) ∪ FV (N)),

if x 6= y, x ∈ FV (N), and y ∈ FV (M).

For interfacing with the module language in which it is embedded, the term syntax includes two disjoint
classes of labels (Visible and Hidden) whose union, Label, is itself disjoint from Variable. Because there
is no construct for declaring labels at the term level, labels always occur “free” in a term; the set of labels
occurring in a term M is written FL(M). The result of a substitution of a term M ′ for a label l in M is
written M [l := M ′]. Even though in general such a substitution may capture free variables of M ′, we only
use it in cases when FV (M ′) = ∅. Since T has no label declaration constructs, label capture is not an issue.

2.3.2 Evaluation and Reduction of Terms

Figure 1 defines ==⇒T and ◦−−→T for terms with fixed names of bound variables. Later (see definition 2.37)
we extend these definitions to αT -equivalence classes of terms.

Both ==⇒T and ◦−−→T are defined via a redex/contractum relation ÃT specified by a call-by-value β rule
and a δ rule (unspecified) for binary functions on constants. Terms in dom(ÃT ) are called term redexes.
The relations ==⇒T and ◦−−→T are contextual closures of ÃT with respect to an evaluation context E and a
non-evaluation context E. It is easy to see that −−→T (defined as ==⇒T ∪ ◦−−→T ) is the contextual closure of
ÃT with respect to a general context C.

Example 2.15. The following reduction sequence illustrates both evaluation and non-evaluation steps:4

(λx.(λf.f @ (f @ x)) @ (λy.y + (2 ∗ 3))) @ 1

◦−δ−→T (λx.(λf.f @ (f @ x)) @ (λy.y + 6)) @ 1

◦−β−→T (λx.(λy.y + 6) @ ((λy.y + 6) @ x)) @ 1

◦−β−→T (λx.(λy.y + 6) @ (x+ 6)) @ 1

=
β
=⇒T (λy.y + 6) @ (1 + 6)

=
δ
=⇒T (λy.y + 6) @ 7

The first three steps take place in the body of an abstraction and are therefore non-evaluation steps. Note
that (λy.y + 6) @ (x+ 6) cannot reduce to (x + 6) + 6 because the β rule in T is call-by-value and (x + 6)
is not a value. However, (λy.y + 6) @ x can reduce to x+ 6 because the variable x is a value.

As noted in section 2.2, the redex of an evaluation or non-evaluation step can be indicated by a subterm
occurrence. For example:

4In examples, we adopt the usual convention that the body of a λ abstraction extends as far right as possible, to first
unmatched closing parenthesis or to the end of the term, whichever comes first. Explicit parentheses are used to override this
convention or to clarify the term structure.
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• the redex in the first ◦−δ−→T step above is ((λx.(λf.f @ (f @ x)) @ (λy.y + 2)) @ 1, (2 ∗ 3)),

• the redex in the first ◦−β−→T step is ((λx.2) @ 1, (λf.f @ (f @ x)) @ (λy.y + 6)), and

• the redex in the first =
β
=⇒T step is (2, (λx.(λy.y + 6) @ (x+ 6)) @ 1).

A term M can be uniquely classified with respect to evaluation via ClT (M), defined as:

const(c) if M = c
var if M = x

abs if M = λx.N
stuck(l) if M = E{l}

evaluatableT if M = E{R}
errorT otherwise

The const(c), var, and abs classifications represent the “observable” aspects of values. The class stuck(l)
contains those terms for which evaluation is “stuck” pending resolution of the label l. Our notion of “stuck”
differs from that found elsewhere in the rewriting literature (e.g., [Plo81]), where the word is used to char-
acterize error terms on which no progress can be made. We use the token errorT to classify this latter kind
of term.

The token evaluatableT classifies those terms on which an evaluation step may be taken. By the follow-
ing lemma, every such term has a unique evaluation redex (recall that = is defined on subterm occurrences
as componentwise equality).

Lemma 2.16 (Uniqueness of ==⇒T -Redexes). If E{R} = E′{R′}, then (E, R) = (E′, R′).

Proof. By inspection of the definition of E.

It turns out that there are many desirable properties that do not hold at the level of “concrete” terms
in T (i.e., terms with particular λ-bound variable names) because the fresh variable names that may be
introduced by β-reduction are not unique. For instance, despite the fact that every evaluatable term has a
unique redex (lemma 2.16), ==⇒T is not a function on terms.

Example 2.17 (==⇒T is not a Function). Let M1 = (λx.λy.x) @ y. Then M1 ==⇒T λw.y = M2 and
M1 ==⇒T λz.y = M3, but M2 6=M3.

In the example, the bound y is renamed by the substitution process during β-reduction to avoid variable
capture. Both w and z are valid choices of the new name, so the resulting term is not unique. However,
as shown in the next section, all results of ==⇒T are equal modulo a notion of α-equivalence, and ==⇒T \α is
a function. Recall that, according to the notation introduced in section 2.2, ==⇒T \α denotes the “lifting” of
==⇒T to the calculus T \α of αT -equivalence classes of terms of T .

The following examples show that the fresh variable names introduced by β-reduction also thwart the
confluence of evaluation/reduction and standardization of T at the level of concrete terms. However, in the
following subsection we show that these properties hold for α-equivalence classes of T terms.

Example 2.18 (Lack of Confluence of ==⇒T /−−→T for Concrete Terms). Using terms from exam-
ple 2.17, we see that M1 ==⇒T M2 and M1 ==⇒T M3. But since M2 and M3 are both evaluation and reduction
normal forms, there is no N such that (1) M2 ==⇒∗T N and M3 ==⇒∗T N or (2) M2 −−→∗T N and M3 −−→∗T N

Example 2.19 (Lack of Standardization for Reduction on Concrete T Terms). Consider the fol-
lowing reduction sequence:

(λx.((λy.(y @ y)) @ λz.x)) @ z ◦−−→T (λx.((λz.x) @ (λz.x))) @ z ==⇒T (λa.x) @ (λb.x)

In the final β-reduction step, we assume that the process of substituting z for x in the two copies of λz.x
renames the λ-bound z differently in the two copies. A standard sequence for the above reduction sequence
must have the form

(λx.((λy.(y @ y)) @ λz.x)) @ z ==⇒T (λy.(y @ y)) @ (λw.z) ◦−−→T (λw.z) @ (λw.z)

for some variable w. Since it is impossible for w to be both a and b, standardization is violated.

15



2.3.3 T Terms Modulo α-Equivalence

Since variable names serve only to specify the “wiring” between the points of declaration and use for λ-bound
variables, we intuitively expect that terms in T that differ only by renamings of their λ-bound variables should
somehow be indistinguishable. This intuition is formalized below via a notion of α-renaming that gives rise
to α-equivalence classes of T terms that are identical modulo α-renaming. A key motivation for formalizing
α-equivalence in T is that several important properties shown above to fail at the level of concrete terms in
T hold at the level of α-equivalence classes of T terms: (1) ==⇒T is a function; (2) confluence of ==⇒T and
−−→T ; and (3) standardization of T .

Notions of α-renaming and α-equivalence are well-known in the λ calculus (e.g., [CF58, Plo75, Bar84]).
Here we present a particular approach to α-renaming in T that is easy to extend to other kinds of renaming
at the core module (C) and linking (L) levels of our module calculus. It turns out that, just as in T , many
properties of C and L only hold at the level of α-equivalence classes of terms, not at the level of concrete
terms.

Definition 2.20 (Elementary αT -Renaming). We say that λy.M reduces to λx.M ′ by elementary αT -
renaming, written λy.M ÃαT λx.M ′, iff x 6= y, M ′ = M [y := x] and the following two conditions hold:

1. x 6∈ FV (M),

2. M = C{λx.N} implies that either y 6∈ FV (N), or C = C1{λy.C2}.

The first condition guarantees that no free variables named x in M are accidentally captured by renaming
the bound variable of the outermost λ from y to x. The second condition guarantees that renaming a free
y to x in M does not require renaming any bound occurrences of any variable in M . Without the second
condition, the last clause of definition 2.14 can cause the substitution M [x := y] to rename multiple bound
variables in M , possibly some not even named x. So an elementary αT -renaming guarantees all the free
occurrences of y in M are renamed, but no other variables.

Lemma 2.21 (Unique Renaming Property of ÃαT ). If λy.N ÃαT λx.M , then the only variables re-
named by the substitution N [y := x] are free occurrences of y in N . In particular, the substitution does not
rename any bound variables in N .

Proof. By induction on the structure of subterms P of N reached by the substitution process. They key
cases are:

• P = y: y ∈ FV (P ) implying y ∈ FV (N), and y[y := x] = x, so a free y in N is renamed to x.

• P = z, where z 6= y: z ∈ FV (P ) implying z ∈ FV (N), and z[y := x] = z, so free variables of N other
than y are not renamed.

• P = λy.Q: (λy.Q)[y := x] = λy.Q, so the λ-bound y and any other variables occurring in Q are not
renamed.

• P = λx.Q: By condition 2 of definition 2.20, y 6∈ FV (Q). (P cannot be enclosed in a λy within N
because then substitution would not have descended inside the enclosing λy to reach P .) So (λx.Q)[y :=
x] = λx.Q; the λ-bound x and any other variables occurring in Q are not renamed. Here, condition
2 of definition 2.20 effectively prevents any renaming of bound variables implied by the last line of
definition 2.14.

• P = λz.Q, where z 6= x and z 6= y: (λz.Q)[y := x] = λz.(Q[y := x]). Clearly, the λ-bound z is not
renamed, and by the inductive hypothesis only free y in Q are renamed.
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Lemma 2.22 (Symmetry of ÃαT ). ÃαT is symmetric. I.e., if λy.M ÃαT λx.N , then λx.N ÃαT λy.M .

Proof. Assume that λy.M ÃαT λx.N . We wish to show λx.N ÃαT λy.M , which follows from showing the
following three facts:

1. y 6∈ FV (N): By the definition of ÃαT , N = M [y := x]. By lemma 2.21, N is syntactically identical
to M modulo the renaming of all free occurrences y in M to x. So N has no free occurrences of y.

2. N = C{λy.P} implies that either x 6∈ FV (P ) or C = C1{λx.C2}: Suppose that N = C{λy.P} and
x ∈ FV (P ). We show that a free occurrence of x in P cannot also be free in N ; it must instead be
bound by an enclosing λx in N . Assume otherwise – i.e., that a free x in P is also free in N . By
condition (1) of definition 2.20 for λy.M ÃαT λx.N , we know x 6∈ FV (M). This implies that all free
occurrences of x in N must be the result of renaming a free y in M to x. But the given occurrence of
x could not be the result of naming a free y in M because it occurs in the scope of λy, and such an
occurrence of y is not free in M – a contradiction.

3. M = N [x := y]: From the proof of condition (1), we know thatN is syntactically identical toM modulo
the renaming of all free occurrences y inM to x. The substitutionM ′ = N [x := y] renames all these free
occurrences of x back to free occurrences of y, so M ′ is the same as M except possibly for renaming of
bound variables from the last clause of definition 2.14. As shown in the proof of lemma 2.21, condition
(2) implies that the last clause in definition 2.14 is never enabled in the substitution N [x := y], so no
bound variables are renamed. Thus, M =M ′.

Definition 2.23 (αT -Renaming). We say that M reduces to M ′ by one-step αT -renaming, written M
−−→αT M ′, iff M = C{λy.N}, M ′ = C{λx.N ′}, and λy.N ÃαT λx.N ′. We say that the triple (C, y, x)
is the αT -redex of the one-step αT -renaming, and write M −(C,y,x)−−−−→αT M ′ to specify the αT -redex of the

αT -renaming step. We write M −S−→
∗

αT M ′ iff S is the sequence of αT -redexes reduced in the multi-step
αT -renaming.

The αT -redex in a one-step αT -renaming specifies which bound variable in the term has been renamed,
and to which name. The old name (y in the definition above) is uniquely determined by the context C,
however we have added it to the syntax of an αT -redex for convenience.

It follows from Lemma 2.22 that both −−→αT and −−→∗αT are symmetric, so −−→∗αT is the same relation as
−−→=

αT . We use the notation =Tα as a shorthand for this relation. Since =Tα is an equivalence relation, it
induces αT -equivalence classes of terms w.r.t. =Tα :

Definition 2.24 (αT -Equivalence Class). If M ∈ TermT , then its αT -equivalence class, written αT 〈M〉,
is defined as αT 〈M〉 = {N ∈ TermT | N =Tα M}. We say that any N ∈ αT 〈M〉 is a representative of αT 〈M〉.
We use MαT and NαT as meta-variables that range over the set of αT -equivalence classes of terms of T .

Assumption 2.25. We assume that all α-equivalence classes (w.r.t. all α-equivalence relations, such as
−−→αT defined here, −−→αC defined in section 2.4, etc.) that we refer to in lemmas, examples, etc., are non-
empty. The same holds for α-equivalence classes of entities other than terms, such as subterm occurrences
and contexts, introduced later.

The relation =Tα defined above is equivalent to traditional notions of αT -equivalence on terms defined
by induction on the structure of a term (e.g., see [Plo75]). However, the one-step relation −−→αT is
convenient for reasoning about the interaction (or lack thereof) between αT -renaming and ==⇒T , ◦−−→T , and
−−→T , and between αT -renaming and other kinds of renaming and reduction at the C and L levels of the
calculus. Additionally, one-step alpha-renaming at the core module level allows us to distinguish results
of renaming subterm occurrences which would be indistinguishable had we defined alpha-equivalence classes
via the structure of terms (see section 2.4.3 for details) Note that since each −−→αT renames exactly one
bound variable, multiple −−→αT steps are required to α-rename several bound variables.
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Example 2.26 (αT -Renaming of Terms). Let M1 = λx.λy.(y @ x) and M2 = λy.λx.(x @ y). Then
M1 =Tα M2, as shown by the following sequence of one-step αT -renamings:

λx.λy.(y @ x) −
((λx.2),y,z)
−−−−−−−→αT λx.λz.(z @ x) −

(2,x,y)
−−−−→αT λy.λz.(z @ y) −

((λy.2),z,x)
−−−−−−−→αT λy.λx.(x @ y)

The notions of evaluation and non-evaluation steps, as well as the notion of classification, can be lifted
from terms to αT -equivalence classes of terms in a natural way. Below, we show that the redexes of ==⇒T
and ◦−−→T are preserved by αT -renaming. This implies that evaluation and non-evaluation steps in T are
well-defined on αT -equivalence classes of terms.

To prove that redexes are preserved by αT -renaming, we extend T with some marked syntax nodes.
These markings allow tracing the image of a particular subterm occurrence of a term in an αT -renaming of
that term. Since it is sufficient for our purposes to trace only the images of redexes, we limit our extension
to mark only those nodes at which a redex may be rooted: applications, operations, and labels (the latter
are used in section 2.4 for defining a module substitution redex).

Definition 2.27 (The Marked Calculus T ). Let T denote an extension to T that augments the terms,
contexts, values, and subterm occurrences of T with a marked variant @ of @ and a marked variant op of

op for each op in T , as well as a marked label l for each l ∈ Label. Assume that M̃, Ñ range over TermT ,

Ã, B̃, C̃ range over ContextT ,T , and Ṽ ranges over ValueT . A T -term of the form M̃1 @ M̃2, M̃1 op M̃2,

or l is called a marked term5, and a subterm occurrence of the form (C̃, Ñ) is said to be marked if Ñ is a
marked term. For notions of reduction, T treats @ and op as @ and op, respectively. Substitution on T
terms preserves marked terms, as shown below:

(Ñ @ Ñ ′)[x := M̃ ] = (Ñ [x := M̃ ]) @ (Ñ ′[x := M̃ ]),

(Ñ op Ñ ′)[x := M̃ ] = (Ñ [x := M̃ ]) op (Ñ ′[x := M̃ ]),

(l)[x := M̃ ] = l.

Definition 2.28 (Mark Erasure). The mark erasure of a T term M̃ , written |M̃ |, is the T term that is

identical to M̃ except that every @ has been replaced by @, every op has been replaced by op, and every l
has been replaced by l. We similarly define mark erasure on T contexts. The mark erasure of a T subterm

occurrence (C̃, M̃) is defined as |(C̃, M̃)| = (|C̃|, |M̃ |).

A one-step αT -renaming is defined on TermT exactly as it is defined on TermT (see definitions 2.20

and 2.23), using the extension of substitution to terms in TermT introduced in definition 2.27. If M̃

−(Ã,x,y)−−−−→αT Ñ , then M −(A,x,y)−−−−→αT N , where |M̃ | =M , |Ñ | = N , and |Ã| = A.
Marked terms are used to define notions of αT -renaming on (a subset of) subterm occurrences of both

T and T terms:

Definition 2.29 (αT -Renaming of T Subterm Occurrences). Let (C̃, Ñ) be a marked subterm of C̃{Ñ} ∈
TermT , where C̃{Ñ} contains no other marked subterm occurrences. We say that (C̃, Ñ) reduces to

(C̃′, Ñ ′) by a one-step αT -renaming with the αT -redex (Ã, y, x), written (C̃, Ñ) −(Ã,y,x)−−−−→αT (C̃′, Ñ ′), iff

C̃{Ñ} −(Ã,y,x)−−−−→αT C̃′{Ñ ′} and (C̃′, Ñ ′) is marked.

Definition 2.30 (αT -Renaming of T Subterm Occurrences). Let C{N} ∈ TermT , whereN = N1 @ N2,
N = N1 op N2, or N = l. Then (C, N) reduces to (C′, N ′) by a one-step αT -renaming with the αT -redex

(A, y, x), written (C, N) −
(A,y,x)
−−−−→αT (C′, N ′), iff there exist T subterm occurrences (C̃, Ñ) and (C̃′, Ñ ′) such

that (C̃, Ñ) −(Ã,y,x)−−−−→αT (C̃′, Ñ ′), |(C̃, Ñ)| = (C, N), |(C̃′, Ñ ′)| = (C′, N ′), and |Ã| = A.
5This marking of redexes is introduced for reasoning about α-renaming, and is different from marking of redexes in ap-

pendix B.
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Note that definition 2.29 considers the renaming of marked subterm occurrences, while definition 2.30
considers the renaming of unmarked subterm occurrences. In definition 2.29, a unique mark is used to
guarantee that αT -renaming of a marked subterm occurrence preserves the “position” of the renamed subterm
relative to the renamed enclosing term. In definition 2.30, two unmarked subterm occurrences are only related
by αT -renaming if they are the erasures of two marked subterm occurrences related by αT -renaming.

Remark 2.31. Alternatively to marking subterm occurrences, we could have defined a notion of “shape”
on terms and contexts that ignores all variable name information in equating two syntax trees6, and defined
αT -renaming on subterm occurrences so that it preserves the shapes of the two components of a subterm
occurrence. However, the “shape” approach turned out to be non-applicable to the calculus C, where modules
are unordered collections of components, and “shape” does not contain enough information to distinguish
two such components (see example 2.51 for details).

Definition 2.30 naturally extends to (C, N) −S−→
∗

αT (C′, N ′), where S is a sequence of αT -redexes. The
annotation (A, y, x) for a one-step αT -renaming and S for a sequence of such renamings may be omitted.
As with −−→∗αT on terms, the −−→∗αT relation on subterm occurrences is symmetric and therefore the same
relation as −−→=

αT , and we use =Tα as a synonym for this relation. We also define the αT -equivalence class of
(C, N) as αT 〈(C, N)〉 = {(C′, N ′) | (C′, N ′) =Tα (C, N)}. We use SubαT as a meta-variable that ranges over
αT -equivalence classes of subterm occurrences.

Example 2.32 (αT -Renaming of Subterm Occurrences). Consider the following context and term:

C = λz.2 @ λx.z,
N = ((λy.y @ z) @ z),

which form a subterm occurrence of the term λz.((λy.y @ z) @ z) @ λx.z.
The following are αT -renamings of the subterm occurrence (C, N):

1. (C, N) −
(λz.((λy.y @ z) @ z) @ 2,x,a)
−−−−−−−−−−−−−−−−−−→αT (λz.2 @ λa.z,N). In this case, the renaming occurs only within

the context C.

2. (C, N) −(λz.(2 @ z) @ λx.z,y,b)−−−−−−−−−−−−−−→αT (C, ((λb.b @ z) @ z)). In this case, the renaming occurs only within the
subterm N .

3. (C, N) −(2,z,c)−−−−→αT (λc.2 @ λx.c, ((λy.y @ c) @ c)). In this case, the renaming occurs within both the
context C and the subterm N .

The above examples emphasize that the context for the αT -renaming and the context of the subterm occur-
rence being renamed are independent.

Lemma 2.33 (αT -Renaming Preserves Distinctness of Subterm Occurrences). If C1{N1} = C2{N2} ∈

TermT , (C1, N1) −
(A,x,y)−−−−→αT (C′1, N ′1), (C2, N2) −

(A,x,y)−−−−→αT (C′2, N ′2), and (C1, N1) 6= (C2, N2), then (C′1, N ′1) 6=
(C′2, N ′2).

Proof. Let M̃ ∈ TermT be a term such that |M̃ | = C̃1{Ñ1} = C̃2{Ñ2}, where |(C̃1, Ñ1)| = (C1, N1),

|(C̃2, Ñ2)| = (C2, N2), and both (C̃1, Ñ1) and (C̃2, Ñ2) are marked, but no other subterms are marked in

M̃ . By definition of a one-step αT -renaming on TermT M̃ −(Ã,x,y)−−−−→αT M̃ ′ = C̃′1{Ñ ′1} = C̃′2{Ñ ′2}, where
|Ã| = A. It is clear that the two marks that mark (C̃1, Ñ1) and (C̃2, Ñ2) remain distinct in M̃ ′. Hence

(C̃′1, Ñ ′1) 6= (C̃′2, Ñ ′2), and therefore |(C̃′1, Ñ ′1)| = (C′1, N ′1) 6= (C′2, N ′2) = |(C̃′2, Ñ ′2)|.

Lemma 2.34 (αT -Renaming Preserves Redexes).

6For example, all of the following terms have the same shape: λx.λy.(x @ y), λx.λy.(y @ x), λx.λy.(x @ x), and
λx.λy.(y @ y).
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1. If (C, R) is a redex and (C, R) −−→αT (C′, N), then (C′, N) is a redex.

2. If (C, R) is an evaluation redex and (C, R) −−→αT (C′, N), then (C, N) is an evaluation redex.

3. If (C, R) is a non-evaluation redex and (C, R) −−→αT (C′, N), then (C, N) is a non-evaluation redex.

Proof. For statement (1), definition 2.30 implies the existence of (C̃, R̃) and (C̃′, Ñ) such that (C̃, R̃) −−→αT

(C̃′, Ñ) where |C̃| = C, |R̃| = R, |C̃′| = C′, and |Ñ | = N . Since R must have the form (λx.M) @ V or

c1 op c2, definition 2.29 and definition 2.28 imply that R̃ has the form (λx.M̃ ) @ Ṽ or c1 op c2. The result Ñ

of a one-step renaming has the form (λx.M̃ ′) @ Ṽ ′ or c1 op c2, respectively, which means that N must have
the form (λx.M ′) @ V ′ or c1 op c2 — the left-hand side of a redex/contractum pair. Since C′ is a context,
(C′, N) is a redex.

The proof of statement (2) is similar, except that it is necessary to argue that a one-step alpha-renaming
of an evaluation context C yields a context C′ that is also an evaluation redex. Indeed, we can show by
induction on the structure of a redex that C′ is an evaluation redex iff C′ is one. So if C is a non-evaluation
redex, then so is C′, from which fact statement (3) follows.

Together, lemmas 2.33 and 2.34 imply that two distinct redexes in T remain two distinct redexes after
αT -renaming.

Lemma 2.35 (Properties of Terms Preserved by αT -Renaming).

1. If M ′ =Tα M then FV (M ′) = FV (M) and FL(M ′) = FL(M).

2. If M =
(E,R)
===⇒T N and M −S−→

∗

αT M ′ for some sequence of αT -renamings S and (E, R) −S−→
∗

αT (E′, R′),

then there exists N ′ such that M ′ =
(E′,R′)
===⇒T N ′ and N ′ =Tα N .

3. If M ◦−(C,R)−−−→T N and M −S−→
∗

αT M ′ for some sequence of αT -renamings S and (C, R) −S−→
∗

αT (C′, R′),
then there exists N ′ such that M ′ ◦−(C

′,R′)−−−−→T N ′ and N ′ =Tα N .

4. If M ′ =Tα M then ClT (M
′) = ClT (M).

Parts 2 and 3 of lemma 2.35 imply that if an evaluation or a non-evaluation step is defined on one
representative of an αT -equivalence class, it is defined on all representatives of this class:

Lemma 2.36 (T Relations Well-defined w.r.t. αT -Equivalence).

1. If M =
(E,R)
===⇒T N and M =Tα M ′, then there exist (E′, R′) and N ′ such that M ′ =

(E′,R′)
===⇒T N ′, N ′ =Tα N ,

and (E, R) =Tα (E′, R′).

2. IfM ◦−(C,R)−−−→T N and M =Tα M ′, then there exist (C′, R′) and N ′ such that M ′ ◦−(C
′,R′)−−−−→T N ′, N ′ =Tα N ,

and (C, R) =Tα (C′, R′).

Proof. Follows from parts 2 and 3 of lemma 2.35 by symmetry of −−→αT .

The above results allow us to lift ==⇒T , ◦−−→T , and ClT to αT -equivalence classes:
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Definition 2.37 (Evaluation and Non-evaluation Steps in T \α). MαT =
SubαT
===⇒T \α NαT (respectively

MαT ◦−
SubαT−−−−→T \α NαT ) if there exists M ∈ MαT , N ∈ NαT , and (E, R) ∈ SubαT such that M =

(E,R)
===⇒T N

(respectively (C, R) ∈ SubαT such that M ◦−(C,R)−−−→T N).

Definition 2.38 (Classification in T \α). ClT \α(MαT ) = ClT (M), whereM ∈MαT . This is well-defined
since, by part 4 of lemma 2.35, such classification does not depend on the choice of a representative of the
αT -equivalence class. Note that if ClT (M) = evaluatableT then ClT \α(αT 〈M〉) = evaluatableT . That
is, there is no distinct token evaluatableT \α; ClT \αis a function from α-equivalence classes of T terms to
ObsT (tokens in ObsT do not expose any information about bound variables of terms, and therefore can
be used for classification of αT -equivalence classes).

We show that ==⇒T \α is a function:

Lemma 2.39 (==⇒T \α is a Function). If ClT \α(MαT ) = evaluatableT , then there exists a unique αT -
equivalence class NαT such that MαT ==⇒T \α NαT .

Since ==⇒T \α is a function, it is trivially confluent, and therefore EvalT \α and OutcomeT \α are well-
defined. It also trivially follows that if an αT -equivalence class MαT has an eval normal form, then it cannot
diverge w.r.t. ==⇒T \α .

Using classical techniques [Plo75, Bar84], it is straightforward to prove that −−→T \α is confluent and T \α
has the standardization property. These properties are shown in appendix B.

Convention 2.40. Wherever unambiguous, we will use concrete terms and subterm occurrences to stand for

the alpha-equivalence classes that they represent, i.e. we writeM −
(C,R)
−−−→T \α N to mean αT 〈M〉 −

αT
〈(C,R)〉

−−−−−−→T \α

αT 〈N〉. The same convention holds for ClT \α, EvalT \α, and OutcomeT \α.

Note that the subscript T \α on the reduction arrow indicates that the reduction is performed on αT -
equivalence classes, so there is no confusion with reductions on concrete terms. The following example
illustrating standardization is written using the above convention.

Example 2.41. The following reduction sequence is a standard sequence corresponding to the sequence in
example 2.15. Recall that a standard sequence is such where all evaluation steps precede all non-evaluation
steps.

(λx.(λf.f @ (f @ x)) @ (λy.y + (2 ∗ 3))) @ 1

=
β
=⇒T \α (λf.f @ (f @ 1)) @ (λy.y + (2 ∗ 3))

=
β
=⇒T \α (λy.y + (2 ∗ 3)) @ ((λy.y + (2 ∗ 3)) @ 1)

=
β
=⇒T \α (λy.y + (2 ∗ 3)) @ (1 + (2 ∗ 3))

=
δ
=⇒T \α (λy.y + (2 ∗ 3)) @ (1 + 6)

=
δ
=⇒T \α (λy.y + (2 ∗ 3)) @ 7

◦−δ−→T \α (λy.y + 6) @ 7

2.4 Core Module Calculus (C)

2.4.1 Syntax of Modules

In our module calculus, modules are unordered collections of labeled terms. There are two disjoint classes
of labels: visible and hidden. Visible labels name components to be exported to other modules, and also
name import sites within a component, while hidden labels name components that can only be referenced
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within the module itself (this distinction is similar to distinction between deferred variables and expression
names on one hand and local variables on the other in [AZ99] ). Intuitively, a module is a fragment of a
recursively scoped record that can be dynamically constructed by linking, where visible labels serve to “wire”
the definitions in one module to the uses in another.

A module binding is written l 7→ M . We say that M is the component bound to l, or that l binds M . A
module is a bracketed set of such bindings. The notation li

n
7→
i=1

Mi stands for the bindings l1 7→M1 . . . ln 7→

Mn. If D = [li
n
7→
i=1

Mi], then the set of free variables of D is FV (D) = ∪ni=1FV (Mi). We require that

a module does not have any free variables, i.e. FV (D) = ∅, and that the labels of any two bindings are
distinct.

Suppose that D = [li
n
7→
i=1

Mi]. We introduce the following notations and definitions. The set of bound

labels in D is defined as BL(D) = ∪ni=1li, while the set of free labels is FL(D) = (∪ni=1FL(Mi))/BL(D).
Lab(D) denotes the set FL(D)∪BL(D) of all labels in a module. The exported labels of D are those that are
both bound and visible (Exports(D) = BL(D) ∩Visible), while the imported labels are just the free ones
(Imports(D) = FL(D)). We also define the set of hidden labels of a module as Hid(D) = Lab(D)∩Hidden.
Since all module bindings are distinct, the following notation is well-defined: D ↓ l extracts the component
M bound to l in D if it exists, otherwise D ↓ l is undefined.

Unlike [MT00], where the condition Imports(D) ∩ Hidden = ∅ was imposed on all modules, in this
presentation we allow modules to import hiddens. Modules that do not import hiddens, i.e. modules D such
that Imports(D) ∩Hidden = ∅, are called h-closed and form a set HTermC . We use H to range over the
set HTermC . Since by definition Imports(D) = FL(D), h-closed modules do not have free hidden labels,
and thus are analogous to closed terms, i.e. terms with no free variables. Note that for h-closed modules
Hid(D) = BL(D) ∩Hidden. This change from [MT00] was mainly prompted by introduction of contexts
M ∈ ContextC,C (see below for details).

Removing the condition Imports(D) ∩ Hidden = ∅ changes the set TermC from that in [MT00], but
does not change the results for C shown in there (see section C). Note that at the linking level the restriction
that all modules in a linking expression are h-closed makes the set TermL of linking expressions exactly the
same as in [MT00] and guarantees that no capture of a hidden label is possible during linking.

We define two sets of one-hole contexts for the core module calculus. The setContextC,C contains module
contexts obtained from modules by removing all or some of the bindings. As the subscripts suggest, such
contexts are filled with other modules. These contexts are used in section 2.4.3 to define αC-renaming and in
section 2.6 to define the garbage-collection reduction rule (GC). The rule for filling contexts in ContextC,C
is as follows:

[li
n
7→
i=1

Mi,2]{[lj
m
7→
j=1

Nj ]} = [li
n
7→
i=1

Mi, lj
m
7→
j=1

Nj ],

provided the result is a module, i.e. it does not have free term variables and all its bindings have distinct
labels. For instance, the result of filling a context [A 7→ λx.B, h 7→ 2,2] with a module [B 7→ λy.h] is a
module [A 7→ λx.B, h 7→ 2, B 7→ λy.h]. Note that the module [B 7→ λy.h], which fills the context, is not
h-closed (it exports a hidden label h). This illustrates why we have extended the set of modules (compared
to those in [MT00]) to include modules that are not h-closed.

If we fill a context M with a binding l 7→ C which binds a label to a term-level context C, we get a context
that can be filled with a term M ∈ TermT , and the result of such filling is a module. These contexts form
the set ContextT ,C . The filling of a context D ∈ ContextT ,C with a term M ∈ TermT is defined if the
result of this filling is in TermC , i.e. it satisfies the two conditions in the definition of a module. Unless
specified otherwise, the notation D{M} implies that the result of the filling is in TermC . The context set
ContextT ,C is used to define core module reductions (comp) and (subst) (see below for more details). A
subterm occurrence (D,M) such that D{M} ∈ TermC is called a T -term occurrence.

The label renaming substitution D[l := k], where D = [li
n
7→
i=1

Mi], yields [l
′
i

n
7→
i=1

Mi[l := k]], where l′i = k

if li = l and l′i = li otherwise. See section 2.3.1 for definition of the substitution M [l := k].
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2.4.2 Evaluation and Reduction of Modules

The evaluation relation ==⇒C is defined in figure 1 via a module evaluation context G ∈ ContextT ,C which
lifts term-level evaluation context E to the module level. The rules of ==⇒C allow the following reductions:

• (comp-ev) lifts ==⇒T to the module level;

• (subst-ev) substitutes a labeled value for a label occurrence in the module in an evaluation context.
The requirement that FV (D) = ∅ in definition of a module implies that for every module component
l 7→M FV (M) = ∅. Therefore the value that gets substituted for the label in (subs-ev) rule is a closed
term, and no variable capture occurs.

The complementary relation ◦−−→C has two rules (comp-nev) and (subst-nev) which differ from their evaluation
analogs by using a non-evaluation context in place of an evaluation context. Note that in (subst-nev) rule
no variable capture is possible for the same reason as for (subst-ev). The corresponding −−→C rules (comp)
and (subst) are the unions of the respective ==⇒C and ◦−−→C rules. They can be formulated by replacing an
evaluation context in the ==⇒C-rules by a general context D ∈ ContextT ,C .
Example 2.42. The following reduction sequence illustrates the different kinds of module-level reductions:7

[A 7→ 2 + 3, B 7→ (λx.x ∗ (4 +A)) @ A]

=
comp-ev
====⇒C [A 7→ 5, B 7→ (λx.x ∗ (4 +A)) @ A]

◦−subst-nev−−−−−→C [A 7→ 5, B 7→ (λx.x ∗ (4 + 5)) @ A]
◦−comp-nev−−−−−→C [A 7→ 5, B 7→ (λx.x ∗ 9) @ A]

=
subst-ev
====⇒C [A 7→ 5, B 7→ (λx.x ∗ 9) @ 5]

=
comp-ev
====⇒C [A 7→ 5, B 7→ 5 ∗ 9]

=
comp-ev
====⇒C [A 7→ 5, B 7→ 45]

Note that (subst-nev) allows some abstractions to be substituted into themselves:

[F 7→ λx.F ] ◦−−→C [F 7→ λx.(λx.F )] ◦−−→C [F 7→ λx.(λx.(λx.(λx.F )))]

This is a non-evaluation step, since F appears under a λ.
Classification of modules is defined as follows:

ClC(D) =





evaluatableC if there exists D′ s.t. D ==⇒C D′

[vi
n
7→
i=1

ClT (Vi)] if D = [vi
n
7→
i=1

Vi, hj
m
7→
j=1

V ′j ],

errorC otherwise

In the second case (i.e. when D = [vi
n
7→
i=1

Vi, hj
m
7→
j=1

V ′j ]) we also say that D is a module value (D ∈ ValueC).

Note that the classification of a module value does not expose information about hidden components, but
requires that all such components are values. This restriction avoids a clash between evaluatables and values:
without such a restriction a module [A 7→ 2, a 7→ 3 + 4] could be both an evaluatable and a value, which
would contradict the requirement that classifications are disjoint. The restriction also makes it possible
to lift classification directly to αC-equivalence classes, without changing the set ObsC of observables, since
observables do not expose the names of bound variables or bound hidden labels in a module, so they are
preserved by αC-renaming (see lemma 2.55).

7In examples, we adopt the convention that visible labels have uppercase names while hidden labels have lowercase names.
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2.4.3 αC-Renaming of Modules

Simplifying the presentation in [MT00], modules are identified up to renaming of λ-bound variables in
labeled terms and a consistent renaming of hidden components throughout the entire module, similar to
αT -renaming of λ-bound variables in terms. With the latter identification, the explicit renaming of hidden
variables required in [MT00] is unnecessary. For instance, consider the following two modules:

[A 7→ h1, h1 7→ 2, h2 7→ h1] and [A 7→ h3, h3 7→ 2, h4 7→ h3].

The hidden labels of the first module can be renamed to those of the second: h1 to h3 and h2 to h4.
We say that these two modules are two representatives of the same αC-equivalence class. The notion of
αC-equivalence is formalized below.

Definition 2.43 (αC-Renaming). D reduces to D′ by a one-step αC-renaming iff one of the following is
true:

• D = M{l 7→M}, D′ = M{l 7→M ′}, and M −(C,x,y)−−−−→αT M ′, in which case we write D −(D,x,y)−−−−→αC D′,
where D = M{l 7→ C}, or

• there exists h ∈ BL(D) ∩Hidden and h′ 6∈ Hid(D) such that D′ = D[h := h′]. In this case we write

D −(h,h
′)−−−→αC D

′.

The triple (D, x, y) in the first case and the pair (h, h′) in the second case is called the αC-redex of the
reduction. As usual, the redex annotation may be omitted.

As for the term calculus, we write D −S−→
∗

αC D′, where S is a sequence of αC-redexes, if D is reduced to
D′ by a sequence of one-step αC-renamings reducing the αC-redexes in S left-to-right.

The condition h ∈ BL(D) ∩ Hidden guarantees that the label being renamed is bound in D. Since
the new name h′ does not appear in D at all by the condition h′ 6∈ Hid(D), a free hidden label cannot
be captured by the αC-renaming, and also all the bound hidden labels of the module remain distinct after
αC-renaming.

Example 2.44 (αC-renaming of modules).

[A 7→ λx.h1, h1 7→ λx.h2]

−(h1,h3)−−−−→αC [A 7→ λx.h3, h3 7→ λx.h2]

−([A7→2,h3 7→λx.h2],x,y)−−−−−−−−−−−−−−→αC [A 7→ λy.h3, h3 7→ λx.h2].

The first step renames a hidden label h to h′. The condition that the new hidden name does not appear in
the module prevents us from choosing h2 as the new name for h1. Any name except for h2 is a legal choice.
The second step renames a bound variable in the first module component.

Lemma 2.45 (−−→αC is Symmetric). −−→αC is symmetric, and D −(h,h
′)−−−→αC D

′ iff D′ −(h
′,h)−−−→αC D.

Proof. Since −−→αT is symmetric on TermT , its lifting is symmetric on TermC . Renaming of hidden labels

of a module D −(h,h
′)−−−→αC D

′ is symmetric, with the reverse step D′ −(h
′,h)−−−→αC D: by the condition h ∈ BL(D),

h′ 6∈ Hid(D), and D′ = D[h := h′], therefore in h′ ∈ BL(D′), and h 6∈ Hid(D′) (all occurrences of h has been
renamed to h′).

As for the term calculus T , −−→∗αC is symmetric by lemma 2.1, so−−→∗
αC is the same as−−→=

αC , also abbreviated
as =Cα. We define αC-equivalence classes of modules as follows:

Definition 2.46 (αC-Equivalence Class). If D ∈ TermC , then its αC-equivalence class, written αC 〈D〉,
is defined as αC 〈D〉 = {D

′ ∈ TermC | D′ =Cα D}. We say that any D′ ∈ αC 〈D〉 is a representative of αC 〈D〉.
We use DαC as a meta-variable that ranges over the set of αC-equivalence classes of modules.
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We have mentioned in section 2.3.3 that, alternatively to one-step α-renaming, we could have defined
α-equivalence of two terms by induction on the structure of the terms, as in [Plo75]. While this approach
works for the term calculus, it causes problems at the core module level. The example below illustrates why
we have chosen to use one-step α-renaming instead of just defining =Cα.

Example 2.47 (Hidden components indistinguishable w.r.t. αC-renaming). Consider the follow-
ing αC-renaming sequence:

[A 7→ 7, h1 7→ 2 + h2, h2 7→ 2 + h1]

−
(h1,h3)−−−−→αC [A 7→ 7, h3 7→ 2 + h2, h2 7→ 2 + h3]

−
(h2,h1)−−−−→αC [A 7→ 7, h3 7→ 2 + h1, h1 7→ 2 + h3]

−
(h3,h2)−−−−→αC [A 7→ 7, h2 7→ 2 + h1, h1 7→ 2 + h2].

In this example we cannot distinguish the two module components at the level of the αC-equivalence class
of the module, because they can be αC-renamed to one another. However, the sequence of one-step αC-
renamings (h1, h3), (h2, h1), (h3, h2) shows that the components have been switched, so that the image of the
binding h1 7→ 2 + h2 is h2 7→ 2 + h1. Note that the hidden components are not referenced in the visible part
of the module. If they were, we could have been able to distinguish them by the visible component(s) in which
they are referenced. For instance, if we rename the module [A 7→ h1, B 7→ h2, h1 7→ 2 + h2, h2 7→ 2 + h1]
to [A 7→ h2, B 7→ h1, h2 7→ 2 + h1, h1 7→ 2 + h2], we know just by examining the original and the renamed
module, i.e. without specifying the sequence of αC-renamings, that the component bound to h1 is the one
that used to be bound to h2, because it is referenced in the binding B 7→ h2 (recall that visible labels cannot
be αC-renamed).

We extend the calculus T of marked terms to the calculus C of modules over marked terms as follows:

Definition 2.48 (The Marked Calculus C). Let C denote an extension to C, where modules are defined

the same way as in C, with the difference that module bindings are of the form l 7→ M̃ , where M̃ ∈ TermT ,

and, similarly, context bindings are of the form l 7→ C̃, C̃ ∈ ContextT ,T . Let D̃, M̃, and D̃ range over
TermC ,ContextC,C, and ContextT ,C, respectively. Similarly to T , reduction in C reduces marked redexes
as if they were unmarked.

The appropriate extension of label substitution to marked modules is defined below. In C a marked term
occurs only on the right-hand side of a binding, and therefore l and k are unmarked in the substitution
M̃ [l := k]. The result of the substitution D̃[l := k], where D̃ = [li

n
7→
i=1

M̃i], is [l′i
n
7→
i=1

M̃ ′
i ], where l

′
i = k if

li = l, and l′i = li otherwise, and M̃ ′
i = M̃i[l := k], where the substitution is extended to marked labels as

follows:

l′[l := k] = l′ if l′ 6= l,
l[l := k] = k otherwise.

Definition 2.49 (Mark Erasure in C). The mark erasure of a module D̃ = [li
n
7→
i=1

M̃i] ∈ TermC , written

|D̃|, is a module [li
n
7→
i=1
|M̃i|] ∈ TermC . The mark erasure on contexts in ContextT ,C and ContextC,C is

defined analogously. As for T , the mark erasure of a T -term occurrence (D̃, M̃) is defined as |(D̃, M̃)| =

(|D̃|, |M̃ |).

Definition 2.50 (αC-Renaming of T -Term Occurrences). Let D{M} ∈ TermC , whereM =M1 @ M2,
M = M1 op M2, or M = l. Then (D,M) reduces to (D′,M ′) by a one-step αC-renaming with the αC-

redex (D1, x, y) (respectively with the αC-redex (h, h′)), written (D,M) −(D1,x,y)−−−−→αC (D′,M ′) (respectively

(D,M) −(h,h
′)−−−→αC (D′,M ′)) iff there exist (D̃, M̃) and (D̃′, M̃ ′), where (D̃, M̃) is the only marked T -term

occurrence in D̃{M̃}, such that D̃{M̃} −(D̃1,x,y)−−−−→αC D̃′{M̃ ′} (respectively D̃{M̃} −(h,h
′)−−−→αC D̃′{M̃ ′}) and

|(D̃, M̃)| = (D,M), |(D̃′, M̃ ′)| = (D′,M ′), and |D̃1| = D1 (the latter in the case of the αC-redex (D1, x, y)).
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We mostly use the above definition for cases when (D,M) is a redex. Using one-step αC-renaming and
specifying a particular αC-redex allows us to trace calculus redexes in the hidden part of the module along
sequences of αC-renamings. The following example illustrates how we can distinguish two redexes by giving
the sequence of αC-renamings.

Example 2.51 (Tracing Redexes by a Sequence of αC-Renamings). Given two modulesD1 = [A 7→
2, h1 7→ 3 + 4, h2 7→ 3 + 4] and D2 = [A 7→ 2, h′1 7→ 3 + 4, h′2 7→ 3 + 4], we see that D1 =Cα D2, but, without
specifying the sequence of renamings from D1 to D2, we cannot uniquely match the redexes of D1 to those of

D2. However, given a particular sequence S such that D1 −
S−→
∗

αC D2, we know which redex in D1 corresponds
to which redex in D2. For instance, if S = (h1, h

′
1), (h2, h

′
2), then the redex 3 + 4 bound to h1 in D1 is

bound to h′1 in D2. Note that a sequence S ′ = (h1, h
′
2), (h2, h

′
1) gives a different correspondence between the

redexes.
We observe that the notion of a “shape” of a context introduced in remark 2.31 for the term calculus does

not help us to distinguish the two redexes in the module D1, since the contexts [A 7→ 2, h1 7→ 3 + 4, h2 7→ 2]
and [A 7→ 2, h2 7→ 3 + 4, h1 7→ 2] have the same “shape”. Thus we use one-step αC-renaming to identify
calculus redexes before and after a renaming.

The example above shows that to be able to say that αC-renaming of a module preserves distinctness of
its calculus redexes, we need to specify particular αC-renaming sequences between modules. Otherwise we
cannot prove that two distinct calculus redexes in one module do not map to the same redex in the other
module. The two lemmas below formalize this intuition. Together they imply that any two distinct redexes
remain two distinct redexes after αC-renaming. Note that in lemma 2.53 it is essential that the step −−→αC

reduces the same αC-redex for both αC-renamings. If we replace this step by =Cα, the lemma no longer holds,
because, as we have seen in the example above, two different sequences may reduce different T -terms in one
module to the same T -term in another.

We extend the definition of αC-equivalence classes to T -terms, since calculus redexes in the core module
calculus are T -terms.

Definition 2.52 (αC-Equivalence of T -terms). By definition αC 〈(D1,M1)〉 = {(D,M) | (D,M) =Cα (D1,M1)}.
We use a meta-variable SubαC to range over the set of αC-equivalence classes of T -terms.

Lemma 2.53 (αC-Renaming Preserves Distinctness of T -subterms). If D1{M1} = D2{M2} ∈ TermC,
(D1,M1) 6= (D2,M2), and

• either (D1,M1) −
(D,x,y)−−−−→αC (D′1,M ′

1) and (D2,M2) −
(D,x,y)−−−−→αC (D′2,M ′

2),

• or (D1,M1) −
(h,h′)−−−→αC (D′1,M ′

1) and (D2,M2) −
(h,h′)−−−→αC (D′2,M ′

2),

then (D′1,M ′
1) 6= (D′2,M ′

2).

Lemma 2.54 (αC-Renaming Preserves Calculus Redexes).

• If (D,M) is a redex and (D,M) −−→αC (D′,M ′), then (D′,M ′) is a redex.

• If (G,M) is an evaluation redex and (G,M) −−→αC (D,M ′), then (D,M ′) is an evaluation redex.

• If (D,M) is a non-evaluation redex and (D,M) −−→αC (D′,M ′), then (D′,M ′) is a non-evaluation redex.

The proofs of lemmas 2.53 and 2.54 are analogous to those of lemmas 2.33 and 2.34.
The following lemma gives the properties of modules preserved by αC-renaming.

Lemma 2.55 (Properties Preserved by αC-Renaming). If D −
S−→
∗

αC D
′, then:

1. FL(D) = FL(D′) (and hence Imports(D) = Imports(D′), since FL(D) = Imports(D)),
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2. Exports(D) = Exports(D′),

3. D ∈ HTermC iff D′ ∈ HTermC.

4. If D =
(G,R)
===⇒C D1, then there exists D′1 ∈ αC 〈D1〉 such that D′ =

(G′,R′)
====⇒C D′1, where (G, R) −S−→

∗

αC (G′, R′).

5. If D ◦−(G,R)−−−→C D1, then there exists D
′
1 ∈ αC 〈D1〉 such that D′ ◦−

(G
′
,R′)−−−−→C D

′
1, where (G, R) −S−→

∗

αC (G′, R′).

6. ClC(D) = ClC(D
′).

Proof. We show that the properties are preserved by a one-step αC-renaming. Then they are preserved by

−S−→
∗

αC . Suppose D −−→αC D
′, then:

1. The lifting of −−→αT to the module level preserves all labels. Renaming of hiddens renames only bound
hidden labels. The set FL(D) consists of free visible and free hidden labels, which are not renamed.
The condition h′ 6∈ Hid(D) in the definition of αC-renaming guarantees that a free hidden label is not
captured.

2. By definition Exports(D) = BL(D) ∩ Visible. Since αC-renaming renames only bound hiddens,
Exports(D) = Exports(D′).

3. By part 1 FL(D) = FL(D′). Therefore FL(D) ∩Hidden = ∅ if and only if FL(D′) ∩Hidden = ∅.

4. Straightforward proof by cases of the calculus evaluation redex (G, R) and the αC-redex of the αC-

renaming D −−→αC D′. We show that if D −
(D1,x,y)−−−−→αC D′ or D −

(h,h′)
−−−→αC D′, and D =

(G,R)
===⇒C D1, then

there exists D′1 such that D′ =
(G′,R′)
====⇒C D′1, where (G, R) −(D1,x,y)−−−−→αC (G′, R′) in the first case and

(G, R) −(h,h
′)−−−→αC (G′, R′) in the second, and D1 =Cα D′1.

5. Analogous to part 4.

6. ClC(D) = evaluatableC iff ClC(D
′) = evaluatableC by part 4. Suppose ClC(D) = ValueC , i.e.

D = [li
n
7→
i=1

Vi]. If D −
(D1,x,y)−−−−→αC D

′, then by part 4 of lemma 2.35 all D′ = [li
n
7→
i=1

V ′i ]. If D −
(h,h′)−−−→αC D

′,

then D′ = [l′i
n
7→
i=1

V ′i ], where l
′
i = li if l 6= h, and l′i = h′ otherwise, and V ′i = Vi[h := h′] ∈ ValueT .

Therefore ClC(D
′) = ValueC . The claim follows by symmetry of −−→αC .

Parts 4 and 5 of lemma 2.55 and the symmetry of −−→αC imply the following:

Lemma 2.56 (C Relations Well-defined w.r.t. αC-Equivalence).

1. If D1 =
(G,R)
===⇒C D2 and D1 −−→αC D′1, then there exist (G′, R′) and D′2 such that D′1 =

(G′,R′)
====⇒C D′2,

D2 =Cα D′2, and (G, R) =Cα (G′, R′).

2. If D1 ◦−
(G,R)−−−→C D2 and D1 −−→αC D′1, then there exist (G′, R′) and D′2 such that D′1 ◦−

(G
′
,R′)−−−−→C D′2,

D2 =Cα D′2, and (G, R) =Cα (G′, R′).

The above results allow us to define the extensions ==⇒C\α and ◦−−→C\α of ==⇒C and ◦−−→C , respectively, to
αC-equivalence classes.
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Definition 2.57 (Evaluation and Non-evaluation on αC-Equivalence Classes). DαC =
SubαC
===⇒C\α D′αC

(respectively DαC ◦−
SubαC−−−−→C\α D′αC ) if there exist D ∈ DαC , D

′ ∈ D′αC , and (G, R) ∈ SubαC such that

D =
(G,R)
===⇒C D′ (respectively (G, R) ∈ SubαC s.t. D ◦−(G,R)−−−→C D′).

By part 6 of lemma 2.55 classification of modules in the same αC-equivalence class is the same. Therefore
we can define:

Definition 2.58 (Classification of αC-Equivalence Classes). By definition ClC(DαC ) = ClC(D), where
D ∈ DαC .

We adopt the same notational convention for C\α as we did for T \α (see convention 2.40), i.e. we use
concrete terms to denote the αC-equivalence classes that they represent. The examples below are written
according to this convention.

Unlike ==⇒T \α, ==⇒C\α is not a function, because it can perform an evaluation step on any component, as
shown below.

Example 2.59 (==⇒C\α not a Function).

[A 7→ 1 + 2, B 7→ 3 ∗ 4] ==⇒C\α [A 7→ 3, B 7→ 3 ∗ 4],
[A 7→ 1 + 2, B 7→ 3 ∗ 4] ==⇒C\α [A 7→ 1 + 2, B 7→ 12],

but αC 〈[A 7→ 3, B 7→ 3 ∗ 4]〉 6= αC 〈[A 7→ 1 + 2, B 7→ 12]〉.

Nevertheless, we have the following result:

Theorem 2.60. ==⇒C\α is confluent.

The confluence of ==⇒C\α gives rise to a partial function EvalC\α which, when defined, returns the result
of evaluating an αC-equivalence class DαC to the αC-equivalence class of its evaluation normal form. Recall
that a module is in an evaluation normal form if it does not have substitution evaluation redexes and its
components are all ==⇒T -normal forms. By lemma 2.55 if a module is in an evaluation normal form, then
so are all modules that it is αC-equivalent to, so EvalC\α is well-defined w.r.t. αC-equivalence classes. The
related function OutcomeC\α (see definition 2.10) is also well-defined. Note that since ==⇒C is not confluent
on individual modules (in particular, it inherits non-confluence of ==⇒T ), EvalC and OutcomeC are not defined
on concrete modules8. The following example illustrates EvalC\α(DαC ).

Example 2.61 (Evaluation of Modules).

EvalC\α([F 7→ f @ 2, G 7→ λy.y + g, f 7→ λx.x, g 7→ 3]) = [F 7→ 2, G 7→ λy.y + g, f 7→ λx.x, g 7→ 3].

Note that the result is an ==⇒C\α-normal form, even though it has a −−→C\α-redex: g in the second term is a
substitution redex, but it occurs under a lambda, and therefore not in an evaluation context.

We also have the following result for ==⇒C\α which ensures that a module’s observable behavior with
respect to ==⇒C\α is the same regardless of which evaluation path it takes:

Lemma 2.62. If DαC ==⇒∗C\α EvalC(DαC ), then there is no infinite sequence of ==⇒C\α steps originating at
DαC .

Proofs of both Theorem 2.60 and Lemma 2.62 are given in appendix C and are based on the fact
that ==⇒C\α satisfies the diamond property: if D1αC ==⇒C\α D2αC and D1αC ==⇒C\α D3αC , where the two
evaluation steps do not reduce the same redex, then there exists a D4αC such that D2αC ==⇒C\α D4αC and
D3αC ==⇒C\α D4αC .

Interestingly, even though ==⇒C\α is confluent, −−→C\α is not, due to the possibility of mutually recursive
(subst) redexes that appear under a λ and therefore not in an evaluation context, as shown by the following
example:

8However, we will sometimes write EvalC(D) to denote a module D′ ∈ EvalC\α(αC 〈D〉), and similarly with OutcomeC(D).
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Example 2.63 (Non-confluence of −−→C). The example is due to [AK97].

D0 = [F 7→ λx.G,G 7→ λy.F ] ◦−−→C\α [F 7→ λx.λy.F ,G 7→ λy.F ] = D1,
D0 = [F 7→ λx.G,G 7→ λy.F ] ◦−−→C\α [F 7→ λx.G,G 7→ λy.λx.G] = D2.

D1 (resp. D2) has an even (resp. odd) number of λs for F and an odd (resp. even) number for G, and in
every reduction sequence starting with D1 (resp. D2), all terms will have this property. Clearly, reduction
sequences starting at D1 and D2 can never meet at a common term.

The fact that −−→C\α is not confluent is problematic for the traditional approach for proving computational
soundness – i.e., that a calculus is sound relative to an operational semantics. We have developed an approach
for proving the computational soundness of the core module calculus that does not require the confluence of
−−→C\α. See section 3 for details.

We also have the following result (shown in appendix C):

Theorem 2.64. C\α has the standardization property.

Remark 2.65 (Changes from [MT00]). The core module calculus defined here differs from the one de-
fined in [MT00] in the following ways:

• In this presentation we have removed the requirement that a module does not import any hiddens. This
requirement still exists at the linking level: only h-closed modules, i.e. modules that do not import
hiddens, can form a linking expression. The reason for removing this requirement at the core module
level is that we use a new set of contexts ContextC,C . A meaningful definition of filling such contexts
with modules includes cases when the module that fills a context is not h-closed. See discussion in
section 2.4.1 for more details.

• The module classification in section 2.3.2 simplifies the presentation in [MT00], where a classification
of a module exposed the classes of all of its components, including the hidden ones:

ClC(D) = [li
n
7→
i=1

ClT (Mi)], where D = [li
n
7→
i=1

Mi]. ([MT00] definition)

The reason why a less fine-grained classification is sufficient is because we only use it to show that two
modules are observationally equivalent, i.e. that in any linking context if one of them evaluates to a
module value of a certain class, then so does the other (see definition 3.2). It also turns out that the
more specific classification gets in the way of defining garbage collection (GC) as a non-evaluation step
(see discussion in section 2.6).

• Another change from [MT00] is the definition of ValueC . In [MT00], we required that all components
of a module value are visible. Here, we allow module values to contain hidden components, as long as
they are values.

There are two reasons for this change:

– In the core module calculus of [MT00] we defined (GC) to be an evaluation step, so it was natural
to expect that all (GC) redexes in a module would be removed by evaluation. In the current
presentation, we consider (GC) to be a non-evaluation step (see section 2.6), and therefore (GC)
redexes can be removed only as an optimization (i.e. a non-evaluation step), but not as part of
evaluation. Therefore, evaluation normal forms may contain (GC) redexes, which involve hidden
value components.

– There are module values in which references to a hidden component cannot be removed, even by
non-evaluation steps, and so the component can not be GCed. As an example of such module,
consider [A 7→ λx.h, h 7→ λy.h]. References to h in the component bound to the visible label A
cannot be removed. The new definition is more flexible for handling such situations than the one
in [MT00]. Note, however, that it is possible to place a module with hidden components referenced
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in the visible part of the module into a linking context that will hide the components referencing
the hidden part, so that all such components can be garbage collected. For instance, in the case
of the above module (see definitions of the module operations ⊕ and {hide l} in section 2.5):

([A 7→ λx.h, h 7→ λy.h]⊕ [B 7→ (λz.λw.w) @ A]){hide A} ==⇒∗L
[h′ 7→ λx.h, h 7→ λy.h,B 7→ λw.w]

There are no references to the hidden components bound to h and h′ in the visible part of the
module, and therefore these components are garbage collectable. Therefore if GC step were an
evaluation step, the module could have been evaluated to a value as defined in [MT00].

2.5 Linking Calculus (L)

2.5.1 Syntax of Linking Expressions

The linking calculus extends the core module calculus with four module operators: linking, renaming, hiding,
and binding. Figure 1 defines these operations for concrete linking expressions. In section 2.5.6 we introduce
the notion of αL-equivalence and extend these operations to αL-equivalence classes.

A linking expression and a linking context are defined in figure 1. All modules that appear in a linking
expression are h-closed, i.e. they do not import hidden labels. We introduce the following additional
notations and definitions for linking expressions. A module identifier I is free in an expression L if it is not
bound by a let. The set FMI(L) of free module identifiers of L is inductively defined as follows:

FMI(H) = ∅
FMI(I) = {I}

FMI(L1 ⊕ L2) = FMI(L1) ∪ FMI(L2)

FMI(L[v
ren
←v′]) = FMI(L)

FMI(L{hide v}) = FMI(L)
FMI(let I = L1 in L2) = FMI(L1) ∪ (FMI(L2) \ {I})

A linking expression L is well-formed if FMI(L) = ∅. In this presentation we assume all top-level linking
expressions to be well-formed (expressions that are in the scope of a let may have free identifiers).

We define a substitution of a linking expression for a free identifier L[I := L′] similarly to substitution
M [x := N ] in the term calculus (see definition 2.14).

I [I := L] = L
I1[I := L] = I1 if I 6= I1
H [I := L] = H

L1 ⊕ L2[I := L] = L1[I := L]⊕ L2[I := L]
L1{hide v}[I := L] = (L1[I := L]){hide v}

L1[v
ren
←v′][I := L] = (L1[I := L])[v

ren
←v′]

(let I = L1 in L2)[I := L] = let I = L1[I := L] in L2

(let I1 = L1 in L2)[I := L] = let I1 = L1[I := L] in L2[I := L]
if I 6= I1 and I1 6∈ FMI(L) or I 6∈ FMI(L2)

(let I1 = L1 in L2)[I := L] = let I2 = L1[I := L] in L2[I1 := I2][I := L]
if I 6= I1, I1 ∈ FMI(L), I ∈ FMI(L2),
and I2 6∈ FMI(L) ∪ FMI(L2)

In order to define redexes of module reductions lifted to the linking level and redexes of α-renaming of
linking expressions, it is convenient to introduce a set of contexts that can be filled with a term so that the
result of the filling is a linking expression.
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Definition 2.66. Let ContextT ,L denote the set of contexts {L{D} | L ∈ ContextL,L,D ∈ ContextT ,C},
and let F range over ContextT ,L. The result of filling a context F = L{D} with a term M ∈ TermT is
defined as L{D{M}} if D{M} ∈ HTermC , otherwise it is undefined.

Example 2.67 (Contexts in the Set ContextT ,L). The context F1 = [A 7→ 2, B 7→ 2]{hide A} is ob-
tained by filling a linking context 2{hide A} with the module context [A 7→ 2, B 7→ 2]. The context
F2 = [A 7→ 2] is the result of filling 2 with [A 7→ 2] ∈ ContextT ,C . The latter example demonstrates that
ContextT ,C ⊂ ContextT ,L.

2.5.2 Evaluation and Reduction of Linking Expressions

Intuitively, the linking of modules H1 and H2, written H1 ⊕H2, takes the union of their bindings. To avoid
naming conflicts between both visible and hidden labels, BL(H1) and BL(H2) must be disjoint9. The fact
that the import labels of an h-closed module are non-hidden prevents the components of one module from
accessing hidden components of the other one when they are linked.

The renaming operator renames a visible module label (an import or an export) to another visible label.
The proviso “v ∈ BL(H) implies v′ 6∈ BL(H)” guarantees that the resulting module is well-formed10, i.e.
does not have two components bound to the same label name. Renaming import and export labels is the
way to connect an exported component of one module to an import site in another.

Hiding renames a visible label to a fresh (i.e. not appearing in the module) hidden. As we show below,
the choice of this hidden name does not matter when we consider αC-equivalence classes of modules. The
restriction v 6∈ Imports(H) prevents renaming an import to a hidden label.

The binding operator let I = L1 in L2 names the result of evaluating the definition term L1 and uses
the name within the body term L2. This models situations in which the same module is used multiple times
in different contexts (see examples below). In this presentation we require that the definition term L1 is first
evaluated to an h-closed module H , and then H is substituted into the body L2. This is consistent with
the call-by-value semantics of other reductions in our calculus (e.g. the term reductions and substitution at
the module level). In section 2.5.6 we discuss the more general non-deterministic (let) reduction introduced
in [MT00]. All the results shown for the non-deterministic (let) hold for (let) restricted to the call-by-value
case.

The definition of −−→L lifts core module reduction steps to the linking level. The lifted core module
reduction steps are only considered evaluation steps if they are not surrounded by any link-level operators;
this forces all link-level steps to be performed first in a “link-time stage”, followed by a “run-time stage” of
core module steps.

Similarly to the calculi T and C, a redex is a subterm occurrence which specifies exactly where in the
term the reduction has been performed. Observe that there are two kinds of reductions at the linking level:
reductions of link-level operations, e.g. (link) or (rename), and reductions of modules (mod-ev) and (mod-
nev). These two kinds of reductions require different kinds of redexes: a link-level reduction is uniquely
specified by its linking context and the linking expression, but for a reduction on a module we need to
specify which of the (possibly several) module redexes is reduced. Therefore for the module reductions we
need to use contexts of the set ContextT ,L to specify the redex. The definition below formalizes the notion
of a linking redex for these two cases.

Definition 2.68 (Linking Redex).

• Case of the rules (link), (rename), (hide), and (let). A subterm occurrence (L, L) is called a linking
redex if its parsing matches the left-hand side of one of the reduction rules (link), (rename), (hide),
or (let), and L{L} satisfies all the requirements for the rule. We use a variable K to denote the

9The extension of linking to αL-equivalence classes introduced later in this section removes the requirement that hidden
labels of the two modules are disjoint.

10An attempt to rename one bound label in a module to another one causes a linking error.
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expression L filling the context L, i.e. the notation (L,K) denotes a linking redex in the case of these
four reduction rules. A linking redex (L,K) is an evaluation redex.

• Case of the rules (mod-ev) and (mod-nev). A subterm occurrence (F, R) is called a linking redex if
F = L{D}, and (D, R) is a module redex. The linking redex is an evaluation redex if L = 2 and
D ∈ EvalContextT ,C , otherwise it is a non-evaluation redex.

Example 2.69 (Linking Redexes). The following are evaluation redexes:

(2[B
ren
←C], [A 7→ 2, B 7→ 3]{hide A}), (hide)

([A 7→ 2, B 7→ 4 ∗ 5, C 7→ λx.C ], 2 + 3), (mod-ev)
([A 7→ 2 + 3, B 7→ 2, C 7→ λx.C ], 4 ∗ 5). (mod-ev)

The first redex is a (hide) redex appearing in the linking context 2[B
ren
←C]. The second and the third redexes

form the same module [A 7→ 2 + 3, B 7→ 4 ∗ 5, C 7→ λx.C ]. By specifying the module context containing each
of the two redexes we are able to distinguish them.

The following are non-evaluation redexes:

([A 7→ 2 + 3, B 7→ 4 ∗ 5, C 7→ λx.2], C), (mod-nev)
([A 7→ 2]⊕ [h 7→ 3], 2 + 3). (mod-nev)

The first redex is in the same module as the two evaluation redexes above. The second example is of a module
evaluation step which occurs in a non-empty linking context, and therefore is a non-evaluation linking step.

The following subterm occurrence is not a redex: (2, [A 7→ 2, B 7→ 3][A
ren
←B]) (even though it matches

the left-hand side of the rule (rename), it does not satisfy the conditions for the rule, see figure 1).

The structure of ContextL,L allows the link-level operators to be evaluated in any order, as we see in
the examples below. We show that ==⇒L\α, i.e. the “lifting” of ==⇒L to αL-equivalence classes introduced in
section 2.5.6, is confluent, and therefore at the level of αL-equivalence classes the result is the same for every
order of evaluation.

Example 2.70 (Evaluation of a Linking Expression). The example illustrates reuse of a module via
let, as well as linking, hiding, and module evaluation:

let A = [X 7→ 2] in (A⊕ [Y 7→ X + Z])⊕ ((A⊕ [Z 7→ X ∗ 5]){hide X}) ==⇒L
([X 7→ 2]⊕ [Y 7→ X + Z])⊕ (([X 7→ 2]⊕ [Z 7→ X ∗ 5]){hide X}) ==⇒∗L
[X 7→ 2, Y 7→ X + Z]⊕ [h 7→ 2, Z 7→ h ∗ 5] ==⇒L
[X 7→ 2, Y 7→ X + Z, h 7→ 2, Z 7→ h ∗ 5] ==⇒∗L
[X 7→ 2, Y 7→ 12, h 7→ 2, Z 7→ 10]

The first evaluation step reduces the let. The next 3 steps (shown as one ==⇒∗L sequence) perform two
linking operations and hiding. The two (link) reductions may be performed in any order. The hiding can
be performed only after the linking [X 7→ 2]⊕ [Z 7→ X ∗ 5], since the argument of hiding must be a module.
Hiding renames a visible label X to a new hidden label h. After this renaming has been performed, the
component is no longer accessible from outside of the module in which it is defined. The final linking reduces
the expression to a single module, and the following ==⇒∗L sequence evaluates the module to a module value
(all components are bound to values).

In the example above the label h in the resulting module value is not referenced in any other component.
In [MT00] we have introduced a core module calculus rule (GC) for garbage-collecting such hidden compo-
nents. In this presentation a (GC) rule is added to the core module calculus as a non-evaluation step (see
section 2.6). If we apply this rule, the resulting module is reduced to [X 7→ 2, Y 7→ 12, Z 7→ 10]. However,
since (GC) is a non-evaluation step, the result of the evaluation above is an evaluation normal form even
before applying (GC).
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We use the following abbreviation for a sequence of nested lets: let I1 = L1 I2 = L2 . . . In = Ln in Ln+1

is syntactic sugar for let I1 = L1 in (let I2 = L2 in . . . (let In = Ln in Ln+1) . . . ).
The next example shows possibilities of connecting module components via renaming.

Example 2.71 (Connecting Module Components Via Renaming).

let A = [X 7→ 0]
B = [Y 7→ Z + 1]
C = A⊕B

in C[Y
ren
←Y1][Z

ren
←X ]⊕B[Z

ren
←Y1]

==⇒∗L [X 7→ 0, Y1 7→ X + 1, Y 7→ Y1 + 1]
==⇒∗L [X 7→ 0, Y1 7→ 1, Y 7→ 2].

Note that the first renaming applied to C renames an exported label, and the second one (as well as the
renaming of Z in B) renames an imported label.

Cases of ◦−−→L include an evaluation of a module in a non-empty linking context and a non-evaluation
step on a module in an empty context, as shown in the following example:

Example 2.72 (Non-Evaluation Steps in L). Even though the substitution is an evaluation step at the
module level, it is a non-evaluation step at the linking level, since the module appears in a non-empty context:

[X 7→ 2, Z 7→ X + 3]⊕ [P 7→ X + Z] ◦−−→L [X 7→ 2, Z 7→ 2 + 3]⊕ [P 7→ X + Z]

A non-evaluation step on a module is a non-evaluation linking step even if the module appears in an empty
context:

[F 7→ λx.Y + 3, Y 7→ 2] ◦−−→L [F 7→ λx.2 + 3, Y 7→ 2].

Unlike in T and C, classification of linking expressions is defined only on their αL-equivalence classes,
but not on concrete linking expressions. The reasons for this are discussed later (see section 2.5.6).

2.5.3 Lifting of αC-equivalence to L Terms

We lift the notion of αC-equivalence classes from modules to linking expressions and, since modules are used
as elements of linking contexts, to such contexts. In section 2.5.5 we introduce α-renaming of let-bound
module identifiers in linking expressions, denoted −−→αI , which induces an equivalence relation =I

α. Finally,
we join the two notions of α-equivalence of linking expressions (induced by −−→αC and −−→αI ) to form α-
equivalence relation =Lα in section 2.5.6. As for the lifting of −−→αT to the module level in section 2.4.3, we
use the same notation −−→αC for the lifting of −−→αC to linking expressions and linking contexts, rather than
introduce a separate notation.

Definition 2.73 (αC-Renaming of Linking Expressions).

• We say that:

– L reduces to L′ in a one-step αC-renaming with the αC-redex (F, x, y), written L −(F,x,y)−−−−→αC L
′, if

there exist L,D, H , and H ′ such that L = L{H}, L′ = L{H ′}, H −(D,x,y)−−−−→αC H
′, and F = L{D}.

– L reduces to L′ in a one-step αC-renaming with the αC-redex (L, h, h′), written L −(L,h,h
′)−−−−→αC L

′,

if there exist L, H , and H ′ such that L = L{H}, L′ = L{H ′}, and H −
(h,h′)
−−−→αC H

′.

As for the other relations, the redex annotation may be omitted.
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• We write L −S−→
∗

αC L
′ if L reduces to L′ by a sequence of one-step αC-renamings reducing αC-redexes in

S left-to-right.

Since −−→αC is symmetric on TermC , its lifting to TermL is also symmetric. The relations −−→∗αC and =Cα
are defined as usual, and, since −−→αC is symmetric, coincide. αC-equivalence classes of linking expressions
are defined as usual:

Definition 2.74 (αC-Equivalence Classes of Linking Expressions). If L ∈ TermL, then its αC-equivalence
class, written αC 〈L〉, is defined as αC 〈L〉 = {L

′ ∈ TermL | L =Cα L′}. We use LαC as a meta-variable that
ranges over αC-equivalence classes of linking expressions.

Unlike in T and C, we also extend the notion of αC-equivalence classes to linking contexts. It is possible,
since linking contexts contain entire modules, therefore αC-renaming a module in a linking context (i.e.
renaming its hiddens or λ-bound variables) does not affect any other modules, in particular those of a
linking expression that fills the hole of the context. Note that this is not the case in the other calculi. For
instance, extending αT -renaming to context in T would cause the following problem: suppose we α-rename
the context λx.2 to λy.2, then filling this context with x will cause variable capture for the former context,
but not for the latter, and the resulting terms will have different meaning. However, no variable or label
capture can happen when we fill a linking context with a linking expression, therefore αC-renaming a module
which is a part of a linking context cannot change the meaning of the linking expression.

In order to describe αC-redexes of linking contexts, we introduce the notion of two-hole contexts:

Definition 2.75. A set of two-hole linking contexts is defined as follows:

2L ∈ ContextL×L,L ::= L⊕ L | 2L⊕ L | L⊕ 2L | 2L[vren
←v′] | 2L{hide v} |

let I = L in L | let I = 2L in L | let I = L in 2L

The result of filling of a two-hole context 2L with two linking expressions L1 and L2 is denoted as 2L{L1, L2},
where the two expressions fill the holes of the context left-to-right. Note that it is also meaningful to fill the
holes of a context 2L with other contexts, s.a. L or F. Contexts obtained from 2L by filling one of the holes
with a context F ∈ ContextT ,L form the set ContextT ×L,L. We use 2F to range over this set. Contexts in
ContextT ×L,L are filled with a term of TermT and a linking expression.

Example 2.76 (Contexts of ContextL×L,L). Consider a two-hole linking context 2L = (2⊕2){hide A}.
The context can be filled with two linking expressions:

2L{[A 7→ 2], [A 7→ 3][A
ren
←B]} = ([A 7→ 2]⊕ [A 7→ 3][A

ren
←B]){hide A}.

The result of filling 2L with contexts [A 7→ 2] ∈ ContextT ,L and 2[A
ren
←B] ∈ ContextL,L is

2L{[A 7→ 2],2[A
ren
←B]} = ([A 7→ 2]⊕2[A

ren
←B]){hide A}.

Let 2F = ([A 7→ 2]⊕2[A
ren
←B]){hide A} ∈ ContextT ×L,L. Note that 2F ∈ ContextT ×L,L. We can fill this

context with a term and a linking expression as follows:

2F{2, [A 7→ 3]} = ([A 7→ 2]⊕ [A 7→ 3][A
ren
←B]){hide A}.

Definition 2.77 (αC-Renaming of Linking Contexts). We say that a linking context L reduces by a

one-step αC-renaming to a linking context L′ with the αC-redex (2F, x, y), written L −(
2F,x,y)−−−−→αC L′, if there

exist H,H ′, and 2L such that H −(D,x,y)−−−−→αC H ′, and either L = 2L{H,2}, L′ = 2L{H ′,2}, and 2F =
2L{D,2}, or L = 2L{2, H}, L′ = 2L{2, H ′}, and 2F = 2L{2,D}.
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We say that a linking context L reduces by a one-step αC-renaming to a linking context L′ with the

αC-redex (2L, h, h′), written L −(
2L,h,h′)−−−−−→αC L′, if there exist H,H ′ such that H −(h,h

′)−−−→αC H ′, and either
L = 2L{H,2} and L′ = 2L{H ′,2}, or L = 2L{2, H} and L′ = 2L{2, H ′}.

We extend −−→∗αC and =Cα to linking contexts in the usual way.

We define αC-equivalence of linking contexts as follows:

Definition 2.78 (αC-Equivalence Classes of Linking Contexts). αC-equivalence class of a linking con-
text L, denoted αC 〈L〉, is a set {L′ | L′ =Cα L}. We use LαC to range over αC-equivalence classes of linking
contexts.

We extend the operation of filling a context with a linking expression to αC-equivalence classes as follows:

αC 〈L〉{αC 〈L〉} = αC 〈L1{L1}〉, where L1 ∈ αC 〈L〉, L1 ∈ αC 〈L〉. Filling of a context is well-defined for αC-
equivalence classes:

Lemma 2.79. If L =Cα L′ and L =Cα L′, then αC 〈L{L}〉 = αC 〈L′{L′}〉.

Unlike the calculi T and C, where we needed to add markings to the calculus syntax in order to define
α-equivalence classes of subterm occurrences, in the case of L the definition of an αC-equivalence class of a
subterm occurrence is much simpler, because it uses the notion of αC-equivalence class of a linking context.
We define αC-renaming for both subterm occurrences of the form (L, L) and of the form (F,M), since these
two kinds of subterm occurrences correspond to two kinds of linking redexes (see definition 2.68).

Definition 2.80 (αC-Renaming of Subterm Occurrences in L). We say that (L, L) reduces to (L′, L′)
by a one-step αC-renaming with the αC-redex (F, x, y), written (L, L) −(F,x,y)−−−−→αC (L′, L′), if

• either L = L′ and there exists F1 ∈ ContextT ,L such that L −(F1,x,y)−−−−→αC L
′ and F = L{F1},

• or L = L′ and there exists 2F such that L −(
2F,x,y)−−−−→αC L′, where F = 2F{L,2} or F = 2F{2, L}.

We say that (L, L) reduces to (L′, L′) by a one-step αC-renaming with the αC-redex (L1, h, h
′), written

(L, L) −(L1,h,h
′)

−−−−−→αC (L′, L′), if

• either L = L′ and there exists L2 such that L −(L2,h,h
′)−−−−−→αC L

′, where L1 = L{L2},

• or L = L′ and there exists 2L such that L −(
2L,h,h′)−−−−−→αC L′, where L1 = 2L{L,2} or L1 = 2L{2, L}.

We say that (F,M) reduces to (F′,M ′) by a one-step αC-renaming with the αC-redex (F1, x, y), written

(F,M) −(F1,x,y)−−−−→αC (F′,M ′), if F = L{D}, F′ = L′{D′}, and

• either L = L′ and there exists D1 such that (D,M) −(D1,x,y)−−−−→αC (D′,M ′), where F1 = L{D1},

• or (D,M) = (D′,M ′) and there exists 2F ∈ ContextT ×L,L such that L −(
2F,x,y)−−−−→αC L′, where F1 =

2F{D{M},2} or F1 = 2F{2,D{M}}.

We say that (F,M) reduces to (F′,M ′) by a one-step αC-renaming with the αC-redex (L, h, h′), written
(F,M) −(L1,h,h

′)−−−−−→αC (F′,M ′), if F = L{D}, F′ = L′{D′}, and

• either L = L′ = L1 and (D,M) −(h,h
′)−−−→αC (D′,M ′),

• or (D,M) = (D′,M ′), and there exists 2L such that L −(
2L,h,h′)
−−−−−→αC L′, where L1 = 2L{D{M},2} or

L1 = 2L{2,D{M}}.
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We define αC-equivalence classes of both kinds of subterm occurrences as usual. We use a meta-variable
SubL,LαC to range over the set of subterm occurrences of the form (L, L), and a meta-variable SubT ,LαC to range
over those of the form (F,M).

For both kinds of subterm occurrences we have the following result:

Lemma 2.81 (αC-Renaming Preserves Distinctness of Subterms in L). If L1{L1} = L2{L2} ∈ TermL,

(L1, L1) 6= (L2, L2), and either (L1, L1) −
(F,x,y)−−−−→αC (L′1, L′1) and (L2, L2) −

(F,x,y)−−−−→αC (L′2, L′2), or (L1, L1)

−(L,h,h
′)−−−−→αC (L′1, L′1) and (L2, L2) −

(L,h,h′)−−−−→αC (L′2, L′2), then (L′1, L′1) 6= (L′2, L′2).
Similarly, if F1{M1} = F2{M2} ∈ TermL, (F1,M1) 6= (F2,M2), and either (F1,M1) −

(F,x,y)−−−−→αC (F′1,M ′
1)

and (F2,M2) −
(F,x,y)−−−−→αC (F′2,M ′

2), or (F1,M1) −
(L,h,h′)−−−−→αC (F′1,M ′

1) and (F2,M2) −
(L,h,h′)−−−−→αC (F′2,M ′

2), then
(F′1,M ′

1) 6= (F′2,M ′
2).

Recall that in T and C it is the case that if two subterm occurrences are αC-equivalent and one is a redex,
then so is the other (see lemmas 2.34 and 2.54). This property holds for linking redexes of the form (F,M):

Lemma 2.82 (Properties of αC-Equivalent Linking Redexes (F,M)).

• If (F,M) is a linking redex and (F,M) −−→αC (F′,M ′), then (F′,M ′) is a linking redex.

• If L1 =
(F,M)
===⇒L L2, L1 −

(L,h,h′)−−−−→αC L
′
1, and (F,M) −(L,h,h

′)−−−−→αC (F′,M ′) (respectively L1 −
(F1,x,y)−−−−→αC L

′
1 and

(F,M) −(F1,x,y)−−−−→αC (F′,M ′)), then there exists L′2 ∈ αC 〈L2〉 such that L′1 =
(F,M)
===⇒L L′2.

• If L1 ◦−
(F,M)−−−→L L2, L1 −

(L,h,h′)−−−−→αC L
′
1, and (F,M) −(L,h,h

′)−−−−→αC (F′,M ′) (respectively L1 −
(F1,x,y)−−−−→αC L

′
1 and

(F,M) −(F1,x,y)−−−−→αC (F′,M ′)), then there exists L′2 ∈ αC 〈L2〉 such that L′1 ◦−
(F,M)−−−→L L′2.

It turns out that the analogous property does not hold for linking redexes of the form (L, L). Recall that
linking of two concrete modules is defined when bound labels of the modules (both visible and hidden) are
disjoint (see figure 1). By lemma 2.55 if H1 =Cα H2, then Exports(H1) = Exports(H2), so one representative
of an αC-equivalence class αC 〈H ⊕H ′〉 satisfies the condition Exports(H) ∩ Exports(H ′) = ∅ if and only if
any other representative does. On the other hand, hidden labels are different for different representatives
of the same class, so it may be the case that some representatives of αC 〈H ⊕H ′〉 satisfy the condition
Hid(H) ∩ Hid(H ′) = ∅, and some do not:

Example 2.83 (⊕ Defined on Some But Not All Represenatives of an αC-Equivalence Class).
Two linking expressions below are αC-equivalent. The first expression does not have a conflict between the
names of hidden labels. In the second expression both modules define a hidden label h, so linking cannot be
performed.

[A 7→ λx.h, h 7→ 5]⊕ [B 7→ A @ h′, h′ 7→ 7] ==⇒L [A 7→ λx.h, h 7→ 5, B 7→ A @ h′, h′ 7→ 7]
[A 7→ λx.h, h 7→ 5]⊕ [B 7→ A @ h, h 7→ 7] 6==⇒L (h defined in both modules)

However, we are able to show the following weaker property:

Lemma 2.84 (Properties of αC-Equivalent Linking Redexes). Let (L,K) and (L′,K ′) be two linking

redexes such that (L,K) −−→αC (L′,K ′), L1 −
(L,K)−−−→L L2, and L′1 −

(L,K)−−−→L L′2, then L2 =Cα L′2 (recall that
L1 =Cα L′1 by lemma 2.79).
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Recall that all redexes of the form (L,K) are evaluation redexes, therefore we do not need to consider
evaluation and non-evaluation redexes separately in this case.

The following lemma states that the αC-equivalence class of the result of the hiding operation L{D{hide v}}
does not depend on the choice of the new hidden name.

Lemma 2.85. If h1, h2 6∈ Hid(H), then for all L we have L{H [v := h1]} =Cα L{H [v := h2]}.

2.5.4 Canonical Linking Expressions

Recall that by lemma 2.56 for the core module calculus if ==⇒C or ◦−−→C is defined on one representative of an
αC-equivalence class, then it is defined on all representatives, and all the results of the reduction are in one
αC-equivalence class. This significantly simplifies proofs of properties involving ==⇒C and ◦−−→C . For instance,
to check whether αC 〈D〉 reduces to αC 〈D

′〉, it is enough to take any D ∈ αC 〈D〉 and check if there exists
D′ ∈ αC 〈D

′〉 such that D reduces to D′, so proofs do not involve αC-renaming.
Not surprisingly, the analog of lemma 2.56 holds for ◦−−→L , as implied by lemma 2.82, since this reduction

is just a lifting of ==⇒C (in a non-empty context) and ◦−−→C (in any context) to the linking level.
However, as we have seen in example 2.83, ==⇒L does not have this property, because ⊕ may be defined

on some representatives of αC 〈H1 ⊕H2〉, but not on others. Therefore to check if αC 〈L〉 reduces to αC 〈L
′〉 it

is not enough to check just any L ∈ αC 〈L〉: we need to consider arbitrary αC-renamings of L, which may be
quite complicated. To minimize dealing with αC-renaming, we introduce the notion of a canonical linking
expression: a linking expression in which the names of all hidden labels in all modules are distinct. In such
expressions there is no conflict between names of hidden components of operands of ⊕.

Definition 2.86 (Canonical Linking Expression). A linking expression L is called a canonical linking
expression, and is denoted as L̂, if for any H1, H2 such that L = L1{H1} = L2{H2}, where L1 6= L2, it is
true that Hid(H1) ∩ Hid(H2) = ∅.

Definition 2.87. We define the set of hidden labels of L as Hid(L) = ∪{Hid(H) | L = L{H}}.

The following lemma formalizes some important properties of canonical linking expressions:

Lemma 2.88.

1. For any linking redex (L,K) if (L,K) −(F,x,y)−−−−→αC (L′, L), then (L′, L) is a linking redex.

2. If (L,K) is a (rename), (hide), or (let) redex and (L,K) −(L1,h,h
′)−−−−−→αC (L′, L), then (L′, L) is a linking

redex.

3. For every L ∈ TermL there exists a canonical linking expression L̂ ∈ TermL and a sequence of αC-

renamings L = L1 −
(L1,h11,h12)−−−−−−−→αC L2 −

(L2,h21,h22)−−−−−−−→αC . . . −(Ln,hn1,hn2)−−−−−−−−→αC Ln = L̂ such that for every

linking redex (L,K) in L for every i such that 1 ≤ i ≤ n (L,K) −(L1,h11,h12)−−−−−−−→αC . . . −
(Li,hi1,hi2)−−−−−−−→αC (L′, L′)

implies that (L′, L′) is a linking redex in Li.

4. For every LαC there exists a canonical L̂ ∈ LαC .

5. If L̂ −(L,h,h
′)−−−−→αC L̂′, (L,K) is a linking redex in L̂, and (L,K) −(L1,h,h

′)−−−−−→αC (L′, L), then (L′, L) is a
linking redex in L̂′.

6. If L1 =Cα L2, then there exists L′ s.t. L1 −
S1−→
∗

αC L′ −S2−→
∗

αC L2, where the sequence S1 consists only of
αC-redexes of the form (F, x, y), and the sequence S2 has only those of the form (L, h, h′).

7. If L̂ =Cα L̂′, then there exist canonical expressions L̂1, L̂2, . . . , L̂n such that L̂ = L̂1 −−→αC L̂2 −−→αC

. . . −−→αC L̂n = L̂′.
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8. If L̂ ∈ αC 〈L1〉 is canonical, then there exist a sequence of αC-renamings S such that L1 −
S−→
∗

αC L̂

and for every linking redex (L,K) and L2 such that L1 =
(L,K)
===⇒L L2 there exists (L′,K ′) such that

(L,K) −S−→
∗

αC (L′,K ′) and L̂ =
(L′,K′)
====⇒L L′2.

9. If L̂ ∈ αC 〈L1〉 is canonical, then for every sequence of αC-renamings S such that L1 −
S−→
∗

αC L̂ and for

every linking redex (F,M) and L2 such that L1 =
(F,M)
===⇒L L2 there exists (F′,M ′) such that (F,M) −S−→

∗

αC

(F′,M ′) and L̂ =
(F′,M ′)
====⇒L L′2.

Proof.

1. (L,K) is a (link), (rename), (hide), or (let) redex. A step −(F,x,y)−−−−→αC renames a λ-bound variable in one
of the modules H in the expression L{K}. Clearly the result of such renaming is also a linking redex.

2. The rules (rename), (hide), and (let) do not impose any conditions on hidden labels in a module.
Therefore (rename), (hide), and (let) redexes are preserved by αC-renaming.

3. If L is canonical, then the claim trivially holds. Otherwise L = L1{H1} = L2{H2}, where L1 6= L2,

and Hid(H1) ∩ Hid(H2) = ∅. Let h ∈ Hid(H1) ∩ Hid(H2), h
′ 6∈ Hid(L), and let L −(L1,h,h

′)−−−−−→αC L
′, then

L′ = L1{H ′1}, where H
′
1 = H [h := h′].

Let (L,K) be a linking redex in L, and suppose (L,K) −(L1,h,h
′)−−−−−→αC (L′, L′′). If it is a (rename), (hide), or

(let) redex, then by part 1 (L′, L′′) is a linking redex. Suppose (L,K) is a (link) redex, thenK = H⊕H ′,
where Hid(H) ∩ Hid(H ′) = ∅. If H1 6= H , H1 6= H ′, then the hidden labels of the two modules have
not changed, so (L′, H ⊕H ′) is still a redex in L′. Otherwise H1 is one of the modules in the linking

redex. Without loss of generality suppose H = H1. Then (L, H1⊕H ′) −
(L1,h,h

′)
−−−−−→αC (L, H ′1⊕H ′). Since

h′ 6∈ Hid(L), h′ 6∈ Hid(H ′), and we have Hid(H ′1) ∩ Hid(H ′) = ∅, so (L, H ′1 ⊕H ′) is a (link) redex in
L′.

If L′ is canonical, we are done, otherwise we repeat the procedure described above. Note that Hid(H ′
1)∩

Hid(H2) = Hid(H1) ∩ Hid(H2) \ {h}, therefore we have reduced the number of name conflicts in L.
The process stops when all hidden labels in the expression become distinct. The result is a canonical
expression, and since the redex (L,K) has been preserved at every step, its image in the resulting
expression is still a redex.

4. By assumption 2.25 there exists L1 ∈ LαC . Therefore by the previous result there exists a canonical
L̂ ∈ LαC .

5. The claim holds for redexes (rename), (hide), and (let) by part 2. Suppose (L,K) is a (link) redex, i.e.
K = H1⊕H2, where, in particular, Hid(H1)∩Hid(H2) = ∅. If L1 6= L{2⊕H2} and L1 6= L{H1 ⊕2},

i.e. the αC-renaming does not rename either H1 or H2, then (L,K) −(L1,h,h
′)−−−−−→αC (L′,K), and (L′,K) is

a (link) redex. Suppose (without loss of generality) that L1 = L{2⊕H2}, i.e. H1 gets renamed. Let
H ′1 = H1[h := h′]. Since L̂′ is canonical, h′ 6∈ Hid(H2), and therefore (L, H ′1 ⊕H2) is a (link) redex in
L̂′.

6. To prove the claim, we first show that αC-renaming with αC-redex of the form (L, h, h′) is independent
from αC-renaming with αC-redex of the form (F, x, y) (see definition 2.2).

Suppose L1 −
(L,h,h′)
−−−−→αC L2 −

(F,x,y)
−−−−→αC L3. Suppose F = L′{D} (recall that this parsing is unique). We

have the following three cases:
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(a) there exists 2L such that L1 = 2L{H1, H2}, L = 2L{2, H2}, H1 −
(h,h′)−−−→αC H

′
1, and L′ = 2L{H ′1,2}.

Let H ′2 be such that H2 −
(D,x,y)−−−−→αC H ′2, and let F = 2L{H1,2}, L′ = 2L{2, H ′2}. Then L1 =

2L{H1, H2} −
(F′,x,y)
−−−−→αC

2L{H1, H
′
2} −

(L′,h,h′)
−−−−−→αC

2L{H ′1, H ′2} = L3.

(b) there exists 2L such that L1 = 2L{H2, H1}, L = 2L{H2,2}, H1 −
(h,h′)−−−→αC H

′
1, and L′ = 2L{2, H ′1}.

The case is completely analogous to the previous one.

(c) L1 = L{H1}, H1 −
(h,h′)−−−→αC H2, and L′ = L. Suppose H1 = [li

n
7→
i=1

Mi], then H ′1 = [l′i
n
7→
i=1

M ′
i ],

where M ′
i = Mi[h := h′], and l′i = h′ if li = h, otherwise l′i = li. Suppose D = M{l′ 7→ C}, where

M = [l′i
n−1
7→
i=1

M ′
i ,2]. We have D{λx.N} −(D,x,y)−−−−→αC D{λy.N [x := y]}.

By the symmetry of −−→αC H1 −
(h,h′)−−−→αC H2 implies H2 −

(h′,h)−−−→αC H1. In particular, let l = l′

if l′ 6= h′, and l = h otherwise, and let M be the component bound to l in H1. Then M =
(C{λx.N})[h′ := h], and by definition of substitution M = C1{N1}, where C1 is obtained from

C by replacing all occurrences of h′ by h, and N1 = N [h′ := h]. Let D1 = [li
n−1
7→
i=1

Mi, l 7→ C1],

then H1 −
(D1,x,y)−−−−→αC [li

n−1
7→
i=1

Mi, l 7→ D1{λy.N1[x := y]}] = H ′1. Then H ′1 −
(h,h′)−−−→αC [l′i

n−1
7→
i=1

M ′
i , l
′ 7→

C1{λy.N1[x := y]}[h := h′]] = H ′2. We observe the following: C1{λy.N1[x := y]}[h := h′] =
C{λy.(N1[x := y])[h := h′]} = C{λy.(N1[h := h′])[x := y]} = C{λy.N [x := y]} (we have used the

fact that C is the result of replacing all occurrences of h by h′). Then H ′2 = [l′i
n−1
7→
i=1

M ′
i , l
′ 7→

C{λy.N [x := y]}] = H2.

We have shown that αC-renaming with αC-redex of the form (L, h, h′) is independent from αC-renaming
with αC-redex of the form (F, x, y). Both relations are symmetric, and the claim follows from lemma 2.3.

7. By the previous result there exists L s.t. L̂ −S1−→
∗

αC L −S2−→
∗

αC L̂′, where S1 contains only αC-redexes of

the form (F, x, y), and S2 only those of the form (L, h, h′). Since L̂ is canonical, and renaming λ-bound
variables does not change hidden labels of any H contained in L̂ (as follows from part 1 of lemma 2.35),
L is canonical. Let L̂0 = L.

It is left to show that there exists a sequence of αC-renamings of hidden labels from L̂0 to L̂′. Suppose
Hid(L̂0) = {h1, . . . , hn}, and Hid(L̂′) = {h′1, . . . , h

′
n}. Note that the number of elements in the two

sets is the same, since L̂0 =Cα L̂′, and both expressions are canonical. In general it is possible that
Hid(L̂0) ∩ Hid(L̂′) 6= ∅, so renaming hiddens of L̂0 directly to those of L̂′ may lead to a non-canonical
expression among intermediate results. To avoid this problem, we choose n hiddens h′′1 , . . . , h

′′
n s.t.

h′′i 6∈ Hid(L̂0) ∪ Hid(L̂′) for all 1 ≤ i ≤ n. Then we can construct a sequence L̂0 −
(L1,h1,h

′′
1
)

−−−−−−→αC

L1 . . . −
(Ln,hn,h

′′
n)

−−−−−−→αC Ln. Clearly Li is canonical for all 1 ≤ i ≤ n. Similarly, there exists a sequence

Ln −
(L′

1
,h′′

1
,h′

1
)

−−−−−−→αC L′1 . . . −
(L′n,h

′′
n,h

′
n)

−−−−−−→αC L′n = L̂′. Note that in constructing the first sequence we were
using the names h′′1 , . . . , h

′′
n as just a set of fresh names, but in constructing the other sequence we

need to rename each of the h′′i to a particular corresponding h′i in Hid(L̂′). Each of L′i is canonical,

and, combining the three sequences, we get the desired sequence: L̂ −S1−→
∗

αC L̂0 −
(L1,h1,h

′′
1
)

−−−−−−→αC L1 . . .

−
(Ln,hn,h

′′
n)

−−−−−−→αC Ln −
(L′

1
,h′′

1
,h′

1
)

−−−−−−→αC L
′
1 . . . −

(L′n,h
′′
n,h

′
n)

−−−−−−→αC L̂
′.

8. By part 3 there exists L̂′ such that L1 −
S1−→

∗

αC L̂′, and for an arbitrary linking redex (L,K) there

exists a linking redex (L′,K ′) such that (L,K) −S1−→
∗

αC (L′,K ′). By part 7 there exists a sequence

L̂′ −−→αC L̂1 −−→αC . . . −−→αC L̂n = L̂, and by parts 1 and 5 each of the steps L̂i −−→αC L̂i+1 preserves

linking redexes, i.e. (L′,K ′) −S2−→
∗

αC (L′′,K ′′), where S2 is the sequence L̂′ −−→αC L̂1 −−→αC . . . −−→αC L̂

above, and (L,K) −S1;S2−−−→
∗

αC (L′′,K ′′). By lemma 2.84 L̂ =
((L′′,K′′))
=====⇒L L′2 =Cα L2.
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9. Let S be a sequence such that L1 −
S−→
∗

αC L̂. Suppose (F,M) −S−→
∗

αC (F′,M ′). By lemma 2.82 there exists

L′2 ∈ αC 〈L2〉 such that L̂ =
(F′,M ′)
====⇒L L′2, where (F,M) −S−→

∗

αC (F′,M ′).

The last two claims of Lemma 2.88 are the key properties of canonical linking expressions. They state
that for any reduction on a representative of an αC-equivalence class there is a corresponding reduction on
a canonical representative of the class.

We would like to work with just canonical representatives of classes and not to deal with αC-renaming at
all. A property that would have allowed us to do so is “if L1 ==⇒L L2, then there exist canonical expressions
L̂1 ∈ αC 〈L1〉 and L̂2 ∈ αC 〈L2〉 such that L̂1 ==⇒L L̂2. Unfortunately, this property does not hold in the
linking calculus because of the rule (let):

let I = [A 7→ 2, h 7→ 3] in I [A
ren
←B]⊕ I ==⇒L

[A 7→ 2, h 7→ 3][A
ren
←B]⊕ [A 7→ 2, h 7→ 3] ==⇒L

[B 7→ 2, h 7→ 3]⊕ [A 7→ 2, h 7→ 3].

Despite the fact that the original linking expression is canonical, the result of the reduction is not, due to
duplication of the module bound to I . After the renaming [A

ren
←B] it is necessary to perform αC-renaming

to enable linking. This example shows that in some cases αC-renaming is unavoidable.
However, (let) is the only problematic case: for the rules (mod-ev), (link), rename, and (mod-nev) it

is the case that the result of reducing a canonical representative is itself canonical. For the rule (hide) it
depends on the new hidden name: if this name does not appear elsewhere in the linking expression, then the
result is canonical. The following definition adds such a restriction to (hide). Note that by lemma 2.85 the
equivalence class of the result does not depend on the choice of h.

Definition 2.89. We say that a hiding operation L = L{H{hide v}} ==⇒L L{H [h := v]} is canonical if
h 6∈ Hid(L).

Lemma 2.90. If L =
(L,H{hide v})
========⇒L L′, then there exists L′1 ∈ αC 〈L

′〉 such that L =
(L,H{hide v})
========⇒L L′1 by

canonical hiding.

Proof. Let the result of the given reduction be L{H [v := h]}. If h 6∈ Hid(L), then the given reduction is itself

canonical, otherwise let h′ be such that h′ 6∈ Hid(L), and let L′1 = L{H [v := h′]}. Then L =
(L,H{hide v})
========⇒L L′1,

and L1 −
(L,h,h′)−−−−→αC L

′
1, therefore L

′
1 ∈ αC 〈L

′〉.

The above observations allow us to introduce a reduction on canonical representatives that performs
αC-renaming only in the case of duplication of modules by the rule (let).

Definition 2.91 (Canonical Reductions). Let L̂1 be a canonical expression. We say that L̂1 reduces
to L2 by a canonical evaluation with the redex (L,K) (respectively with the redex (F,M), and write

L̂1=
(L,K)
===⇒
∼ L

L2 (respectively L̂1=
(F,M)
===⇒
∼ L

L2), if one of the following takes place:

• L̂1 =
(L,K)
===⇒L L̂2 by rules (link) or (rename),

• L̂1 =
(L,K)
===⇒L L̂2 by canonical hiding (see definition 2.89),

• L̂1 =
(L,K)
===⇒L L′2 −−→

∗
αC L2, and L2 is canonical.

• L̂1 =
(F,M)
===⇒L L2 by the rule (mod-ev).
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We say that L̂1 reduces to L2 by a canonical non-evaluation (and write L̂1◦−
(F,M)−−−→
∼ L

L2) if L̂1 ◦−
(F,M)−−−→L L2

by the rule (mod-nev).

We say that L̂1 reduces to L2 by a canonical (calculus) reduction, denoted L̂1−
(L,K)−−−→
∼ L

L2 or L̂1−
(F,M)−−−→
∼ L

L2,

depending on the redex, if L̂1 reduces to L2 by a canonical evaluation or a canonical non-evaluation.

Lemma 2.92 (The Result of a Canonical Reduction is Canonical). If L̂1−−→
∼ L

L2, then L2 is canon-

ical.

The following lemma states an important property of canonical reduction, namely that any reduction
from an element of one αC-equivalence class to an element of another one has a corresponding reduction for
all canonical representatives of the first αC-equivalence class.

Lemma 2.93. If L1 =
(L,K)
===⇒L L2 (respectively L1 =

(F,M)
===⇒L L2 or L1 ◦−

(F,M)−−−→L L2), then for every canonical

L̂1 ∈ αC 〈L1〉 there exists a canonical L̂2 ∈ αC 〈L2〉 such that L̂1=
(L′,K′)
====⇒
∼ L

L̂2 (respectively L̂1=
(F′,M ′)
====⇒
∼ L

L̂2

or L̂1◦−
(F′,M ′)−−−−→
∼ L

L̂2) and (L,K) −S−→
∗

αC (L′,K ′) (respectively (F,M) −S−→
∗

αC (F′,M ′)), where S is such that

L1 −
S−→
∗

αC L̂1.

Proof. Suppose L1 =
(L,K)
===⇒L L2. By part 8 of lemma 2.88 for every canonical L̂1 ∈ αC 〈L1〉 there exist a

sequence S and L′2 ∈ αC 〈L2〉 such that L1 −
S−→
∗

αC L̂1 and L̂1 =
(L′,K′)
====⇒L L′2, where (L,K) −S−→

∗

αC (L′,K ′). If the
rule of the reduction is (link) or (rename), then by definition 2.91 the reduction is canonical. If the rule is

(hide), then by lemma 2.90 there exists L′′2 ∈ αC 〈L2〉 such that L̂ =
(L′,K′)
====⇒L L′′2 is a canonical hiding, and the

reduction is canonical. If the rule is (let), then by part 4 of lemma 2.88 there exists a canonical L′′2 ∈ αC 〈L2〉,
and L′2 −−→

∗
αC L

′′
2 , since =Cα is the same relation as −−→∗αC . The reduction is also canonical. Hence in all four

cases of the reduction rule there exists L′′2 ∈ αC 〈L2〉 such that L̂=
(L′,K′)
====⇒
∼ L

L′′2 (in the first two cases L′′2 = L′2),

and by lemma 2.92 L′′2 is canonical.

The cases L1 =
(F,M)
===⇒L L2 and L1 ◦−

(F,M)−−−→L L2 are similar. We use part 9 of lemma 2.88 and part 3 of
lemma 2.82, respectively, for these two reductions in place of part 8 of lemma 2.88 in the above case. Then
the claim follows directly from definition of a canonical reduction and lemma 2.92.

2.5.5 Renaming let-Bound Module Identifiers

Similarly to identifying terms in T up to renaming of λ-bound variables, we identify linking expressions up to
renaming of let-bound module identifiers. For instance, the following two linking expressions are considered
to be α-equivalent:

L1 = let I1 = D1 ⊕ I2 in let I3 = D2 in I ⊕ I3[v
ren
←v′],

L2 = let I3 = D1 ⊕ I2 in let I1 = D2 in I3 ⊕ I1[v
ren
←v′].

Note that I2 appears free in the expressions, and therefore cannot be renamed.
The α-renaming of let-bound module identifiers illustrated above is very similar to αT -renaming of λ-

bound variables in T . The similarity becomes clear if we think of a let-expression let I = L1 in L2 as
synonymous to a λ-expression λI.L2 @ L1. Even though the operators in the linking calculus L are different
from those in T , the analogy holds as far as the scope rules are concerned. Most of the results shown for
αT -renaming hold for the renaming of module identifiers (called αI -renaming below), and the proofs of these
results are also very similar. Therefore in many cases we just refer to the respective proofs of T rather than
spell out the proofs here. To observe the similarity of the two renamings, compare the following definition
with definition 2.20 of αT -renaming.
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Definition 2.94 (αI -Renaming in L). We say that let I = L1 in L2 reduces to let I ′ = L1 in L′2 by
elementary αI -renaming, and write let I = L1 in L2 ÃαI let I

′ = L1 in L′2, if I 6= I ′, L′2 = L2[I := I ′],
and the following two conditions hold:

1. I ′ 6∈ FMI(L2),

2. L2 = L{let I ′ = L3 in L4} implies that either I 6∈ FMI(L4) or L = L1{let I = L5 in L2} for some
L1,L2, and L5.

We say that L1 reduces to L2 by a one-step αI -renaming with αI -redex (L, I, I ′), and write L1 −
(L,I,I′)
−−−−→αI L2,

if L1 = L{let I = L2 in L3}, L2 = L{let I ′ = L2 in L
′
3}, and let I = L2 in L3 ÃαI let I

′ = L2 in L
′
3.

As usual, −S−→
∗

αI , where S is a sequence of αI -redexes, denotes a sequence of αI -renaming steps reducing
αI -redexes in S left-to-right.

As for ÃαT , the first condition for ÃαI guarantees that there is no identifier capture, and the second –
that exactly one identifier gets renamed by ÃαI . We omit the proof of the latter fact, which is analogous
to that of lemma 2.21. We can also show that ÃαI , and therefore −−→αI , is symmetric. Again, the proof is
analogous to the respective proof for ÃαT (see lemma 2.22) and is omitted. Since −−→αI is symmetric, so is
−−→∗αI , and the latter equals to =I

α by lemma 2.1.
We define αI -equivalence classes of linking expressions in the usual way:

Definition 2.95 (αI -Equivalence Classes of Terms in L). If L ∈ TermL, then its αI -equivalence class,
denoted αI 〈L〉, is defined as αI 〈L〉 = {L′ ∈ TermL | L =I

α L′}. We use LαI as a meta-variable for
αI -equivalence classes.

We define αI -equivalence classes of subterm occurrences (so that we can consider αI -equivalence classes of
linking redexes) using the same technique as we used for T and C, i.e. marking a subterm occurrence before
α-renaming and finding the marked occurrence in the α-renamed term. This technique is more cumbersome
than defining α-equivalence classes of contexts and filling them with α-equivalence classes of terms, as we
did for αC-renaming of linking expressions in section 2.5.3. However, we cannot meaningfully define αI -
equivalence classes of linking contexts, since some representatives of such αI -equivalence classes may capture
a free identifier, whereas others may not (this property of αI -renaming also is common with αT -renaming).
As an example, consider:

Example 2.96. Let L = let I = [A 7→ 4] in 2. If we fill L with the module identifier I ′, no capture occurs.
However, if we allow αI -renaming of L to L′ = let I ′ = [A 7→ 4] in 2, then I ′ is captured.

Since the calculus of marked linking expression is analogous to the calculus of marked terms T , we only
sketch the construction here without giving all the details, which can be found in section 2.3.3.

Let L denote calculus L augmented with the following marked module operations: ⊕̃, ˜
[v

ren
←v′], ˜{hide v}, l̃et,

and also with module bindings of the form l 7→ M̃ , where M̃ ∈ TermT (the latter are used to mark (mod-ev)

and (mod-nev) redexes). We use L̃, L̃, and F̃ to denote terms and contexts in L. We also use (L̃, L̃) and

(F̃, M̃) to denote the two kinds of subterm occurrences in L. Similarly to the case of T , we say that a subterm

occurrence (L̃, L̃) or (F̃, M̃) is marked if L̃ is of the form L1⊕̃L2, L
˜
[v

ren
←v′], L ˜{hide v}, or l̃etI = L1inL2 for

the former subterm occurrence, and M̃ is marked (as defined in section 2.3.3) for the latter. We extend
the definition of a substitution (see section 2.5.1) to the marked linking expressions so that it preserves
the markings, and define the mark erasure that maps marked terms, contexts, and subterm occurrences to
unmarked ones by replacing all marked operations and labels by their unmarked analogs. The mark erasure
is denoted by | |.

As for αT -renaming in the term calculus, we define αI -renaming of subterm occurrences first in the
calculus of marked linking expressions, and then in L. The definitions below consider both kinds of subterm
occurrences.
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Definition 2.97 (αI -Renaming of L Subterm Occurrences). Let (L̃, L̃) be a marked subterm occur-

rence of L̃{L̃} ∈ TermL (respectively let (F̃, M̃) be a marked subterm of F̃{M̃} ∈ TermL), where L̃{L̃}
(respectively F̃{M̃}) does not contain any other marked subterm occurrences. We say that (L̃, L̃) reduces

to (L̃′, L̃′) (respectively (F̃, M̃) reduces to (F̃′, M̃ ′)) by a one-step αI -renaming with the αI -redex (L̃1, I, I
′),

written as (L̃, L̃) −(L̃1,I,I
′)−−−−−→αI (L̃′, L̃′) (respectively (F̃, M̃) −(L̃1,I,I

′)−−−−−→αI (F̃′, M̃ ′)), iff L̃{L̃} −(L̃1,I,I
′)−−−−−→αI L̃′{L̃′}

and L̃′{L̃′} is marked (respectively F̃{M̃} −(L̃1,I,I
′)−−−−−→αI F̃′{M̃ ′} and F̃′{M̃ ′} is marked).

Definition 2.98 (αI -Renaming of L Subterm Occurrences). We say that (L, L) reduces to (L′, L′)
(respectively (F,M) reduces to (F′,M ′)) by a one-step αI -renaming with the αI -redex (L1, I, I

′), written

as (L, L) −(L1,I,I
′)−−−−−→αI (L′, L′) (respectively (F,M) −(L1,I,I

′)−−−−−→αI (F′,M ′)), iff there exist L subterm occur-

rences (L̃, L̃) and (L̃′, L̃′) (respectively (F̃, M̃) and (F̃′, M̃ ′)) and a context L̃1 such that (L̃, L̃) −(L̃1,I,I
′)−−−−−→αI

(L̃′, L̃′), |(L̃, L̃)| = (L, L), |(L̃′, L̃′)| = (L′, L′) (respectively (F̃, M̃) −(L̃1,I,I
′)−−−−−→αI (F̃′, M̃ ′), |(F̃, M̃)| = (F,M),

|(F̃′, M̃ ′)| = (F′,M ′)), and |L̃1| = L1.

We define αI -equivalence classes of subterm occurrences as usual, and use a meta-variable SubL,LαI to

range over αI -equivalence classes of subterm occurrences of the form (L, L), and a meta-variable SubT ,LαI to
range over αI -equivalence classes of subterm occurrences of the form (F,M).

We can show that αI -renaming of subterm occurrences preserves distinctness of subterm occurrences, as
well as both evaluation and non-evaluation redexes. The results and the proofs are analogous to those of
lemmas 2.33 and 2.34 in section 2.3.3.

We show the following important properties of αI -renaming:

Lemma 2.99 (Properties of αI-Renaming). Suppose L1 −
S−→
∗

αI L
′
1, then:

1. FMI(L1) = FMI(L′1),

2. Hid(L1) = Hid(L′1),

3. L1 is canonical iff L′1 is,

4. If L1 =
(L,K)
===⇒L L2, then there exists L′2 ∈ αI 〈L2〉 such that L′1 =

(L′,K′)
====⇒L L′2, where (L,K) −S−→

∗

αI (L
′,K ′),

5. If L1 =
(F,M)
===⇒L L2, then there exists L

′
2 ∈ αI 〈L2〉 such that L′1 =

(F′,M ′)
====⇒L L′2, where (F,M) −S−→

∗

αI (F
′,M ′),

6. If L1 ◦−
(F,M)−−−→L L2, then there exists L

′
2 ∈ αI 〈L2〉 such that L′1 ◦−

(F′,M ′)−−−−→L L′2, where (F,M) −S−→
∗

αI (F
′,M ′),

7. If L1=
(L,K)
===⇒
∼ L

L2, then there exists L′2 ∈ αI 〈L2〉 such that L′1=
(L′,K′)
====⇒
∼ L

L′2, where (L,K) −S−→
∗

αI (L
′,K ′),

8. If L1=
(F,M)
===⇒
∼ L

L2, then there exists L′2 ∈ αI 〈L2〉 such that L′1=
(F′,M ′)
====⇒
∼ L

L′2, where (F,M) −S−→
∗

αI (F
′,M ′),

9. If L1◦−
(F,M)−−−→
∼ L

L2, then there exists L′2 ∈ αI 〈L2〉 such that L′1◦−
(F′,M ′)−−−−→
∼ L

L′2, where (F,M) −S−→
∗

αI (F
′,M ′),

We do not define calculus reductions of L on αI -equivalence classes, because in the next section we define
αL-renaming which subsumes αI -renaming, and define reductions on αL-equivalence classes.
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2.5.6 L Terms Modulo α-Equivalence

Note that a linking expression has two α-equivalence classes in the linking calculus: the one induced by
−−→αC and the one induced by −−→αI . The following lemma states that the two relations are independent (see
definition 2.2):

Lemma 2.100. The relation −−→αC is independent from −−→αI , i.e. if L1 −−→αC L2 and L2 −−→αI L3, then
there exists L4 such that L1 −−→αI L4 and L4 −−→αC L3.

Proof. By definition of −−→αC there exist L, H , and H ′ such that L1 = L{H}, L2 = L{H ′}, and H
−−→αC H ′. By definition of −−→αI there exist L′, I, I ′, L′, L′1, and L′2 such that L2 = L′{let I = L′ in L′1},
L3 = L′{let I ′ = L′ in L′2}, and L′2 = L′1[I := I ′]. Combining the two results, we get L2 = L{H ′} =
L′{let I = L′ in L′1}. We have the following 4 cases:

• There exists 2L such that L2 = 2L{H ′, let I = L′ in L′1}, then

2L{H, let I = L′ in L′1} −−→αI
2L{H, let I ′ = L′ in L′2} −−→αC
2L{H ′, let I ′ = L′ in L′2},

and the resulting expression is L3.

• There exists 2L such that L2 = 2L{let I ′ = L′ in L′2, H
′}. Analogous to the previous case.

• There exists L1 such that L′ = L1{H ′}. Then L1 = L′{let I = L1{H} in L′1}, and

L′{let I = L1{H} in L
′
1} −−→αI

L′{let I ′ = L1{H} in L′2} −−→αC

L′{let I ′ = L1{H ′} in L′2},

and the result is L3.

• There exists L1 such that L′1 = L1{H ′}. Then L′2 = (L1{H ′})[I := I ′] = L′1{H ′}. We have L2 =
L′{let I = L′ in L1{H ′}}, and L1 = L′{let I = L′ in L1{H}}. Then

L′{let I = L′ in L1{H}} −−→αI

L′{let I ′ = L′ in (L1{H})[I := I ′]} =
L′{let I ′ = L′ in L′1{H}} −−→αC

L′{let I ′ = L′ in L′1{H ′}},

and again the resulting linking expression is L3.

Now we combine the two α-renaming relations into one, which we call αL-renaming:

Definition 2.101 (αL-Renaming in L). We say that L1 reduces to L2 by αL-renaming with the αL-redex

(L, h, h′) (respectively with the αL-redex (F, x, y)), written L1 −
(L,h,h′)−−−−→αL L2 (respectively L1 −

(F,x,y)−−−−→αL L2)

if L1 −
(L,h,h′)−−−−→αC L2 (respectively L1 −

(F,x,y)−−−−→αC L2).

We say that L1 reduces to L2 by αL-renaming with the αL-redex (L, I, I ′), written L1 −
(L,I,I′)−−−−→αL L2, if

L1 −
(L,I,I′)−−−−→αI L2.

As usual, we sometimes omit αL-redexes in the notation. The notations −−→∗αL ,−
S−→
∗

αL , and =Lα are all
standard.

Lemma 2.102. If L1 =Lα L2, then there exists L′ such that L1 −−→∗αI L
′ −−→∗αC L2.
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Proof. The result follows from symmetry of −−→αC and −−→αI and from the fact that −−→αC is independent from
−−→αI (see lemma 2.100) by lemma 2.3.

Definition 2.103 (αL-Renaming of Subterm Occurrences). A subterm occurrence (L, L) reduces by a
one-step αL-renaming to a subterm occurrence (L′, L′) with an αL-redex (L1, I, I

′) (written (L, L) −(L1,I,I
′)−−−−−→αL

(L′, L′)) if (L, L) −(L1,I,I
′)

−−−−−→αI (L′, L′). (L, L) reduces by a one-step αL-renaming to (L′, L′) with an αL-redex

(L1, h, h
′) or (F, x, y) if (L, L) −(L1,h,h

′)−−−−−→αC (L′, L′) or (L, L) −(F,x,y)−−−−→αC (L′, L′).
The definition for a one step αL-renaming of a subterm occurrence (F,M) to (F,M) is completely

analogous.
αL-equivalence classes of the two kinds of subterm occurrences are defined as usual. We use a meta-

variable SubL,LαL to range over αL-equivalence classes of the former kind of subterm occurrences, and SubT ,LαL
to range over the αL-equivalence classes of the latter kind.

As for the other α-renamings, e.g. lemma 2.81, −−→αL preserves distinctness of subterm occurrences (for
both kinds of subterms). Also, as it is the case for −−→αC , −−→αL preserves redexes of the form (F,M) (see
lemma 2.82). Since redexes of the form (L,K) are not preserved by −−→αC , they are not preserved by −−→αL .
However, the weaker property stated in lemma 2.84 holds for −−→αC as well:

Lemma 2.104 (Property of αL-Equivalent Linking Redexes). Let (L,K) and (L′,K ′) be two linking

redexes such that (L,K) −−→αL (L′,K ′), L{K} =
(L,K)
===⇒L L2, and L′{K ′} =

(L′,K′)
====⇒L L′2, then L{K} −−→αL

L′{K ′} and L2 =Lα L′2.

Proof. Follows from lemma 2.84 if −−→αL is a αC-renaming step, and from the fact that −−→αI preserves linking
redexes if −−→αL is a αI -renaming step.

The lemma below shows that for every calculus reduction there is a corresponding canonical reduction:

Lemma 2.105 (Existence of a Redex-preserving Sequence of αL-Renamings). If L =Lα L̂, where

L̂ is canonical, then there exists S such that L −S−→
∗

αL L̂ and for every linking redex (L,K) and L′ such that L

=
(L,K)
===⇒L L′ (respectively L =

(F,M)
===⇒L L′ or L ◦−(F,M)−−−→L L′) there exists L′1 ∈ αL〈L

′〉 such that L̂=
(L′,K′)
====⇒
∼ L

L′1 (re-

spectively L̂=
(F′,M ′)
====⇒
∼ L

L′1 or L̂◦−(F
′,M ′)−−−−→
∼ L

L′1), where (L,K) −S−→
∗

αL (L′,K ′) (respectively (F,M) −S−→
∗

αL (F′,M ′)).

Proof. By lemma 2.102 L =Lα L̂ implies that there exists L̂1 such that L −S1−→
∗

αC L̂1 −
S1−→

∗

αI L̂, and by part 3 of

lemma 2.99 L̂1 is canonical. Then by part 8 of lemma 2.88 there exists a sequence S ′1 such that L −
S′

1−→
∗

αC L̂1

and for every (L,K) such that L =
(L,K)
===⇒L L′ there exists L′1 ∈ αC 〈L

′〉 such that L̂1=
(L′,K′)
====⇒
∼ L

L′1, where

(L,K) −
S′

1−→
∗

αC (L′,K ′). Then by part 7 of lemma 2.99 there exist L̂′ ∈ αI 〈L̂
′
1〉 such that L̂=

(L′,K′)
====⇒
∼ L

L̂′, where

(L′,K ′) −S2−→
∗

αC (L′,K ′). Then L −
S′

1
;S2−−−→

∗

αL L̂, (L,K) −
S′

1
;S2−−−→

∗

αL (L′,K ′), and L̂′ ∈ αL〈L
′〉.

The proof for redexes of the form (F,M) is similar. We use part 9 of lemma 2.88 for evaluation (F,M)
redexes, and part 3 of lemma 2.82 for non-evaluation redexes.

We extend the calculus relations of L to αL-equivalence classes in the usual way:

Definition 2.106. LαL =
SubL,LαL
====⇒L\α L′αL if there exist L1 ∈ LαL , L2 ∈ L′αL , and (L,K) ∈ SubL,LαL such

that L1 =
(L,K)
===⇒L L2.

The other two reductions, i.e. =
SubT ,LαL
====⇒L and ◦−

SubT ,LαL−−−−→L\α, are defined analogously. Recall that all redexes

in SubL,LαL are evaluation redexes, so there is no reduction ◦−
SubL,LαL−−−−→L\α.
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Recall that −−→T \α and −−→C\α are defined for all representatives of an α-equivalence class if they are
defined for one. However, −−→L\α may be defined on some, but not all reprentatives of an αL-equivalence
class.

Example 2.107. Let L and L′ be the linking expressions from example 2.83. Then

L = [A 7→ λx.h, h 7→ 5]⊕ [B 7→ A @ h′, h′ 7→ 7] ==⇒L [A 7→ λx.h, h 7→ 5, B 7→ A @ h′, h′ 7→ 7]
L′ = [A 7→ λx.h, h 7→ 5]⊕ [B 7→ A @ h, h 7→ 7] 6==⇒L (h defined in both modules)

Then, despite the conflict of the hidden labels in L′, ==⇒L\α is defined on the αL-equivalence class of L
′, and

the result of the reduction is the same αL-equivalence class as for the L:

αL〈[A 7→ λx.h, h 7→ 5]⊕ [B 7→ A @ h, h 7→ 7]〉 ==⇒L\α αL〈[A 7→ λx.h, h 7→ 5, B 7→ A @ h′, h′ 7→ 7]〉,

Remark 2.108. From the point of view of implementation this version of (link) is analogous to a two-stage
linking operation that at the first stage resolves name conflicts between the hiddens of the two modules
(by performing appropriate renaming of hiddens), and at the second stage combines the bindings of the two
modules. Since ==⇒L\α is defined on αL-equivalence classes, i.e. such αL-renaming is performed automatically,
there is no need to introduce a separate user-level operator ⊕ as we did in [MT00]. This renaming is
similar to α-renaming required in other module calculi linking operations (e.g., in [FF98] when rewriting the
compound linking form to the unit module form).

The theorem below is the key property of α-renaming at the linking level. It states that to consider
reductions on linking expressions, it is sufficient to consider these reductions on canonical representatives of
αL-equivalence classes. The theorem generalizes lemma 2.93 from αC-equivalence classes to αL-equivalence
classes defined above.

Theorem 2.109. For any αL-equivalence class LαL LαL =
SubL,LαL
====⇒L\α L′αL (respectively LαL =

SubT ,LαL
====⇒L\α

L′αL or LαL ◦−
SubT ,LαL−−−−→L\α L′αL) if and only if for every canonical expression L̂ ∈ LαL there exist L̂′ ∈ L′αC

and (L,K) ∈ SubL,LαL (respectively (F,M) ∈ SubT ,LαL ) such that L̂=
(L,K)
===⇒
∼ L

L̂′ (respectively L̂=
(F,M)
===⇒
∼ L

L̂′ or

L̂◦−(F,M)−−−→
∼ L

L̂′).

Proof. The “if” part follows from definition 2.106.

“Only if”: suppose LαL =
SubL,LαL
====⇒L\α L′αL , then by definition 2.106 there exists L ∈ LαL , L

′ ∈ L′αL ,

and (L,K) ∈ SubL,LαL such that L =
(L,K)
===⇒L L′. Let L̂ be a canonical expression in LαL . By lemma 2.105

there exists a sequence of αL-renamings S and L̂′ ∈ L′αL such that L −S−→
∗

αL L̂ and L̂=
(L′,K′)
====⇒
∼ L

L̂′, where

(L,K) −S−→
∗

αL (L′,K ′), i.e. (L′,K ′) ∈ SubL,LαL . The proof is analogous for the other two reductions.

Theorem 2.109, together with part 4 of lemma 2.88 (the existence of a canonical representative in every
αC-equivalence class), allow us to restrict proofs to canonical reductions on canonical representatives, and to
generalize the results to the entire αL-equivalence classes. For instance, suppose we want to show confluence
of ==⇒L\α: if L1αL ==⇒∗L\α L2αL and L1αL ==⇒∗L\α L3αL , where L2αL 6= L3αL , then there exists L4αL such that

L2αL ==⇒∗L\α L4αL and L3αL ==⇒∗L\α L4αL . Then it is sufficient to choose a canonical L̂1 ∈ L1αL and to show

that for every pair of sequences of canonical reductions L̂1==⇒∗
∼ L

L̂2 and L̂1==⇒∗
∼ L

L̂3 such that αL〈L̂2〉 6= αL〈L̂3〉

there exists L̂4 such that L̂2==⇒∗
∼ L

L̂4 and L̂3==⇒∗
∼ L

L̂4. Since ==⇒
∼ L

involves αC-renaming only after a reduction

by the rule (let), the proof of the latter statement is much easier than of the former.
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Having defined ==⇒L\α, we define classification of αL-equivalence classes of linking expressions as follows:

ClL\α(LαL) =





evaluatableL if there exists L′αL such that LαL ==⇒L\α L′αL ,

ClC\α(H) if there exists H ∈ LαL such that H is an ==⇒C normal form,

errorL otherwise.

We define ClL(L) = ClL\α(αL〈L〉). The reason why we define classification first on αL-equivalence classes,
and only then extend this definition to concrete linking expressions, is that a linking expression may be not
evaluatable even if its αL-equivalence class is. For instance, consider L and L′ in example 2.107. Since we
work with αL-equivalence classes of linking expressions, we expect that ClL(L

′) = ClL(L) = evaluatableL,
which is the case when we adopt the definition above. If we were to define classification on concrete linking
expressions directly, the classification of L′ would not have been evaluatableL, because there is no linking
expression that L′ evaluates to.

The proviso “H is an ==⇒C normal form” in the second case of the definition is necessary to guarantee
that the classes are disjoint. Note that if there is one H ∈ LαL that satisfies the condition, then every
representative of LαL satisfies it by parts 3 and 6 of lemma 2.55.

The class errorL captures the case when a linking expression never evaluates to a module because it
contains a ⊕ operation whose arguments export the same names, for instance:

ClL([A 7→ 2 + 3]⊕ [A 7→ λx.x]) = errorL.

Another example of a linking error is an attempt to rename a bound label in a module to another bound
label, e.g.

ClL([A 7→ λx.x,B 7→ 2][A
ren
←B]) = errorL.

Note that D 6∈ HTermC is also considered a linking error. However, we show that the result of evaluating
a linking expression cannot be of this form, since all modules that form a linking expression are h-closed.

OutcomeL\α in the usual way, i.e. OutcomeL\α(LαL) = ClL\α(EvalL\α(LαL)) if EvalL\α(LαL) exists,
otherwise OutcomeL\α(L) =⊥L, and ValueL = ValueC .

Remark 2.110 (Changes from [MT00] in Definition of Classification). The main changes are due
introduction of αL-renaming of linking expressions (in particular, renaming of hidden labels). The other
changes are for the purpose of consistency with classifications of T and C. Below is the list of changes:

• The classification is now defined on αL-equivalence classes rather than on concrete linking expressions,

• Since at the core module level we no longer require that modules do not import hiddens, we explicitly
state specify that all modules which are part of linking expressions do not import hiddens (i.e. are
h-closed), and explicitly state that module values are h-closed. However, this change is only notational,
since the set of modules over which module expressions are formed is exactly the same as in [MT00],
i.e., in our current terminology, the set HTermC of h-closed modules.

• We have introduced the notion of evaluatable for each level of the calculus separately, in particular
evaluatableL at the linking level. In the old classification we used the term linkable for linking
expressions that are yet to be evaluated to a single module, and once they have been reduced to a
module, their classification would be that of the module. In the new classification the class of a single
module considered as a linking expression is evaluatableL. After a linking expression is evaluated to
a ==⇒C normal form, its class is the class of the normal form, as in the presentation in [MT00] (but see
section 2.4 for changes in the classification of modules). The new classification makes the definition of
evaluatable the same in all three calculi: a term is evaluatable if it can be evaluated further.

• We have introduced a new class errorL for errors at the linking level (see example above). Linking
errors are different from module errors (see section 2.4). The new classification allows us to distinguish
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between the two: for instance, if a conflict between visible labels prevents linking of two modules, then
the outcome of the linking expression is errorL, but if a linking expression evaluates to a module,
which in turn evaluates to a normal form other than a value, then the outcome of the expression is
errorC . The introduction of errorL corrects the classification of [MT00], where a non-module linking
expression is considered linkable even if no link-level evaluation step is possible from it.

Many properties of −−→L\α are similar to those of −−→C\α. In the discussion below we adopt the convention
of the calculi T \α and C\α of using concrete terms instead of their α-equivalence classes, e.g. convention 2.40.

Example 2.111 (Non-confluence of −−→C\α). The lack of confluence of −−→C\α is inherited by −−→L\α, as
illustrated by the following example:

[A 7→ λx.B,B 7→ λx.A]⊕ [C 7→ 2] ◦−−→L\α [A 7→ λx.λx.A,B 7→ λx.A]⊕ [C 7→ 2],
[A 7→ λx.B,B 7→ λx.A]⊕ [C 7→ 2] ◦−−→L\α [A 7→ λx.B,B 7→ λx.λx.B]⊕ [C 7→ 2].

As in the calculus C\α, there is no term both of these expressions reduce to. Note that, as in C\α, both
reductions are non-evaluation steps.

Despite the lack of confluence of −−→L\α, we are still able to show the following:

Theorem 2.112. ==⇒L\α is confluent.

As for ==⇒C\α, we show that it cannot be the case that ==⇒L\α diverges on one path and leads to a normal
form on another.

Lemma 2.113. If L ==⇒∗L\α EvalL(L), then there is no infinite sequence of ==⇒L\α steps originating at L.

Theorem 2.114. L\α has the standardization property.

We show that every linking expression evaluates to a module, unless the evaluation encounters a linking
error:

Theorem 2.115 (Non-error Linking Expressions Evaluate to a Module). If OutcomeL\α(L) 6= errorL,
then there exists H such that L ==⇒∗L\α H.

Since module evaluation steps are evaluation steps at the linking level only if they are performed in an
empty linking context, any evaluation sequence in L\α performs all link-level steps first, followed by module
level evaluation. We call this property staging.

Theorem 2.116 (Staging). Given a sequence L1 =
S
=⇒
∗

L\α L2, there exists L
′ such that L1 =

S1

=⇒
∗

L\α L′ =
S2

=⇒
∗

L\α

L2, where S = S1;S2, S1 = (L1,K1); . . . ; (Ln,Kn), n ≥ 0, and S2 = (F1,M1); . . . ; (Fm,Mm), m ≥ 0.

Staging models a typical behavior of programs which consist of several modules: first all the modules are
linked into one, and then this one module gets evaluated.

Proofs of these properties are given in appendix D.

2.5.7 Change in the rule (let) from [MT00]

In addition to changes in classification, a significant change from [MT00] is in the evaluation rule (let).
In [MT00] we have considered a “non-deterministic” rule (let) which allows (but does not force) substitution
of the definition term L1 into the body L2 at any point of evaluation:

let I = L1 in L2 ==⇒L L2[I := L1] ([MT00]-let)

The new rule introduced in this presentation

let I = H in L ==⇒L L[I := H ] (let)
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requires the definition term to be first evaluated to a module H . After that the result is substituted into
L2. The latter rule is actually a particular case of the former: the structure of linking contexts in L allows
evaluation of any linking redex at any time, so in particular one evaluation strategy may be to evaluate L1

to a module H first, and then to perform the substitution.
The reason for the change in the rule (let) is that the new rule is consistent with the call-by-value nature

of other reductions in our calculus: the call-by-value term calculus and the substitution at the core module
level.

Note, however, that even though the definition term in the new (let) rule must be evaluated to a module
before it gets substituted, it cannot be evaluated to amodule value, because a module evaluation is considered
evaluation at the linking level only when the module appears in an empty context.

Example 2.117 (“Call-by-value” (let)).

let I = [A 7→ B + 1]⊕ [B 7→ 2] in I ⊕ [C 7→ A ∗ 3] ==⇒L
let I = [A 7→ B + 1, B 7→ 2] in I ⊕ [C 7→ A ∗ 3] ==⇒L
[A 7→ B + 1, B 7→ 2]⊕ [C 7→ A ∗ 3] ==⇒L
[A 7→ B + 1, B 7→ 2, C 7→ A ∗ 3] ==⇒∗L
[A 7→ 3, B 7→ 2, C 7→ 9].

The module [A 7→ B + 1, B 7→ 2] is not a module value, since it has a substitution redex B. However, the
substitution cannot be performed as a part of an evaluation sequence until the entire linking expression is
reduced to a single module.

Remark 2.118. As the example shows, the evaluation at the linking level with the new rule (let) is “call-
by-value” in a slightly different sense than calculi T and C. To make the rule completely analogous to these
calculi, we could have defined it as follows:

let I = H in L ==⇒L L[I := H ] if H ∈ ValueC (let*)

This rule requires the let-bound expression to evaluate to a module value, rather than just a module, before
reducing the let.

However, introducing the rule (let*) instead of (let) causes problems: suppose we adopt the rule (let*)
instead of (let), then the reduction sequence

let I = [A 7→ 2 + 3] in I ◦−−→L (mod-nev)
let I = [A 7→ 5] in I ==⇒L (let*)
[A 7→ 5]

violates standardization. To fix the problem, we need to relax the condition for (mod-ev) rule to allow
evaluation of a module in a non-empty context to be an evaluation step at the linking level. The new rule
may be formulated as follows:

L{H} ==⇒L L{H} if H ==⇒C H ′. (mod-ev*)

Then the reduction sequence above becomes:

let I = [A 7→ 2 + 3] in I ==⇒L (mod-ev*)
let I = [A 7→ 5] in I ==⇒L (let*)
[A 7→ 5]

However, this sequence violates the staging property (see theorem 2.116), because a module evaluation step
is performed before a linking step.

Note that if the module identifier I of an expression let I = L1 in L2 is used in the body of L2, then
evaluation with our current (let) rule gives the same outcome of the expression as evaluation with the rule
([MT00]-let):
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Example 2.119 (The Same Outcome of (let) and ([MT00]-let)). The expression

let I = [A 7→ 6]⊕ [B 7→ 7] in I ⊕ I [A
ren
←C][B

ren
←D]

evaluates to the module value [A 7→ 6, B 7→ 7, C 7→ 6, D 7→ 7] with both rules.
The outcome of the expression

let I = [A 7→ 6]⊕ [A 7→ 7] in I ⊕ I [A
ren
←C][B

ren
←D]

is errorL in both cases: if we adopt the current rule (let), then the expression is already a linking error, and
if we use ([MT00]-let), then the expression evaluates to

[A 7→ 6]⊕ [A 7→ 7]⊕ [A 7→ 6]⊕ [A 7→ 7][A
ren
←C][B

ren
←D],

which is also a linking error.

However, if I does not appear in L2, then the two outcomes may differ:

Example 2.120 (Different Outcomes of (let) and ([MT00]-let)). Consider the expression

let I = [A 7→ 6]⊕ [A 7→ 7] in [C 7→ λx.x].

According to the rule (let), it is an error, but it evaluates to a module value [C 7→ λx.x] by ([MT00]-let).

The property that every linking expression evaluates to a module, unless the evaluation encounters a
linking error (theorem 2.115), as well as staging (theorem 2.116), are shown in appendix D for the more
general (let) rule of [MT00]. The fact that the calculus of [MT00] has these properties implies that these
properties also hold for the calculus with the more restricted “call-by-value” (let) in our current presentation.

2.6 Core Module Calculus and Linking Calculus with GC Rule

2.6.1 Motivation for (GC) rule

We would like to augment the reduction rules for the core module calculus C with a rule for garbage
collection of groups of (possibly mutually recursive) hidden values, whose labels are not referenced in the
rest of the module. Since the labels are hidden, these components cannot be used in another module, and
therefore do not contribute to evaluation of the module or of any linking expression that the module may
appear in. Note that we only consider garbage collection of values, since removing an evaluatable or a stuck
component may change the behavior of the module. Consider, for instance, [A 7→ 2, w 7→ λx.xx @ λx.xx].
By removing the hidden component bound to w we are changing the outcome of the module from divergence
to [A 7→ const(2)]. Similar problem occurs when a hidden component is stuck on an imported label, so that
substituting for the label may cause the module to diverge. Errors could be considered garbage-collectable,
but for simplicity we choose to collect only values.

Let −−→GC denote the reduction step that performs garbage collection. We would like it to work as in the
following example:

[P 7→ λw.g @ (w + 1), f 7→ λx.h, g 7→ λy.y ∗ 2, h 7→ λz.f ]
−−→GC [P 7→ λw.g @ (w + 1), g 7→ λy.y ∗ 2]

The mutually recursive bindings for f and h can be removed because all references to these hidden labels
occur inside of the values named by these labels. However, g cannot be removed, since an exported term
references it. We do not require that a GC step removes the maximal set of non-referenced hidden labels,
but mutually recursive hidden components must be removed all at once.
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The following example shows why a GC reduction is desirable in our calculus:

let A = [F 7→ λx.x + Y ]
B = [F 7→ λx.x ∗ Y ]
C = [Y 7→ 3]
D = [Z 7→ F @ 2]

in ((A⊕ C ⊕D){hide F, Y }[Z
ren
←Z1])⊕ ((B ⊕ C ⊕D){hide F, Y }[Z

ren
←Z2])

==⇒∗L [h1 7→ λx.x + h2, h2 7→ 3, Z1 7→ h1 @ 2, h3 7→ λx.x ∗ h4, h4 7→ 3, Z2 7→ h3 @ 2]
==⇒∗L [h1 7→ λx.x + 3, h2 7→ 3, Z1 7→ 5, h3 7→ λx.x ∗ 3, h4 7→ 3, Z2 7→ 6]

Reusing the modules and renaming leads to duplicating components of modules C and B, so the resulting
module has 6 components. However, because of hiding, only two of these components (with labels Z1 and
Z2) are exported. The rest of the module consists of hidden components that have no effect on Z1 and Z2

once their values have been calculated, and therefore on any module to which Z1 or Z2 may be exported.
Garbage collection would allow us to reduce the module to [Z1 7→ 5, Z2 7→ 6], thus reducing memory needed
to store it. Without such a rule we are forced to keep all 6 components.

Having a GC rule becomes crucial for justifying program transformations: not only does it allow removing
non-referenced hidden components, as in the example above (a transformation which is a form of dead-code
elimination), but also it enables introduction of a new hidden component in a module by a backward GC
step. By computational soundness any two terms equivalent in the calculus, i.e. connected by a sequence
of backward and forward reduction steps, have the same meaning, so adding such a component does not
change the meaning. Recall the example of cross-module lambda-splitting given in the introduction. If the
calculus has a GC rule, then the following sequence of forward and backward reduction steps justifies the
transformation:

[U 7→ λx.C{λy.M ′}]⊕ [X 7→ A{U @ N}] ==⇒L (link)
[U 7→ λx.C{λy.M ′}, X 7→ A{U @ N}] ?←GC ? ? (GC) ?
[U 7→ λx.C{λy.M ′}, h 7→ λy.M ′, X 7→ A{U @ N}] ←−(L (mod-nev)
[U 7→ λx.C{h}, h 7→ λy.M ′, X 7→ A{U @ N}] ==⇒L (mod-ev)
[U 7→ λx.C{h}, h 7→ λy.M ′, X 7→ A{λx.C{h} @ N}] ⇐L (hide)
([U 7→ λx.C{Ue}, Ue 7→ λy.M ′, X 7→ A{λx.C{Ue} @ N}]){hide Ue} ⇐L (link)
([U 7→ λx.C{Ue}, Ue 7→ λy.M ′]⊕ [X 7→ A{λx.C{Ue} @ N}]){hide Ue}.

In the above example it does not matter if the new rule (GC) is an evaluation or a non-evaluation step, in
either case it is a calculus step, which is sufficient to justify the transformation. Note that (GC) is a core
module reduction. The example above is at the level of linking expressions, so the GC reduction is, at the
linking level, either ==⇒L by (mod-ev), (if GC is an evaluation step) or ◦−−→L by (mod-nev) (otherwise).

2.6.2 Error in [MT00]: GC as an evaluation step

In [MT00] we introduced GC as a C evaluation step with the rule11

M{[hj
m
7→
j=1

Vj ]} ==⇒C M{[]} if FL(M) ∩ {hj | 1 ≤ j ≤ m} = ∅ (GC) in [MT00]

where by definition FL(M) =
⋃n
i=1 FL(Mi) \ {li | 1 ≤ i ≤ n} if M = [li

n
7→
i=1

Mi,2]. Unfortunately, we

later discovered that the resulting calculus does not have standardization property 2.7 as we claimed it did.
Standardization is a key property in proving computational soundness, and indeed the calculus introduced
in [MT00] is not computationally sound, as shown below. The following counterexample to standardization
illustrates the problem:

[l 7→ λy.(λx.2 @ λz.h), h 7→ 3] ◦−
(comp−ev)
−−−−−−→C [l 7→ λy.2, h 7→ 3] =

(GC)
===⇒C [l 7→ λy.2]

11Since we have not introduced contexts M ∈ ContextC,C in [MT00], the GC rule there is formulated in a different, but
equivalent, way.
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There is no standard sequence corresponding to the above non-standard one, since the label h cannot be
garbage collected in [l 7→ λy.λx.2 @ λz.h, h 7→ 3] before the non-evaluation step removes the reference to it.
In fact, this module is a normal form w.r.t. evaluation.

Remark 2.121. In [MT00] we worked explicitly with hidden labels (for instance, renaming of hiddens was
an explicit linking operation). In the current presentation we identify modules up to consistent renaming
of hidden labels. We have discovered that certain results, such as standardization, hold only at the level of
α-equivalence classes of modules, but not at the concrete level. Note, however, that the counterexample to
standardization above and the counterexample to computational soundness below are still valid at the level
of αC-equivalence classes of modules.

According to the classification of modules defined in [MT00], the sequence also violates computational
soundness. The classification in [MT00] is defined as:

ClC(D) = [li
n
7→
i=1

ClT (Mi)], where D = [li
n
7→
i=1

Mi]. ([MT00] definition)

Outcome is defined as the class of the evaluation normal form if it exists (here we ignore the issue of non-
confluence of ==⇒L on concrete modules due to the choice of names of λ-bound variables during beta-reduction,
since names of λ-bound variables do not affect the counterexample below). Since in the example above the

module before the ◦−(comp−ev)−−−−−−→C step is an evaluation normal form, according to the old classification we have:

OutcomeC([l 7→ λy.(λx.2 @ λz.h), h 7→ 3]) = (as in [MT00])
ClC([l 7→ λy.(λx.2 @ λz.h), h 7→ 3]) =
[l 7→ abs, h 7→ const(3)],
OutcomeC([l 7→ λy.2, h 7→ 3]) =
ClC(EvalC([l 7→ λy.2, h 7→ 3])) =
ClC([l 7→ λy.2]) =
[l 7→ abs].

This example shows that a ◦−−→C step does not preserve the outcome, and therefore the calculus is not
computationally sound.

2.6.3 Correction of the error: GC as a non-evaluation step

In this presentation we have corrected the error of [MT00] by introducing GC as a non-evaluation step and
changing the classification of core modules.

The new definition of GC rule is the same as before, only now this reduction is considered to be a
non-evaluation step:

M{[hj
m
7→
j=1

Vj ]} ◦−−→C M{[]} if FL(M) ∩ {hj | 1 ≤ j ≤ m} = ∅ (GC-nev)

We say that the subterm occurrence (M, [hj
m
7→
j=1

Vj ]) is the redex of the GC reduction, and write D

◦−
(M,[hj

m
7→
j=1

Vj ])

−−−−−−−−→C D′. Whenever unambiguous, we refer to the new rule as just (GC).
If GC is a non-evaluation step, then the sequence above that violated standardization and soundness

when GC was an evaluation step is no longer a problem:

[l 7→ λy.(λx.2 @ λz.h), h 7→ 3] ◦−(comp−ev)−−−−−−→C [l 7→ λy.2, h 7→ 3] ◦−(GC)−−−→C [l 7→ λy.2]

Both reduction steps are non-evaluation steps, and therefore the sequence is standard (recall that a sequence
is standard if it is of the form ==⇒∗◦−−→∗). We show (see appendix E) that the calculus with the new GC rule
has standardization.
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However, the change in the GC rule caused a change in classification. Observe that, according to the
classification of [MT00], in the example above the GC step changes classification:

ClC([l 7→ λy.2, h 7→ 3]) = [l 7→ abs, h 7→ const(3)], (as in [MT00])
ClC([l 7→ λy.2]) = [l 7→ abs].

One of the requirements of our framework is that a non-evaluation step does not change classification, i.e. if
D ◦−−→C D′, then ClC(D) = ClC(D

′). The new classification of modules fixes the problem:

ClC(D) =





evaluatableC if there exists D′ s.t. D ==⇒C D′

[vi
n
7→
i=1

ClT (Vi)] if D = [vi
n
7→
i=1

Vi, hj
m
7→
j=1

V ′j ],

errorC otherwise

Hidden labels are not exposed in the new classification, and we have

ClC([l 7→ λy.2, h 7→ 3]) = ClC([l 7→ λy.2]) = [l 7→ abs]

Since GC step removes hidden labels bound to values, it clearly does not change classification of the module.

2.6.4 Calculi CGC and CGC\α

Let CGC be the calculus C (as defined on Figure 1 and in section 2.4) with the rule (GC-nev) as above added
to the rules (comp-nev) and (subst-nev) for a non-evaluation step. We use notations −−→CGC , ==⇒CGC , etc.
for the reductions of the new calculus. Since terms, contexts, and classification of the new calculus are the
same as in C, we use the C notations for those. We also keep the same definitions of αC-equivalence classes
of modules.

We extend one step αC-renaming to subterm occurrences of the form (M, D) as follows:

Definition 2.122 (αC-Renaming of Subterm Occurrences (M, D)). Let M = [li
n
7→
i=1

Mi,2], D =

[kj
m
7→
j=1

Nj ], D
′ = [kj

m
7→
j=1

N ′j ], M′ = [l′i
n
7→
i=1

M ′
i ,2].

We say that (M, D) reduces to (M′, D′) by a one-step αC-renaming with the αC-redex (h, h′), written

(M, D) −(h,h
′)−−−→αC (M′, D′), if h ∈ BL(M{D})∩Hidden, h′ 6∈ Hid(M{D}), M ′

i = Mi[h := h′] for all 1 ≤ i ≤ n,
N ′j = Nj [h := h′] for all 1 ≤ j ≤ m, and

• either li0 = h for some 1 ≤ i0 ≤ n, l′i0 = h′, l′i = li for i 6= i0, 1 ≤ i ≤ n, and k′j = kj for all 1 ≤ j ≤ m,

• or kj0 = h for some 1 ≤ j0 ≤ m, k′j0 = h′, k′j = kj for j 6= j0, 1 ≤ j ≤ m, and l′i = li for all 1 ≤ i ≤ n.

We say that (M, D) reduces to (M′, D′) by a one-step αC-renaming with the αC-redex (D, x, y), written

(M, D) −(D,x,y)−−−−→αC (M′, D′) if D = M1{[l 7→ C]}, and

• either l = li0 for some 1 ≤ i0 ≤ n, Mi0 −
(C,x,y)
−−−−→αT M ′

i0 , and M ′
i = Mi for all i 6= i0, 1 ≤ i ≤ n, and

N ′j = Nj for all 1 ≤ j ≤ m,

• or l = kj0 for some 1 ≤ j0 ≤ m, Nj0 −
(C,x,y)−−−−→αT N ′j0 , and N ′j = Nj for all j 6= j0, 1 ≤ j ≤ m, and

M ′
i =Mi for all 1 ≤ i ≤ n.

We define αC-equivalence classes of such subterm occurrences in a traditional way, and use a meta-variable
SubC,CαC to range over these classes.

Note that the definition implies that M{D} −(h,h
′)−−−→αC M′{D′} in the first case and M{D} −(D,x,y)−−−−→αC

M′{D′} in the second.
Recall that = on subterm occurrences denotes componentwise equality. We can show the following:
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Lemma 2.123 (αC-Renaming Preserves Distinctness of Subterm Occurrences). Suppose M1{D1} =

M2{D2}, (M1, D1) 6= (M2, D2), (M1, D1) −
(h,h′)−−−→αC (M′

1, D
′
1), and (M2, D2) −

(h,h′)−−−→αC (M′
2, D

′
2) (respectively

(M1, D1) −
(D,x,y)−−−−→αC (M′

1, D
′
1) and (M2, D2) −

(D,x,y)−−−−→αC (M′
2, D

′
2)), then (M′

1, D
′
1) 6= (M′

2, D
′
2).

Proof. Given a concrete module D, its subterm occurrence (M1, D1) is uniquely determined by the set of
labels of D1. Since (M1, D1) 6= (M2, D2), their sets of labels differ from each other. In the case of αC-

renaming −(D,x,y)−−−−→αC these sets of labels do not change, therefore they still differ after the αC-renaming. In

the case of αC-renaming −(h,h
′)−−−→αC the sets of labels may change, but clearly they will still differ from each

other.

We also show the following:

Lemma 2.124 (αC-Renaming Preserves (GC) Redexes). If D1 ◦−
(M,D)
−−−→C D2 and D1 −

(h,h′)
−−−→αC D

′
1 (re-

spectively D1 −
(D,x,y)−−−−→αC D′1), then there exists D′2 ∈ αC 〈D2〉 such that D′1 ◦−

(M′,D′)−−−−→C D′2, where (M, D)

−(h,h
′)−−−→αC (M′, D′) (respectively (M, D) −(D,x,y)−−−−→αC (M′, D′)).

Proof. (M, D) is a (GC) redex, hence D = [hj
m
7→
j=1

Vj ], and BL(D) ∩ FL(M) = ∅.

If D1 −
(D,x,y)−−−−→αC D′1, then BL(D) = BL(D′), and by part 1 of lemma 2.35 FL(M′) = FL(M). Let D =

M1{l 7→ C}, where M1 = [li
n
7→
i=1

Mi]. If l ∈ BL(D), then M′ = M, and therefore D′2 = M′{[]} = M{[]} = D2.

Otherwise l is bound in M. In this case let M′
1 = [l′j

m
7→
j=1

M ′
j ], where l

′
i 7→ M ′

i ∈ l′j
m
7→
j=1

M ′
j if and only if

l′i 7→ M ′
i ∈ li

n
7→
i=1

Mi and l′i 6∈ BL(D), i.e. M′
1 includes all bindings of M1 except for those in D. Then

D2 = M′
1{[l 7→M ′]} −

(M′
1
{C},x,y)

−−−−−−−→αC M′
1{[l 7→M ]} = D′2, where M −

(C,x,y)−−−−→αT M ′.

SupposeD1 −
(h,h′)
−−−→αC D

′
1. Let (M, D) −

(h,h′)
−−−→αC (M′, D′). If h ∈ BL(D), then BL(D′) = BL(D)\{h}∪{h′},

and since h 6∈ FL(M) and h is not bound in M, we have M′ = M, and D2 = M{[]} = M′{[]} = D′2. If h 6∈

BL(D), then M = [h 7→M0, li
n
7→
i=1

Mi]. Then D2 = [h 7→ M0, li
n
7→
i=1

Mi] −
(h,h′)−−−→αC [h′ 7→ M ′

0, l
′
i

n
7→
i=1

M ′
i ] = D′2,

where M ′
j =Mj [h := h′], 0 ≤ j ≤ n.

We extend the definition of the reduction −−→C\α on αC-equivalence classes of modules to the reduction
−−→CGC\α which includes a (GC) redex.

Definition 2.125 (Relation −−→CGC\α). DαC ◦−
SubC,CαC−−−−→CGC\α D′αC if there exists D ∈ DαC , D

′ ∈ D′αC , and

(M1, D1) ∈ Sub
C,C
αC such that D ◦−(M1,D1)−−−−−→CGC D′.

We also lift definition of −−→C\α to the calculus CGC :

• DαC =
SubαC
===⇒CGC\α D′αC if DαC =

SubαC
===⇒C\α D′αC ,

• DαC ◦−
SubαC−−−−→CGC\α D′αC if DαC ◦−

SubαC−−−−→C\α D′αC .

As in the calculus C\α, −−→CGC\α is not confluent, but ==⇒CGC\α is. It is also the case that, as in C\α, if a
module in CGC\α has an evaluation normal form, then it cannot diverge w.r.t. evaluation. These properties
of ==⇒CGC\α are inherited from ==⇒C\α (in fact, the two relations are the same relation by definition 2.125
above).

We show in appendix E that CGC\α has standardization.
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2.6.5 Calculi LGC and LGC\α

Similarly to CGC , we define the calculus LGC of linking expressions that supports module-level (GC). We
extend the (mod-nev) rule of L as follows:

L{H} ◦−−→LGC L{H ′}, where H −−→CGC H ′ (mod-nev-GC)
and L 6= 2 or H ◦−−→CGC H ′

Note that H ◦−−→CGC H ′ includes the GC reduction.
Recall that GC is a non-evaluation step, therefore we do not need to change (mod-ev) rule of L, so by

definition in all other cases ==⇒LGC===⇒L and ◦−−→LGC=◦−−→L.
To lift GC redexes to the linking level, we introduce the following set of contexts: contexts which are

filled with modules so that the result of the filling is a linking expression.

Definition 2.126. LetContextC,L denote the set of contexts {L{M} | L ∈ ContextL,L,M ∈ ContextC,C},
and let J range over ContextC,L. The result of filling a context J = L{M} with a module D ∈ TermC
is defined as L{M{D}} if M{D} ∈ HTermC , otherwise it is undefined. Note that, similarly to contexts
F = L{D} ∈ ContextT ,L, for every J ∈ ContextC,L there exists a unique pair L,M such that J = L{M}.

Using the newly introduced contexts J, we can represent GC module redexes at the linking level as (J, D),
where J = L{M} and (M, D) is a GC redex in CGC .

We extend the notion of αL-renaming to subterm occurrences corresponding to GC redexes, and show
that such redexes are preserved by αL-renaming.

Definition 2.127 (αL-Renaming of subterm occurrences (L, D)). Let J = L{M}, J′ = L′{M′}.

• A subterm occurrence (J, D) reduces to a subterm occurrence (J′, D′) by a one-step αL-renaming with
the αL-redex (F, x, y), where F = L1{D} if

– either L = L′ and (M, D) −(D,x,y)−−−−→αC (M′, D′),

– or (M, D) = (M′, D′) and there exists 2L ∈ ContextL×L,L such that L −(
2L{D},x,y)−−−−−−−→αC L′ and

L1 = 2L{2,M{D}} or L1 = 2L{M{D},2}.

• A subterm occurrence (J, D) reduces to a subterm occurrence (J′, D′) by a one-step αL-renaming with
the αL-redex (L1, h, h

′) if

– either L = L′ = L1 and (M, D) −
(h,h′)
−−−→αC (M′, D′),

– or (M, D) = (M′, D′) and there exists 2L ∈ ContextL×L,L such that L −(
2L,h,h′)−−−−−→αC L′ and

L1 = 2L{2,M{D}} or L1 = 2L{M{D},2}.

• A subterm occurrence (J, D) reduces to a subterm occurrence (J′, D′) by a one-step αL-renaming with

the αL-redex (L1, I, I
′) if J{D} −(L1,I,I

′)
−−−−−→αI J′{D′}. Note that in this case (M, D) = (M′, D′), since

renaming a module identifier does not change any modules in the linking expression.

We use a meta-variable SubC,LαL to range over αL-equivalence classes of subterm occurrences of the form
(J, D).

Similarly to CGC , we can show that αL-renaming of subterm occurrences of the form (J, D) preserves
distinctness of subterm occurrences, as well as GC redexes (see lemmas 2.128 and 2.129 below). We omit
the proofs of the lemmas, which are similar to those of lemmas 2.123 and 2.124.

Lemma 2.128 (αL-Renaming Preserves Distinctness of Subterm Occurrences). Suppose J1{D1} =
J2{D2}, (J1, D1) 6= (J2, D2), and
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• (J1, D1) −
(L,h,h′)−−−−→αL (J′1, D′1), and (J2, D2) −

(L,h,h′)−−−−→αL (J′2, D′2), or

• (J1, D1) −
(F,x,y)−−−−→αL (J′1, D′1) and (J2, D2) −

(F,x,y)−−−−→αL (J′2, D′2), or

• (J1, D1) −
(L,I,I′)−−−−→αL (J′1, D′1) and (J2, D2) −

(L,I,I′)−−−−→αL (J′2, D′2),

then (J′1, D′1) 6= (J′2, D′2).

Lemma 2.129 (αL-Renaming Preserves GC Redexes). If L1 ◦−
(J,D)−−−→L L2 and L1 −

(L,h,h′)−−−−→αL L′1 (re-

spectively L1 −
(F,x,y)−−−−→αL L′1 or L1 −

(L,I,I′)−−−−→αL L′1), then there exists L′2 ∈ αL〈L2〉 such that L′1 ◦−
(J′,D′)−−−−→L L′2,

where (J, D) −(L,h,h
′)−−−−→αL (J′, D′) (respectively (J, D) −(F,x,y)−−−−→αL (J′, D′) or (J, D) −(L,I,I

′)−−−−→αL (J′, D′)).

Similarly to the other calculi, we extend −−→LGC to αL-equivalence classes of linking expressions. As for
the calculus CGC , −−→LGC\α consists of the new GC reduction and all the reductions of −−→L\α .

Definition 2.130 (Relation −−→LGC\α). LαL ◦−
SubC,LαL−−−−→LGC\α L′αL if there exists L ∈ LαL , D

′ ∈ L′αL , and

(J1, D1) ∈ Sub
C,L
αL such that L ◦−(J1,D1)−−−−→LGC L′.

We also lift definition of −−→L\α to the calculus LGC :

• LαL ◦−
SubT ,LαC−−−−→LGC\α L′αL if LαL ◦−

SubT ,LαC−−−−→L\α L′αL ,

• LαL =
SubL,LαC
====⇒LGC\α L′αL if LαL =

SubL,LαC
====⇒L\α L′αL ,

• LαL =
SubT ,LαC
====⇒LGC\α L′αL if LαL =

SubT ,LαC
====⇒L\α L′αL .

Recall that in section 2.5.4 we have introduced the notion a canonical expression, i.e. a linking expression
in which all hidden labels of all modules are distinct, and a canonical reduction −−→

∼ L
: a subset of −−→L such

that L−−→
∼ L

L′ implies that both L and L′ are canonical. The definition of a canonical reduction trivially

extends to GC reductions, due to the fact that if L ◦−−→LGC L′ by the (GC) rule and L is canonical, then L′ is
canonical, because the reduction has removed some hidden labels, but clearly has not created new conflicts
between hiddens. Therefore we define canonical GC as follows:

Definition 2.131 (Canonical GC). L̂◦−−→
∼ LGC

L by the rule (GC) iff L̂ ◦−−→LGC L and L̂ is canonical.

We augment theorem 2.109 with the following case for GC reduction:

Lemma 2.132. For any αL-equivalence class LαL LαL ◦−
SubC,LαL−−−−→LGC\α L′αL if and only if for every canonical

expression L̂ ∈ LαL there exist L̂′ ∈ L′αL and (J, D) ∈ SubC,LαL such that L̂◦−
(J,D)
−−−→
∼ LGC

L̂′.

The lemma together with theorem 2.109 imply that if there exists a LGC\α reduction of one αL-
equivalence class to another, then there exist a canonical reduction between canonical representatives of
the two classes.

As the corresponding relations in L\α, −−→LGC\α is not confluent, but ==⇒LGC\α is, and we are able to
show that if a linking expression has an evaluation normal form, then there is no diverging evaluation path
starting from that expression.

We also show that if OutcomeCGC\α(L) 6= errorL, then there exists H such that L ==⇒∗LGC\α H .

The following theorem, which we prove in appendix E, states the staging property (see theorem 2.116)
extended to LGC\α. The theorem below takes into account GC redexes introduced in this section.
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Theorem 2.133 (Staging in LGC\α). Given a sequence L1 =
S
=⇒
∗

LGC\α L2, there exists L′ such that L1

=
S1

=⇒
∗

LGC\α L′ =
S2

=⇒
∗

L\α L2, where S = S1;S2, S1 consists of linking redexes of the form (L,K), and S2 consists
of module redexes of the form (F,M) and (J, D).

We also show in appendix E that LGC\α has the standardization property.

3 Computational Soundness and Meaning Preservation

3.1 The Meaning of Programs

The meaning of a program in a language is often defined by an operational semantics for that language.
An operational semantics can be expressed in many ways, including: abstract machines [Lan64], small-step
transition rules [Plo81], and big-step transition rules [Kah87]. In this study, we follow [FF86], and specify for
each level X of our module calculus a small-step evaluation relation ==⇒X defined by restricting the contexts
for the calculus relation −−→X to a restricted set of evaluation contexts (see section 2). Traditionally, such
small-step evaluation relations are functions, but for two levels of our calculus (C and L), the evaluation
relation is not a function (i.e. a term may evaluate to more than one term), even at the level of α-equivalence
classes. Nevertheless, both ==⇒C\α and ==⇒L\α are confluent, so if a term has a normal form w.r.t. evaluation,
then such a normal form is unique (up to α-renaming). As defined in section 2.2, a normal form w.r.t.
evaluation of a term X in a calculus X is denoted by EvalX (X).

A classification function ClX characterizes a term X w.r.t. an evaluation relation ==⇒X . There may be
two situations: either there exists a term Y such that X ==⇒X Y , in which case X is called evaluatable
and, by definition, ClX (X) = evaluatableX , or X ∈ NF==⇒X

. In the latter case X belongs to one of the
classifications of normal forms of X . Intuitively, these classifications correspond to observable properties of
results of evaluation. For instance, in the term calculus T , the constants 3 and 4 are observably distinct.
Our classification reflects this fact by mapping 3 to a classification token const(3) and 4 to a different
classification token const(4). Another kind of result in T is a function (i.e., a λ-abstraction), whose definition
is not observable. The only observable property of a function is its input/output behavior, so two functions
cannot be distinguished without applying them. Accordingly, the classification of every function in T is abs.
Both constants and λ-abstractions are considered values.

Not all normal forms are values. For instance, a T eval normal form may have the classification stuck(l),
which designates a term stuck on a label l. In any of our calculi, an observable result of a term may have the
classification error. For example, a term with this classification is 2 @ 3 ∈ TermT ; it cannot be evaluated
further, yet it is not a value and not a stuck term12. Stuck terms in T are classified separately from errors
because in a module context, a term stuck on a label l may be evaluated further if a substitution step
substitutes a value for l. For instance, the term A+3 in the module expression [B 7→ A+ 3, A 7→ 4] is stuck
on A, but after a substitution step, this term rewrites to 4+3, which is evaluatable. In contrast, no progress
can be made on the term 2 @ 3 in any module context.

The classification of values and separation of normal forms w.r.t. evaluation from evaluatables introduced
above follows the approach of Plotkin in [Plo75]. Classification of normal forms other than values have been
introduced (without using the term “classification” or “classes”) by Z. Ariola and M. Felleisen in [AF97]
for a call-by-need calculus. Their classification distinguishes between answers (a class of normal form that
includes values), terms of the form E{x}, where E is an evaluation context and x is a variable, and terms that
can be evaluated further (such terms correspond to our evaluatable classification). An example of their
third class of term (using our notation) is (λx.E{x}) @ V , which rewrites in one step to (λx.E{V }) @ V .
Intuitively, the subterm E{x} is “stuck on x” in the same way that a T term can be stuck on a label. An
important difference is that T terms can never be stuck on variables, only labels.

12One may notice that the term 2 @ 3 has a type error (2 is in the function position, but does not have a function type), and
therefore this term is illegal in a typed calculus. However, adding a type system to the calculus would not completely get rid
of the class error: consider the term 1/0.
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The meaning of a term X in a calculus X is given by its outcome, OutcomeX (X), which specifies its
behavior w.r.t. ==⇒X . Unlike, ClX (X) which gives the status of a term at the present moment, the outcome
characterizes the result of repeatedly applying ==⇒X to X as long as possible. There are two possibilities:
X may diverge w.r.t. evaluation or it may reach a normal form. Recall that OutcomeX (X) = ⊥ in the
first case, and OutcomeX (X) = ClX (EvalX (X)) in the second. While it is theoretically possible for a term
to diverge on one evaluation path and to reach a normal form on another (without violating confluence of
the reduction), we have shown that this does not happen for ==⇒C\α, ==⇒CGC\α, ==⇒L\α, or ==⇒LGC\α (see
Lemmas 2.62 and 2.113 and properties of CGC in the end of section 2.6), so the two possibilities are mutually
exclusive for the calculi considered here.

Remark 3.1. Note that the same fact does not hold true for general reduction (as opposed to evaluation)
paths. For instance, in the term calculus T , suppose that the diverging term (λx.(x @ x)) @ (λx.(x @ x)) is
denoted by Ω. Then the term M3.1 = (λx.2) @ (λy.Ω) is the source of the terminating reduction sequence
M3.1 −−→T 2 and the diverging reduction sequence M3.1 −−→T M3.1 −−→T . . . . Note that from every term in
the diverging sequence there is a path (in this case by one reduction step) to the normal form 2.

3.2 Observational Equivalence

The main goal of this work is to show that any two terms related by a sequence of backward and forward
reduction steps (including non-evaluation steps) are observationally equivalent. That is, when one term is
replaced by the other in some context, the meaning (i.e. the outcome) of the context filled with the term
is preserved. The definition of observational (or operational, or contextual) equivalence of two terms in a
calculus was introduced by Plotkin in [Plo75]. Plotkin presented λ-calculi in which two terms M and N are
observationally equivalent if for any context C, C{M} evaluates to a value if and only if C{N} does, and if
one of these values is a basic constant c, then so is the other.

We have extended the notion of observational equivalence to the case when the two terms may belong to
a calculus other than that of the context. If X and X ′ are the same calculus, then the definition is analogous
to the one in [Plo75].

Definition 3.2 (Observational Equivalence). Two terms Y and Z of a calculus X ′ are observationally
equivalent w.r.t. a calculus X , written Y ∼=X Z, iff OutcomeX (X{Y }) = OutcomeX (X{Z}) for all contexts
X ∈ ContextX ′,X such that X{Y } and X{Z} are well-formed terms of X .

Example 3.3. Consider the following module expressions:

D3.3a = [F 7→ λx.(x ∗ a), a 7→ 2]
D3.3b = [F 7→ λy.(y + y)]

D3.3a
∼=L D3.3b because the exported F behaves like a doubling function in any linking context, and no

linking context can detect the hidden label a. However, D3.3a 6∼=C D3.3b, because there are module contexts
M ∈ ContextC,C that can distinguish the two modules by the presence of the hidden label a, e.g., M3.3 =
[B 7→ a+ 1,2]:

OutcomeC(M3.3{D3.3a}) = [B 7→ const(3), F 7→ abs]
OutcomeC(M3.3{D3.3b}) = errorL

Example 3.4. Suppose that M and N are arbitrary terms in T , and assume that + is commutative on the
numbers used in the module language. Is M +N observationally equivalent to N +M w.r.t. T ? The answer
is no. The sequential left-to-right order of evaluation of operands in primitive applications can detect an
observable difference between an error and an infinite loop. As a concrete example, define M3.4 = (2 @ 3)
and N3.4 = Ω, and compare the meaning ofM3.4+N3.4 and N3.4+M3.4 in an empty context in ContextT ,T :

OutcomeT ((2 @ 3) + Ω) = errorL
OutcomeT (Ω + (2 @ 3)) = ⊥
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So M3.4 +N3.4 6∼=T N3.4 +M3.4. This example can be lifted to the core module calculus and linking calculus
to show that M3.4 +N3.4 6∼=C N3.4 +M3.4 and M3.4 +N3.4 6∼=L N3.4 +M3.4.

Example 3.5. Suppose that k and l are arbitrary labels in T , and assume that + is commutative on
numbers. Is the T \α term l+ k observationally equivalent to k+ l w.r.t. any calculus? For T \α, the answer
is no, due to the fact that the classification stuck(l) is parameterized with respect to the label l:

OutcomeT \α(l + k) = stuck(l)
OutcomeT \α(k + l) = stuck(k)

Interestingly, the answer is yes for C\α and L\α. Below, we sketch why l+k ∼=C\α k+ l. A similar argument
shows that l + k ∼=L\α k + l.

Suppose that q ranges over ValueT ∪ Label. Given two terms M and N in TermT , we say that M
rewrites via a swap to N , written M ⇀ N , if M = C{q1 + q2} and M = C{q2 + q1}. Define  as the
reflexive, transitive closure of ⇀; since ⇀ is clearly symmetric, so is . If M  N , we say that M and N
are swap equivalent. For example, the following four (nonsensical) terms are pairwise swap equivalent:

k + (λx.(x + 2)) 

k + (λx.(2 + x)) 

(λx.(2 + x)) + k 

(λx.(x + 2)) + k.

Recall the calculus T that supports marked subterm occurrences (see definition 2.27). We naturally extend
⇀ and to terms in TermT so that “swapping” preserves the markings of subterms. We say that (C,M)

(C′,M ′) if C{M} C′{M ′} in T , and there exist (C̃, M̃) and (C̃′, M̃ ′) in T such that:

• M̃ and M̃ ′ are the only marked subterms in C̃{M̃} and C̃′{M̃ ′}, respectively,

• C̃{M̃} C̃′{M̃ ′} in T ,

• (C,M) = |(C̃, M̃)|, (C′,M ′) = |(C̃′, M̃ ′)| (where | | is defined in definition 2.28).

The notion of swap equivalence on terms and subterm occurrences can also be extended to TermT \α and
TermC\α.

Given these definitions, we can show the following:

1. If MαT M ′
αT then:

(a) MαT ∈ ValueT \α iff M ′
αT ∈ ValueT \α;

(b) if MαT ∈ ValueT \α, then ClT \α(MαT ) = ClT \α(M
′
αT ).

2. IfD1αC  D2αC , then (D1αC =
SubαC
===⇒C\α D1

′
αC ) implies (D2αC =

Sub′αC
===⇒C\α D2

′
αC ), where SubαC  Sub′αC

and D1
′
αC  D2

′
αC . This can be shown by case analysis on the form of the redex SubαC . The fact that

the module calculus is call-by-value is critical in several spots. For instance, if SubαC is a substitution
redex αC 〈(G, l)〉, then Sub′αC = αC 〈(G′, l′)〉, G{l} ↓ l = V ∈ ValueT , G′{l′} ↓ l′ = V ′ ∈ ValueT , and

αC 〈G{V }〉 αC 〈G′{V ′}〉. The final swap equivalence would not generally hold if the values V, V ′ were
replaced by arbitrary terms N,N ′. Here is a counterexample:

G = [A 7→ 2 + 1, B 7→ 2 ∗ 3]
G′ = [A 7→ 1 + 2, B 7→ 2 ∗ 3]

G{B} = [A 7→ B + 1, B 7→ 2 ∗ 3] [A 7→ 1 +B,B 7→ 2 ∗ 3] = G′{B}
G{2 ∗ 3} = [A 7→ (2 ∗ 3) + 1, B 7→ 2 ∗ 3] 6 [A 7→ 1 + (2 ∗ 3), B 7→ 2 ∗ 3] = G′{2 ∗ 3}

The final swap equivalence fails to hold because (2 ∗ 3) 6∈ ValueT \α ∪ Label. Note that the swap
equivalence is restored if (2 ∗ 3) is replaced by the value 6.
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3. If D1αC  D2αC then ClC\α(D1αC ) = ClC\α(D2αC ). This follows from (1) and the fact that D1αC is
evaluatable iff D2αC is evaluatable (a consequence of (2)). The key fact here is that module classification
hides any distinctions about the label on which a term component may be stuck via the catch-all
classification errorC . For example, ClC\α([A 7→ l+ k]) = ClC\α([A 7→ k + l]) = errorC .

4. For any module context D, clearly αC 〈D{l+ k}〉 αC 〈D{k + l}〉. By (2) and (3), OutcomeC\α(αC 〈D{l+ k}〉) =
OutcomeC\α(αC 〈D{k + l}〉),

Remark 3.6. Whether or not two terms are considered observationally equivalent depends on the the
granularity of the observablesObsX and the classification function ClX . For instance, consider an alternative
classification function for terms, Cl′T (M), defined as follows:

const(c) if M = c
var if M = x

abs if M = λx.N
⊥T if M = E{l}

evaluatableT if M = E{R}
⊥T otherwise

This alternative classification function maps all non-value T eval normal forms, including those stuck on a
particular label, to the same token ⊥T used for denoting divergence of outcome. Using this classification
function, the terms (2 @ 3)+Ω and Ω+(2 @ 3) are observationally equivalent because there is no observable
distinction between divergence and errors. It is possible to define a partial order on classification functions
indicating that one classification function refines another, but to keep things simple we consider only a single
classification function for each calculus.

Remark 3.7. The ability to place terms into arbitrary contexts in order to distinguish them allows us to
use a classification that does not completely characterize the term. For instance, even though ClT (λx.x) =
ClT (λy.5) = abs, we can distinguish the two λ-abstractions by placing them in a context 2 @ 3: λx.x @ 3
==⇒T 3, λy.5 @ 3 ==⇒T 5, and ClT (3) = const(3) 6= const(5) = ClT (5). Therefore, λx.x 6∼=C λy.5. Indeed, in
some systems, the only two observable outcomes are termination and divergence and appropriate contexts
are used to distinguish what would normally be though of as different values (e.g., [Abr90, PS98]). .

Remark 3.8. Using definition 3.2, we have been able to simplify the classification of modules from that
of [MT00], because placing modules into arbitrary link-level contexts is sufficient to be able to distinguish
between any two modules that “behave differently”. In [MT00] the classification of a module is a class

token that incorporates the classifications of all module components, i.e. by definition ClC([li
n
7→
i=1

Mi]) =

[li
n
7→
i=1

ClT (Mi)]. The simplified classification (see the definition of ClC in section 2.4) has classifications

evaluatableC and errorC for evaluatable modules and errors respectively, and exposes only visible com-
ponents of a module value. (However, for a module value hidden components are required to be bound to
values.) If hidden components contribute to the behavior of the module, we can find a context that exposes
this difference. For instance, two module values [A 7→ λx.h, h 7→ λy.2] and [A 7→ λx.h, h 7→ λy.y], both with
a classification [A 7→ abs], may be distinguished by placing them in the context 2⊕ [B 7→ A @ 3 @ 5]. The
classification errorC refers to all modules that are not evaluatable and not values. The name errorC does
not imply that all modules in this category are errors, but only that obtaining such a module as a result
of evaluation (i.e. at the point where one would expect a module value) would be an error. For instance,
the module [A 7→ B] is not a reasonable final result of evaluating a module or a linking expression (because
it depends on an external label B), but using it as a part of a linking expression is completely legitimate:
[A 7→ B]⊕ [B 7→ 5]. By placing an “error” module into a linking context we can expose its behavior.

The classification of linking expressions distinguishes between three categories: evaluatables, errors, and
module normal forms. In the linking calculus, evaluation of an expression leads to a module, unless it
reaches a linking error (by the staging property; see Theorem 2.116). Therefore evaluation of a linking
expression may result in one of the following: a link-level error (such as a conflict between visible labels of
the arguments of ⊕), or a module, which may, in turn, diverge, reach a module value, or reach a module
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error. The observational equivalence of two modules or two linking expressions means that, being placed in
an arbitrary link-level context, they cause the same behavior of the linking expression w.r.t. evaluation. If
the result of evaluation is a module value, then the two values must have the same classification in C.

3.3 Program Transformations and Meaning Preservation

It is often desirable to transform one program into another one that has the same meaning as the original
but which is “better” in some dimension. For example, the transformed program might be smaller than the
original, or it might consume less time or space when executed, or it might be in a form that allows certain
properties to be verified more easily.

For the purposes of the present paper, we shall introduce a very simple notion of program transformation:

Definition 3.9 (Transformation). A transformation T in a calculus X is a relation T : X × X . Even
though T in general is not a function, we sometimes write Z = T(Y ) if (Y, Z) ∈ T.

A transformation is meaning preserving if the original and the transformed terms are observationally
equivalent (see definition 3.2):

Definition 3.10 (Meaning Preservation). A transformation T in a calculus X ′ is meaning preserving
w.r.t. a calculus X if (Y, Z) ∈ T implies Y ∼=X Z.

Example 3.11. Consider the following core module expressions:

D3.11a = [F 7→ λx.x + a, a 7→ 1 + 2],D3.11b = [F 7→ λx.x+ 3, a 7→ 3]

D3.11b is the result of performing the constant folding and propagation transformation CFP on D3.11a.
This transformation on core module expressions is meaning preserving w.r.t. the linking calculus: i.e.,
D3.11a

∼=L D3.11b.

Example 3.12. Based on example 3.4, a transformation that swaps two operands of + is not generally
meaning preserving. But example 3.5 shows that the special case where the two operands of + are labels is
meaning preserving w.r.t. C\α and L\α, but not w.r.t. T \α.

The notion of transformation given above is too simple to include many common program transformations.
For instance, consider closure conversion, which transforms a program that may contain open functions
(functions that have free variables) into an equivalent program in which every function is closed (has no
free variables) [Han95, MMH96, SW97, Sis99, DWM+01]. This is traditionally achieved by transforming an
open function into a data structure that pairs a closed function with the values of the open function’s free
variables. Any call site to which the open function flows must be transformed in a way that is consistent
with the new representation. In this sort of global representation transformation, we cannot expect that
the transformation of an arbitrary term will be observationally equivalent to the original. After all, a pair
of a closed function and an environment of free variables is certainly not observationally equivalent to an
open function! For such a transformation, we might need a notion of meaning preservation that somehow
transforms the context of a term along with the term. Alternatively, meaning preservation might be shown
by a bisimulation in which execution states of the transformed program are shown to be related to execution
states of the original program (e.g., [Pit97]).

Despite the above caveats, for the present work we shall stick with the simple notion of meaning preserving
transformation defined above. Such a notion is adequate for characterizing many classical local transforma-
tions such as constant folding, function inlining, algebraic simplification, etc. We leave alternative approaches
of defining meaning preserving transformations on our calculi for future research.

3.4 Observational and Computational Soundness

Proving that a transformation T is meaning preserving is generally rather challenging. However, meaning
preservation follows automatically if T can be expressed as a calculus-based transformation for a calculus
with observational soundness.
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Definition 3.13 (Calculus-based Transformation). A transformation T is a calculus-based transforma-
tion for X (−−→X -based transformation) if Y ↔X Z for all (Y, Z) ∈ T.

Definition 3.14 (Observational Soundness). A calculus X ′ is observationally sound w.r.t. X if Y ↔X ′
Z implies Y ∼=X Z.

Lemma 3.15 (Observational Soundness Implies Meaning Preserving Transformations). If X ′ is
observationally sound w.r.t. X , then a −−→X ′-based transformation is meaning preserving w.r.t. X .

Proof. Follows directly from definitions 3.10, 3.13, and 3.14.

One of the main results of [Plo75] is the observational soundness13 of both the call-by-name and call-
by-value λ-calculus: if two terms are provably equivalent in the calculus, then they are observationally
equivalent. (In Plotkin’s case, X and X ′ are the same.) By lemma 3.15, any transformation expressible via
a sequence of λ-calculus steps preserves the meaning of a term.

Observational soundness is closely related to a notion that we call computational soundness.

Definition 3.16 (Computational Soundness). A calculus X is computationally sound if Y ↔X Z im-
plies OutcomeX (Y ) = OutcomeX (Z).

Computational soundness states that performing calculus steps (in any direction) on a term is safe in
the sense that it cannot possibly change the observable outcome of a term. This is a key property for a
calculus, since it can be used to justify that calculus-based transformations are safe. From the point of
view of designing a calculus, any proposed calculus step that violates the preservation of outcome should
be viewed with extreme suspicion. For instance, it is unwise to extend T with the notion of reduction
(M +N)ÃT (N +M), since example 3.4 shows that this would violate computational soundness.

To show observational equivalence w.r.t. X of two terms that are calculus equivalent in X ′ (where X
may or may not be the same as X ′), we need to show that these terms have the same observable behavior in
arbitrary contexts of X . This follows if the relation −−→X ′ of the calculus X ′ is embedded in the relation −−→X

of X – i.e., by wrapping arbitrary contexts of X around two terms connected by −−→X ′ we get a subrelation
of −−→X .

Definition 3.17 (Embedding). A relation −−→X ′ is embedded in a relation −−→X (written −−→X ′¹−−→X ) if
Y −−→X ′ Z implies that X{Y } −−→X X{Z} for any context X ∈ ContextX ′,X such that X{Y } and X{Z} are
well-formed terms of X .

The self-embedding −−→X¹−−→X means that the relation −−→X is a congruence14 relative to the set of
one-hole contexts ContextX ,X . The relation generated from a relation −−→X by wrapping arbitrary contexts
X ∈ ContextX ,X around the two terms connected by −−→X is the contextual closure15 of −−→X . Self-embedding
means that the contextual closure of −−→X is a subset16 of −−→X .

Lemma 3.18 (Module Calculus Embeddings for Concrete Terms). The following are embeddings in
our module calculus:

1. −−→T ¹−−→T (T is a congruence);

2. −−→T ¹−−→C (term reductions can be performed in the bindings of a module);

3. −−→C¹−−→C (C is a congruence);
13“Observational soundness” is our term; Plotkin referred to this property as “consistency”.
14Such relations are called compatible in [Bar84].
15This notion is called compatible closure in [Bar84].
16In the case when the calculus has an empty context, as is the case with all our calculi, self-embedding means that the

contextual closure of −−→X equals −−→X . However, in general it may be the case that, even though every two terms related by
the contextual closure of −−→X are also related by −−→X , the converse may not be true, i.e. two terms related by −−→X may not
be represented as a context wrapped around two terms related by −−→X . Therefore we only require that the contextual closure
of −−→X is a subset of −−→X .
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4. −−→T ¹−−→L (term reductions can be performed in the bindings of a module in a linking expression);

5. −−→C¹−−→L (core module reductions can be performed within a linking term);

6. −−→L¹−−→L (L is a congruence);

7. −−→T ¹−−→CGC ;

8. −−→CGC¹−−→LGC ;

9. −−→T ¹−−→LGC ;

10. −−→LGC¹−−→LGC (LGC is a congruence).

Proof. Follows from the definitions of the relations −−→T , −−→C , −−→L, −−→CGC , and −−→LGC

Remark 3.19. Note that while the core module calculus is a congruence (−−→C¹−−→C), the extension of this
calculus with the GC rule is not a congruence (−−→CGC 6¹−−→CGC ). The reduction D1 −−→CGC D2 does not imply
that for all contexts M ∈ ContextC,C , M{D1} −−→CGC M{D1}, since M may contain a reference to the hidden
components being removed by the (GC) step. For instance, suppose M3.19 = [l′ 7→ l @ h,2]. Then:

D3.19a = [l 7→ λx.x, h 7→ 2] −−→CGC [l 7→ λx.x] = D3.19b

M3.19{D3.19a} = [l′ 7→ l @ h, l 7→ λx.x, h 7→ 2] 6−−→CGC [l′ 7→ l @ h, l 7→ λx.x] = M3.19{D3.19b}

All the other embedding relations involving C and L are preserved by their versions extended with (GC).

We care not so much about the calculi with concrete terms, but the calculi with α-equivalence classes of
terms. For this reason, we need to develop a notion of embedding for calculi at the α-equivalence level.

Definition 3.20 (Filling a Context with an α-Equivalence Class). If X is a (concrete) context inContextX ′,X
and YαX′ is an α-equivalence class of terms in X ′, then

X{YαX′ } =





αX 〈X{Z}〉, where Z ∈ YαX′ and X{Z} is defined, if αX 〈X{Z ′}〉 = αX 〈X{Z ′′}〉
for all Z ′, Z ′′ ∈ YαX′ such that X{Z ′} and X{Z ′′} are defined

undefined, otherwise

In the above definition we only consider Z such that the filling of the context X{Z} is defined, i.e. in a
situation when X{Z} is not defined on some Z ∈ YαX′ , such elements do not automatically make the result
of filling the context undefined. The reason for this is the following: suppose we consider filling a module
context M that exports a hidden, such as [A 7→ B, a 7→ 4,2], with the αC-equivalence class of a module
that also exports a hidden and does not import the hidden exported by the context. For instance, let us
take [B 7→ 3, b 7→ 7]. If we had required that filling of the context is defined for all elements in YαX′ , then
filling such a context with such an α-equivalence class would have been undefined, because there exists an
instance of the αC-equivalence class of the module that exports the label already defined in the context. In
our example such an instance is [B 7→ 3, a 7→ 7] ∈ αC 〈[B 7→ 3, b 7→ 7]〉.

Note, however, that the definition implies that for the result of filling a context to be defined there must
exist at least one Z ∈ YαX′ such that X{Z} is defined.
Example 3.21. Consider the context C3.21 = λx.2 ∈ ContextT ,T . Then C3.21{αT 〈λy.x〉} = αT 〈λx.λy.x〉
and C3.21{αT 〈λy.y〉} = αT 〈λx.λy.y〉. Indeed, for any C ∈ ContextT ,T and M ∈ TermT , C{αT 〈M〉} =

αT 〈C{M}〉.
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Example 3.22. Consider the context M3.22 = [A 7→ d,2] ∈ ContextC,C . It makes sense to fill M3.22 with
some α-equivalence classes, as in M3.22{αC 〈[B 7→ λx.x]〉} = αC 〈[A 7→ d,B 7→ λx.x]〉. However, filling M3.22

with other classes is undefined. For example, consider

D3.22a = [B 7→ c, c 7→ 2] =Cα [B 7→ d, d 7→ 2] = D3.22b

and observe that

M3.22{D3.22a} = [A 7→ d,B 7→ c, c 7→ 2] 6=Cα [A 7→ d,B 7→ d, d 7→ 2] = M3.22{D3.22b}.

In this case, α-equivalence fails because the free hidden label d in M3.22 is bound for one representative
module filling the hole but not for the other representatives.

Definition 3.23 (α-Compatibility). A calculus X ′ is α-compatible in X , written X ′ vα X , iff for all
X ∈ ContextX ′,X and all YαX′ ∈ TermX ′\α, X{YαX′ } is defined in TermX\α. By definition 3.20, X ′ vα X
implies that if Z ∈ TermX ′ , then X{αX′ 〈Z〉} = αX 〈X{Z}〉.

Lemma 3.24 (α-Compatibility in the Module Calculus). The following α-compatibility relations hold
in the module calculus:

1. T vα T

2. T vα C

3. T vα L

4. C vα L

5. L vα L

Remark 3.25. Example 3.22 shows that C 6vα C. This is the only case in the module calculus where a free
α-renamable entity in the context can be affected by declarations in terms filling the hole.

Given the definition of filling a context with an α-equivalence class (definition 3.20), the definition of
embedding (definition 3.17) makes sense when considering calculi at the α-equivalence level.

Lemma 3.26 (Module Calculus Embeddings for α-Equivalence Classes of Terms). The following
are embeddings at the α-equivalence level of our module calculus:

1. T \α ¹ T \α

2. T \α ¹ C\α

3. T \α ¹ L\α

4. C\α ¹ L\α

5. L\α ¹ L\α

Proof. The proofs for 1 – 5 are all similar; we give only the proof for 2. Suppose MαT −−→T \α NαT ; we need
to show that for all D ∈ ContextT ,C , D{MαT } −−→C\α D{NαT }. By definition 2.37,MαT −−→T \α NαT implies
the existence of M ′ ∈ MαT and N ′ ∈ NαT such that M ′ −−→T N ′. The embedding −−→T ¹−−→C implies that
for all D ∈ ContextT ,C, D{M ′} −−→C D{N ′}. By definition 2.57, αC 〈D{M ′}〉 −−→C\α αC 〈D{N ′}〉. Because
T vα C, αC 〈D{P}〉 = D{αT 〈P 〉} for any P ∈ TermT . So D{αT 〈M ′〉} −−→C\α D{αT 〈N ′〉}, which can be
rewritten D{MαT } −−→T \α D{NαT }.
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Together, the computational soundness of a calculus X and the embedding of −−→X ′ into −−→X imply that
calculus-based transformations of X ′ are meaning preserving w.r.t. X :

Lemma 3.27 (Comp. Soundness + Embedding = Observational Soundness). If a calculus X is
computationally sound and −−→X ′¹−−→X , then X

′ is observationally sound w.r.t. X .

Proof. Suppose Y ↔X ′ Z. By the embedding −−→X ′¹−−→X (definition 3.17), X{Y } ↔X X{Z} for any context
X, By the computational soundness of X , OutcomeX (X{Y }) = OutcomeX (X{Z}). Thus, X ′ is observation-
ally sound w.r.t. X .

Corollary 3.28 (Comp. Soundness + Embedding = Meaning Preserving Transformations). If a
calculus X is computationally sound and −−→X ′¹−−→X , then any calculus-based transformation T in X ′ is
meaning preserving in X .

A main result of this work is that T \α, C\α, and L\α (as well as CGC\α and LGC\α) are all compu-
tationally sound. Given the embeddings for these calculi listed in Lemma 3.26, corollary 3.28 implies that
calculus-based transformations are meaning preserving in all of these calculi, except in the cases where C\α
(resp. CGC\α) transformations are performed in non-empty C\α (resp. CGC\α) contexts. See section 3.7 for
examples of meaning preserving transformations for some of this calculi.

Remark 3.29. The fact that calculus-based transformations are not necessarily meaning preserving for
modules in non-empty module contexts underscores that the meaning preservation of calculus-based trans-
formations is not assured. This serves as a justification for the formal development presented here. Similarly,
the fact that −−→C is embedded in −−→C but −−→C\α is not embedded in −−→C\α underscores that the results involv-
ing α-equivalence classes, while seeming perhaps tedious, are important and not entirely straightforward.

Example 3.30. While two terms connected by calculus steps are guaranteed to be observationally equivalent
in the cases noted above, the converse is not true. Many observationally equivalent terms cannot be connected
by calculus steps. As a concrete example, consider l + k and k + l, which are observationally equivalent in
C\α (see example 3.5), but are not connected by any sequence of calculus steps in T \α. To see this, we shall
assume otherwise and derive a contradiction. Suppose that l+ k ↔T \α k+ l. Because −−→T is confluent, this
implies that there is an MαT ∈ TermT \α such that l+ k −−→∗T \α M and k+ l −−→∗T \α M . But l+ k and k+ l
are both −−→T \α normal forms and are not equal to each other, so no such MαT exists. Thus, the original
assumption l+ k ↔T \α k+ l must be incorrect. A similar technique can be used to show that λx.x+ x and
λx.x ∗ 2 are not equivalent in T \α even though they are observationally equivalent w.r.t. T \α.

3.5 A Classical Technique for Proving Computational Soundness

In this section we review the traditional “ingredients” and “recipe” for proving computational soundness.
It turns out that the traditional recipe fails for calculi C\α and L\α. In the next section, we present
a new technique for proving computational soundness that works for these calculi because it has weaker
preconditions.

The traditional recipe for proving the computational soundness of a calculus X has three ingredients:

1. Confluence of −−→X and ==⇒X (definition 2.6);

2. Standardization of X (definition 2.7);

3. The class preservation property defined below.

Definition 3.31 (Class Preservation). Calculus X has the class preservation property if M ◦−−→X N
implies ClX (M) = ClX (N).

We discuss these ingredients in more detail in the following subsections, followed by a description of how to
combine them into a proof of computational soundness.
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3.5.1 Confluence

Confluence is a classical property that holds for many calculi. The important fact with relation to our work is
that −−→C\α is not confluent, as shown in section 2.4.3. This fact implies that we cannot apply the traditional
technique for proving computational soundness to C\α (and also of L\α). The lack of confluence of −−→C\α

motivated our development of a new technique for proving computation soundness (see section 3.6).
Note that confluence of ==⇒X is independent from that of −−→X . For many calculi, ==⇒X is a function, and

so is trivially confluent. For calculi like C\α and L\α, where ==⇒X is not a function, the condition that ==⇒X
is confluent is necessary in order for EvalX to be well-defined.

Our proofs of computational soundness use the following standard lemma related to confluence:

Lemma 3.32. If −−→ is confluent and Y ↔ Z, then there is a W such that Y −−→∗ W and Z −−→∗ W .

Proof. The proof is traditional, see the proof of theorem 3.1.12 in [Bar84].

3.5.2 Standardization

Standardization traditionally refers to the property of the calculus that every reduction sequence Y −−→∗
X Z

can be rewritten as a sequence from Y to Z in which the reduction steps are performed in a “standard”
order. Definition of a standard order depends on a particular calculus. However, a standard sequence usually
has the following two properties (as applicable to a particular calculus):

• if a term reaches a value by some reduction sequence, then it reaches a value by a standard sequence;

• for a calculus where the meaning of a term is defined via a small-step operational semantics, a standard
reduction sequence performs all the “standard”, i.e. those corresponding to the operational semantics,
steps first, possibly followed by some “non-standard” steps, i.e. those that do not change the observable
behavior of a term (for instance, steps performed under a λ in a λ-calculus).

The intuition behind a standard sequence is as follows: at every step of such a sequence the reduced redex is
the one which is “needed” to make progress on the term towards reaching a normal form, if it exists, which
usually corresponds to the strategy employed by operational semantics of the calculus. The notion of such
needed redex has been formalized in [HL91] for TRS.

Intuitively, “standard” and “non-standard” reduction steps correspond, respectively, to the evaluation
and non-evaluation steps presented in section 2.2. However, definitions of a standard sequence in the lit-
erature often depend on the details of the calculi in question, and are sometimes quite complex. In par-
ticular, while our evaluation/non-evaluation classification of steps depends only on the current redex, the
standard/non-standard classification of steps can depend on the reduction sequence leading up to a step.
For instance, the inductive definition of a standard reduction sequence in [Plo75] is such that reduction of
an outermost application cannot be performed if the operand or the operator has been reduced under a λ
in the same sequence. However, such an application may be reduced as a “standard” step if the preceding
part of the sequence has not performed a reduction under a λ.

The definition in [Bar84] is given in terms of residuals of redexes reduced earlier in the reduction se-
quence. Barendregt also relates standard reduction sequences for the call-by-name λ-calculus to the notion
of a head redex: a standard sequence reduces all head redexes first, followed by internal (i.e. non-head)
redexes. [GLM92] point out that a standard redex has exactly one residual w.r.t. any other redex, and takes
this property as the basis of the definition of a “standard” step. Using an approach based on combinatory
reduction systems, Wells and Muller give a general definition of a standard sequence which may be instan-
tiated for a particular calculus in such a way that the calculus is guaranteed to have the standardization
property [WM00]. Ariola and Felleisen employ a different approach, defining a standard sequence to be a
sequence that performs all the evaluation steps first, and proving what they refer to as “the important part
of Standardization theorem”, namely that if a closed term reaches an answer (a special class of normal forms
w.r.t. evaluation) by a reduction sequence, then the answer may be reached by a standard sequence [AF97].
This is indeed sufficient to show computational soundness of their calculus, as well as to demonstrate that
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standard reductions correspond to a normalizing strategy. Our approach is close to that of [AF97], with
the difference that we consider arbitrary standard reduction sequences, not only those that end in a normal
form.

As illustrated in the proof of Theorem 3.35 below, an important use of the standardization property is
to show that a calculus is computationally sound. It turns out that for this purpose it is sufficient to define
a standard sequence in a calculus X as a sequence of the form X ==⇒∗X X1 ◦−−→∗X X ′ and to show that any
reduction sequence X −−→∗X X ′ has a corresponding standard reduction sequence. This is the property that
we refer to as standardization in definition 2.7. Even though it is formulated somewhat differently from
definitions of standardization in the literature mentioned above, it is essentially the same property, because
it captures the idea of reordering reduction sequences in such a way that all evaluation steps (i.e. reductions
of the “needed” redex) are performed first. This definition also abstracts over details of the calculus. Note
that in our case ==⇒X is not a function for C\α, CGC\α, and L\α, so that, in contrast to traditional notions
of standardization, the evaluation part X ==⇒∗X X1 of a standard sequence is not unique. The non-evaluation
part X1 ◦−−→∗X X ′ is also not required to be unique in our calculi; this is the case in some other calculi as
well. For instance, in the calculus of [AF97] the two reduction sequences below17 are both standard (we use
our notations for evaluation and non-evaluation steps, but omitting the symbol @ , following the notations
in [AF97]):

(λf.f)λw.(II)w ==⇒ (λf.λw.(II)w)λw.(II)w ◦−−→
(λf.λw.((λz.I)I)w)λw.(II)w ◦−−→ (λf.λw.((λz.I)I)w)λw.((λz.I)I)w,
(λf.f)λw.(II)w ==⇒ (λf.λw.(II)w)λw.(II)w ◦−−→
(λf.λw.(II)w)λw((λz.I)I)w ◦−−→ (λf.λw.((λz.I)I)w)λw.((λz.I)I)w.

Some other authors require that the entire standard sequence, including the non-evaluation part, is uniquely
defined, given the original and the resulting term (see, for instance, theorem 12.3.14 in [Bar84]).

3.5.3 Class Preservation

The class preservation property has two important implications:

1. If a term is an eval normal form, then any sequence of reduction steps originating at the term must
consist purely of non-evaluation steps and end in another normal form of the same class.

2. A non-evaluation reduction sequence cannot change an evaluatable term to an eval normal form, and
vice versa. (In fact, one usually shows a stronger property: a non-evaluation step can not create,
remove, or duplicate an evaluation redex. [Plo75] and [Bar84] show this property, while [GLM92]
take this property as the basis for axiomatic definition of a “standard” reduction step. We show this
stronger property via elementary lift and project diagrams, see appendix A for details).

These implications are formalized via the following lemmas:

Lemma 3.33. If X has class preservation, Y ∈ NF==⇒X
, and Y −−→∗X Z, then each step in Y −−→∗X Z is a

non-evaluation step and ClX (Y ) = ClX (Z).

Proof. By induction on the number of steps n in Y −−→∗
X Z. If n = 0, the result is trivially true. For

n > 0, Y −−→X Y ′ −−→∗X Z. By the induction hypothesis, each step in Y ′ −−→∗X Z is a non-evaluation step and
ClX (Y

′) = ClX (Z). Since Y ∈ NF==⇒X
, the step Y −−→X Y ′ must be a non-evaluation step, and by class

preservation, ClX (Y ) = ClX (Y
′).

Lemma 3.34. If X has class preservation and Y ◦−−→∗X Z, then Y ∈ NF==⇒X
iff Z ∈ NF==⇒X

.

17the rule used in the reductions is the call-by-need version of β-reduction: (λx.E{x})V −−→ (λx.E{V })V . The reduction step
is an evaluation step if the redex occurs in an evaluation context, otherwise it is a non-evaluation step. See [AF97] for details.
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Proof. It is easy to show that ClX (Y ) = ClX (Z) by induction on the number of steps Y ◦−−→∗
X Z. Suppose

that Y 6∈ NF==⇒X
; then by property 2.4 and class preservation, evaluatableX = ClX (Y ) = ClX (Z) =

evaluatableX , so Z 6∈ NF==⇒X
. A similar argument shows that Y ∈ NF==⇒X

implies Z ∈ NF==⇒X
.

Both of these consequences of class preservation are implicitly used in computational soundness proofs
(see [Plo75]). The second consequence is used even more widely in standardization proofs ([Plo75, Bar84,
AF97]). The property that a non-standard reduction step does not change the classification of a term is
explicitly stated and proven in [AF97] for a call-by-need calculus. In [Plo75] the property is used implicitly,
separated into several lemmas. For instance, Lemma 6 in the discussion of the call-by-value calculus states
that if an application reduces to a constant or a λ-abstraction, then the reduction step is a “standard” (i.e.
an evaluation) step. Barendregt shows that a head redex cannot be created, duplicated, or removed by
reduction of an internal redex (lemma 11.4.3 in [Bar84]).

When designing an operational semantics for a calculus, the class preservation property can be used as a
guide for deciding which −−→ steps are evaluation steps and which are non-evaluation steps and for choosing
a sensible classification. For instance, the change of the GC rule from an evaluation step (as in [MT00]) to a
non-evaluation step in this presentation has prompted the change in classification of modules (see section 2.6
for details).

3.5.4 Proving Computational Soundness

Here we present a traditional proof of computational soundness that generalizes the approach in [Plo75].

Theorem 3.35 (Computational Soundness via Confluence). If −−→X and ==⇒Xare confluent and X
has standardization and class preservation, then X is computationally sound.

Proof. Assume that Y ↔X Z. We show that OutcomeX (Y ) = OutcomeX (Z) by the following two cases:

1. OutcomeX (Y ) 6= ⊥: As shown in figure 218, Y ==⇒∗X Y ′ = EvalX (Y ); EvalX is well-defined by the
confluence of ==⇒X . By confluence of −−→X and lemma 3.32, there is an W such that Y ′ −−→∗X W and
Z −−→∗X W . Since Y ′ ∈ NF==⇒X

, by class preservation and lemma 3.33, Y ′ ◦−−→∗X W . By standardization,
Z −−→∗X W implies that there is an Z ′ such that Z ==⇒∗X Z ′ ◦−−→∗X W . Since Y ′,W , and Z ′ are connected
only by ◦−−→X steps, class preservation implies ClX (Y

′) = ClX (W ) = ClX (Z
′), and property 2.4 implies

that Z ′ ∈ NF==⇒X
since Y ′ ∈ NF==⇒X

. So Z ′ = EvalX (Z), and ClX (Z
′) = ClX (Y

′).

2. OutcomeX (Y ) = ⊥: If EvalX (Z) exists, then by the above argument we can show that EvalX (Y ) also
exists. So OutcomeX (Z) = ⊥.

3.6 A Novel Technique for Proving Computational Soundness

Traditionally, proofs of computational soundness (like the one in the previous section) state confluence of
−−→X as a requirement. But what if −−→X is not confluent, as in C\α and L\α? An inspection of the proof
of theorem 3.35 reveals that confluence of −−→X is stronger than what is actually required for the proof to
go through. The fact that one side of the commutative square in figure 2 consists purely of evaluation steps
rather than arbitrary calculus reduction steps suggests that a weaker form of confluence might suffice. We
have developed a novel technique for proving computational soundness that replaces the requirement that
−−→C\α be confluent by a a weaker condition that we call confluence w.r.t. evaluation.

18In figures 2–3, double-headed arrows denote reflexive, transitive closures of the respective relations, and a line with arrows
on both ends denotes the reflexive, symmetric, transitive closure of the respective relation. Solid lines denote given relations,
while dashed lines denote relations whose existence is implied by the the proofs.
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Y Y ′ = Eval(Y)

Z W

Z′

∗

∗

∗

∗

∗

Figure 2: Sketch of the traditional proof of computational soundness. Note that Cl(Y ′) = Cl(W ) = Cl(Z ′),
from which it can be deduced that Z ′ = Eval(Z) and Outcome(Y ) = Outcome(Z).

Definition 3.36 (Confluence w.r.t. evaluation). A calculus reduction relation −−→X is confluent w.r.t.
an evaluation relation ==⇒X iff Y ==⇒∗X Y ′ and Y −−→∗X Z implies the existence of a Z ′ such that Z ==⇒∗X Z ′

and Y ′ −−→∗X Z ′.

It turns out that while −−→C\α and −−→L\α are not confluent, they are confluent w.r.t. evaluation, and so C\α
and L\α are computationally sound by our technique (see theorem 3.42).

The technique for proving computational soundness based on confluence w.r.t. evaluation has a different
flavor than that used in theorem 3.35. To gain insight into the nature of this new proof, we first introduce
an alternative technique for proving computational soundness based on a pair of related properties that we
call lift and project. These are defined below and depicted in figure 3. It turns out that the lift property
is equivalent to standardization and that the project property, in conjunction with the confluence of ==⇒X ,
implies confluence w.r.t. evaluation. Together, lift, project, the confluence of ==⇒X , and class preservation
imply computational soundness (see theorem 3.41). A small tweak to the proof based on lift and project
yields a proof based on standardization and confluence w.r.t. evaluation (see theorem 3.42).

Definition 3.37 (Lift). A calculus X has the lift property if for any reduction sequence Y ◦−−→X Z ==⇒∗X Z ′

there exists a sequence Y ==⇒∗X Y ′ ◦−−→∗X Z ′.

Definition 3.38 (Project). A calculus X has the project property if Y ◦−−→X Z, Y ==⇒∗X Y ′ implies that
there exist terms Y ′′, Z ′ such that Y ′ ==⇒∗X Y ′′, Z ==⇒∗X Z ′, and Y ′′ ◦−−→∗X Z ′.

Y Y ′

lift

Z Z′

∗

∗

∗

Y Y ′

project Y ′′

Z Z′

∗

∗

∗

∗

Figure 3: The lift and project properties.

When proving computational soundness for a calculus that lack confluence (such as C\α or L\α), there
is a benefit in proving standardization via the lift property rather than directly via the definition of stan-
dardization: proofs of both the lift and project properties use the same mechanism (certain properties of
residuals and finite developments [Bar84]) and therefore share several intermediate results. See appendix A
for more details.
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The formal proofs of the lift and project properties for the calculi C\α and L\α are given in appendices C
and D, respectively. The proofs for CGC\α and LGC\α are given in appendix E. Here we illustrate the
properties by examples.

Consider the following two modules connected by a non-evaluation step (the substitution is performed
under a λ):

D = [A 7→ λx.B,B 7→ 2, C 7→ A] ◦−−→C\α [A 7→ λx.2, B 7→ 2, C 7→ A] = D1.

The first of the two modules evaluates in a single step as follows:

D = [A 7→ λx.B,B 7→ 2, C 7→ A] ==⇒C\α [A 7→ λx.B,B 7→ 2, C 7→ λx.B] = D′.

The project property implies the existence of D′′, D′1 such that D1 ==⇒∗C\α D′1 and D′ ==⇒∗C\α D′′ ◦−−→∗C\α D′1.

Indeed, if we take D′′ = D′ and D′1 = [A 7→ λx.2, B 7→ 2, C 7→ λx.2], then:

[A 7→ λx.2, B 7→ 2, C 7→ A] ==⇒C\α [A 7→ λx.2, B 7→ 2, C 7→ λx.2];
[A 7→ λx.B,B 7→ 2, C 7→ λx.B] ◦−−→C\α [A 7→ λx.2, B 7→ 2, C 7→ λx.B] ◦−−→C\α
[A 7→ λx.2, B 7→ 2, C 7→ λx.2].

To illustrate lift, let us assume that D, D1, and D′1 are given: then D′ is the module whose existence is
guaranteed by the lift property.

In both the lift and project diagrams in Figure 3, suppose that we “mark” the original non-evaluation
redex (the vertical non-evaluation step on the left hand sides of the diagrams). Then the resulting ◦−−→∗

C\α

sequence (the vertical multi-step sequence on the right hand sides of the diagrams) reduces copies of the
marked redex that are created by the evaluation sequence across the top of the diagram. The copies of the
marked redex are known as residuals of the redex. In the above example, the non-evaluation redex (the label
B that gets replaced by 2) is copied by the evaluation step D ==⇒C\α D′ to the component bound to C, so
a two-step reduction sequence D1 ◦−−→∗C\α D′1 is necessary to reduce both residuals. We formalize the notion
of a residual in the appendix A.

In some cases, some or all of the residuals of the original non-evaluation redex may become evaluation
redexes (in both lift and project). Consider the following simple example in the term calculus T \α.19

M = (λx.((λy.y) @ (λz.z)) @ x) @ 5 ◦−−→T \α (λx.(λz.z) @ x) @ 5 = N,
M = (λx.((λy.y) @ (λz.z)) @ x) @ 5 ==⇒T \α ((λy.y) @ (λz.z)) @ 5 = M ′.

To complete the project diagram, we set M ′′ = λz.z @ 5 and N ′ =M ′′. Then:

N = (λx.(λz.z) @ x) @ 5 ==⇒T \α λz.z @ 5 = N ′,
M ′ = ((λy.y) @ (λz.z)) @ 5 ==⇒T \α λz.z @ 5 = M ′′,

and M ′′ ◦−−→∗T \α N ′ in 0 steps. On the other hand, if we are given M,N , and N ′, and we want to complete

the lift diagram, then M ==⇒∗T \α M ′′ in two steps (via M ′), and M ′′ ◦−−→∗T \α N ′ in 0 steps, so M ′′ is the term

that completes the diagram. Note that the reduction M ′ ==⇒T \α M ′′ reduces the residual of the original
non-evaluation redex (λy.y) @ (λz.z), but the redex has become an evaluation redex after the evaluation step
M ==⇒T \α M ′. This example explains why the diagrams for lift and project are not completely symmetric.
Examples of evaluation redexes which are residuals of a non-evaluation redex exist in C\α and are inherited
by L\α.

It is easy to see that the lift property (3.37) is implied by standardization (property 2.7). As shown
below, the converse is also true, so lift is in fact equivalent to standardization.

19Since −−→T \α is confluent, the computational soundness proof for T \α does not require the project property, only lift, which
is equivalent to standardization, but the project property also holds; see appendix B.
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Lemma 3.39 (Lift Implies Standardization). If X has the lift property (i.e., for any reduction sequence
Y ◦−−→ Z ==⇒∗ Z ′ there exists a sequence Y ==⇒∗ Y ′ ◦−−→∗ Z ′) then it has the standardization property (i.e., for
any sequence Y1 −−→∗ Y2 there exists Y3 such that Y1 ==⇒∗ Y3 ◦−−→∗ Y2).

Proof. A non-standard sequence S from Y1 to Y2 must have the form:

Y1 −−→∗ Y ′1 ◦−−→ Y ′2 ==⇒+ Y ′3 ◦−−→∗ Y2.

By the lift property there exists Y ′′2 such that Y ′1 ==⇒∗ Y ′′2 ◦−−→
∗ Y ′3 . Define Φ(S) as the sequence20:

Y1 −−→∗ Y ′1 ==⇒∗ Y ′′2 ◦−−→∗ Y ′3 ◦−−→∗ Y2.

Note that each application of Φ on a reduction sequence from Y1 to Y2 yields a new reduction sequence from
Y1 to Y2 that has fewer non-evaluation steps to the left of the rightmost evaluation step in the sequence.
Thus, iterating Φ starting with an arbitrary reduction sequence from Y1 to Y2 will eventually terminate with
a reduction sequence from Y1 to Y2 in which there are no non-evaluation steps to the left of any evaluation
step – i.e., when a standard sequence from Y1 to Y2 has been obtained.

The project property is closely related to the notion of confluence w.r.t. evaluation:

Lemma 3.40 (Project Implies Confluence w.r.t. Evaluation). If ==⇒X is confluent and X has the
project property, then −−→X is confluent w.r.t. ==⇒X .

Proof. Suppose that Y ==⇒X Y ′ and Y −−→∗X Z. We wish to show that there is a Z ′ such that Z ==⇒∗X Z ′ and
Y ′ −−→∗X Z ′. We proceed by induction on the length n of the sequence Y −−→∗

X Z. If n = 0, then Z = Y and
Z ′ = Y ′. If n > 0, then Y −−→X W −−→∗X Z, and there are two cases:

• If Y −−→X W via ==⇒X , then confluence of ==⇒X implies the existence of W ′ such that W ==⇒∗X W ′ and
Y ′ −−→∗X W ′. By the induction hypothesis, there is a Z ′ such that Z ==⇒∗X Z ′ and W ′ −−→∗X Z ′. By
transitivity of −−→X , Y ′ −−→∗X Z ′.

• If Y −−→X W via ◦−−→X , then the project property implies the existence of W ′ such that W ==⇒∗X W ′

and Y ′ −−→∗X W ′. Again, applying the inductive hypothesis completes the case.

The following theorem embodies our new approach to proving computational soundness:

Theorem 3.41 (Computational Soundness via Lift and Project). If ==⇒X is confluent and X has the
lift, project, and class preservation properties, then X is computationally sound.

Proof. Assume that Y ↔X Z. We show that OutcomeX (Y ) = OutcomeX (Z) by the following two cases:

1. OutcomeX (Y ) 6= ⊥: We show the result for the case where Y and Z are connected by a single step.
Using the single-step result, it is easy to prove the multi-step result via an easy induction on the length
of the sequence Y ↔X Z.

Let Y ′ = EvalX (Y ). We show that OutcomeX (Z) = ClX (Y
′) = OutcomeX (Y ) in all four cases relating

Y and Z by a single reduction step (see figure 4):

(a) Y ◦−−→X Z. By the project property, Y ==⇒∗X Y ′ implies that there exist Y ′′, Z ′ such that
Y ′ ==⇒∗X Y ′′, Z ==⇒∗X Z ′, and Y ′′ ◦−−→∗X Z ′. But Y ′ ∈ NF==⇒X

, so Y ′ = Y ′′. By the class
preservation property, ClX (Y

′) = ClX (Z
′), and property 2.4 implies that Z ′ ∈ NF==⇒X

. Hence,
Z ′ = EvalX (Z), and OutcomeX (Z) = ClX (Z

′) = ClX (Y
′) = OutcomeX (Y ).

20In general, there may be many sequences that satisfy the lift property, so Φ(S) may not be uniquely defined. However,
we can always introduce an ordering on terms and a related ordering on reduction sequences such that Φ(S) can be uniquely
defined as the sequence obtained by using the least or greatest sequence in this ordering satisfying the lift property.
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(b) Z ◦−−→X Y . By the lift property, Y ==⇒∗X Y ′ implies that there exists Z ′ such that Z ==⇒∗X Z ′ and
Z ′ ◦−−→∗X Y ′. Class preservation implies ClX (Z

′) = ClX (Y
′), and since Y ′ ∈ NF==⇒X

, property 2.4
implies that Z ′ ∈ NF==⇒X

, and, as above, OutcomeX (Z) = OutcomeX (Y ).

(c) Y ==⇒X Z. By confluence of ==⇒X there exists Z ′ such that Z ==⇒∗X Z ′, Y ′ ==⇒∗X Z ′. But Y ′ is a
normal form, so Y ′ = Z ′ = EvalX (Z).

(d) Z ==⇒X Y . By transitivity of ==⇒∗X , Z ==⇒∗X Y ′, and since Y ′ is a normal form, Y ′ = EvalX (Z).

Y
Y ′ =

Eval(Y )

project Y ′′

Z Z′

∗

∗

∗

Y
Y ′ =

Eval(Y )

lift

Z Z′

∗

∗

∗

Y
Y ′ =

Eval(Y )

conf. of ==⇒

Z Z′

∗

∗

Y
Y ′ =

Eval(Y )

trans.

Z

∗

∗

(a) (b) (c) (d)

Figure 4: Proof of soundness via lift and project.

2. OutcomeX (Y ) = ⊥: If OutcomeX (Z) 6= ⊥, then by the above argumentOutcomeX (Y ) = OutcomeX (Z) 6=
⊥, and we get a contradiction. Therefore, if OutcomeX (Y ) = ⊥, then OutcomeX (Z) = ⊥.

The calculi C\α, CGC\α, L\α, and LGC\α have the lift, project, and class preservation properties (the
respective proofs are given in appendicies), so they enjoy the computational soundness property.

Now we are ready to state a computational soundness theorem in terms of standardization and confluence
w.r.t. evaluation rather than in terms of lift and project:

Theorem 3.42 (Computational Soundness via Confluence w.r.t. Evaluation). If ==⇒X is confluent,
−−→X is confluent w.r.t. evaluation, and X has the standardization and class preservation properties, then X
is computationally sound.

Proof. The proof is similar to that for theorem 3.41. Case 2 and Case 1(d) are exactly the same. Case 1(b)
follows from standardization, which is equivalent to lift by lemma 3.39. Cases 1(a) and 1(c) follow from the
fact that −−→X is confluent w.r.t. ==⇒X .

3.7 Examples of Meaning Preserving Transformations.

Since all levels of our module calculus have the computational soundness property, all transformations
provable in the calculus are meaning preserving. Many classical program transformations (both at the term
and at the module level) fall into this category: e.g., constant folding and propagation, function inlining,
and simple forms of dead-code elimination that eliminate unused value bindings. All of these (and any
combination thereof) can easily be shown meaning preserving because all are justified by simple calculus
steps.

We consider the following “one-step” transformations T1: constant folding (CF1), constant propagation
(CP1), function inlining (FI1), and a simple form of dead-code elimination (DCE1).
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T1 On Terms On Modules

CF1

c1 op c2
CF
→ c,

where c is the
result of c1 op c2.

M{[l 7→M ]}
CF
→ M{[l 7→M ′]} where M

CP
→ M ′;

CP1

(λx.M) @ c
CP
→ M [x := c]

M{[l 7→M ]}
CP
→ M{[l 7→M ′]}, where M

CP
→ M ′;

M{[l1 7→ c, l2 7→ C{l1}]}
CP
→ M{[l1 7→ c, l2 7→ C{c}]}

FI1:
(λx.M) @ (λy.N)

FI
→M [x := λy.N ]

M{[l 7→M ]}
FI
→M{[l 7→M ′]}, where M

FI
→M ′;

M{[l1 7→ λy.N, l2 7→ C{l1}]}
FI
→M{[l1 7→ λy.N, l2 7→ C{λy.N}]}

DCE1
(λx.M) @ V

DCE
→ M,

where x 6∈ FV (M)

M{[l 7→M ]}
DCE
→ M{[l 7→M ′]}, where M

DCE
→ M ′;

[li
n
7→
i=1

Mi, hj
M
7→
j=1

Vj ]
DCE
→ [li

n
7→
i=1

Mi],

where ∀1≤j≤M .h 6∈ ∪ni=1FL(Mi)

All the above transformations are specified by a calculus step, and therefore are meaning preserving. More-
over, any combination of these transformations is also provable in the calculus, and therefore meaning
preserving. For instance, the common combination of constant folding and constant propagation is also
meaning preserving at both the term and module levels.

The following is an important property of certain transformations:

Definition 3.43 (Strong Normalization). A transformation T in X × X is strongly normalizing if for
every term M in TermX , there is no diverging path of T s starting at M .

For example, CP1, CF1, and DCE1 are all strongly normalizing, since each of these steps monotonically
reduces the number of redexes in a given term. On the other hand, FI1 is not strongly normalizing, since it
can be applied forever in cases like (λx.(x @ x)) @ (λy.(y @ y)).

Consider the reflexive, transitive closure T ∗1 of a “one-step” transformation T1. If T1 is a calculus-based
transformation, then so is T ∗1 , so T ∗1 is meaning-preserving in any computationally sound calculus. If T1 is
strongly normalizing, then clearly T ∗1 is strongly normalizing, too.

If T1 is both confluent and strongly normalizing, we define the completion of T1 as the relation {(M,N) |

M −T1−→
∗
N and N ∈ NF

−T1−→
}. We will write CP, CF and DCE for the completions of CP1, CF1 and DCE1,

respectively. We will also write CFP for the completion of CP1 ∪CF1. Since FI1 is not strongly normalizing,
its completion is not well-defined. However, we will consider a restricted form of function inlining in the
core module calculus, FIM, that is the completion of a relation FIM1 that only performs acyclic module
substitutions. That is, the substitution

M{[l1 7→ λy.N, l2 7→ C{l1}]}
FI
→M{[l1 7→ λy.N, l2 7→ C{λy.N}]}

is only in FIM1 if N does not directly or indirectly refer to l2. The FIM1 relation is both confluent and
strongly normalizing, so its completion is defined.

Our calculus is powerful enough to justify some cross-module transformations, such as the cross-module
lambda-splitting transformation presented in section 1.1. Figure 5 presents a sequence of steps justifying
lambda-splitting in the calculus LGC defined in section 2.6 (i.e. a linking calculus over the core module
calculus augmented with the rule (GC-nev)). In the figure, we assume that λy.M ′ is a closed abstraction.
Since LGC is computationally sound, the sequence is a proof that cross-module lambda-splitting is meaning
preserving in LGC .

We emphasize that there are numerous common transformations that are not calculus-based and so
their meaning preservation cannot be shown via this technique. For instance, example 3.30 shows that
swapping the label arguments of + in a module expression is not-calculus based even though it is meaning
preserving. As discussed in section 3.3, many global transformations are not handled by our framework.
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[F 7→ λx.C{λy.M ′}] ⊕ [X 7→ A{F @ N}] ==⇒LGC (link)
[F 7→ λx.C{λy.M ′}, X 7→ A{F @ N}] ←−(LGC (GC-nev)
[F 7→ λx.C{λy.M ′}, h 7→ λy.M ′, X 7→ A{F @ N}] ←−(LGC (mod-nev)
[F 7→ λx.C{h}, h 7→ λy.M ′, X 7→ A{F @ N}] ==⇒LGC (mod-ev)
[F 7→ λx.C{h}, h 7→ λy.M ′, X 7→ A{λx.C{h} @ N}] ⇐LGC (hide)
([F 7→ λx.C{Fexp}, Fexp 7→ λy.M ′, X 7→ A{λx.C{Fexp} @ N}]){hide Fexp} ⇐LGC (link)
([F 7→ λx.C{Fexp}, Fexp 7→ λy.M ′] ⊕ [X 7→ A{λx.C{Fexp} @ N}]){hide Fexp}.

Figure 5: A sequence of calculus steps proving that lambda-splitting is meaning preserving in LGC .

For example, closure conversion [Han95, MMH96, SW97, Sis99]. assignment conversion [WS97], uncurrying
[HH98], and useless variable elimination [WS99], are examples of non-calculus-based transformations. An
interesting avenue for future research is to augment the calculus with rules that would justify some of these
transformations (for instance, the label swapping transformation) in such a way that the resulting calculus
is still computationally sound, similar to the way we have added the (GC) rule to C.

4 Weak Distributivity

We say that a module transformation T is weakly distributive if and only if

T (D1 ⊕D2) = T (T (D1)⊕ T (D2)),

where = is syntactic equality (modulo αC-renaming).
Let Tlink be a single module transformation performing all link-time optimizations. Suppose that the

translator from source modules to intermediate modules is given by s2i(D) = Tlink(D)21. Also suppose that
the linking operator on intermediate modules is defined as D1 ⊕link D2 = Tlink(D1 ⊕D2). Then if Tlink is
weakly distributive, we have that

s2i(D1)⊕link s2i(D2) = Tlink(Tlink(D1)⊕ Tlink(D2))
= Tlink(D1 ⊕D2)
= s2i(D1 ⊕D2).

Thus, compiling a “link tree” of modules in the link-time compilation model gives exactly the same code
as compilation in whole-program model. This is the sense in which weakly distributive transformations are
promising candidates for link-time optimizations.

Here we discuss some conditions that imply that a module transformations T is weakly distributive. A
simple class of weakly distributive transformations are those satisfying two conditions: (1) idempotence:
T (T (D)) = T (D); and (2) (strong) distributivity over ⊕: T (D1⊕D2) = T (D1)⊕T (D2). Suppose T satisfies
these conditions. Then

T (D1 ⊕D2) = T (T (D1 ⊕D2)) = T (T (D1)⊕ T (D2))

Simple examples of such a transformation are the term-level transformations CF, CP, DCE defined in
section 3.7. . Note that the second condition implies that the transformation independently transforms the
components of a module; i.e., the transformation cannot use the (subst) or (GC) rule. For instance, the
module-level versions of CF and CP are not strongly distributive, as shown in section 1.1.

For a second class of weakly distributive transformations, we consider transformations satisfying the
following locality property:

21For simplicity, we assume the source and intermediate languages are the same.
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Definition 4.1 (Locality). A module transformation T is local iff it is the completion of a confluent and

strongly normalizing transformation T1, and for all module contexts M, D −T1−→ D′ implies M{D} −T1−→M{D′}.

Locality says that a module transformation that works on a set of bindings cannot be invalidated by adding
more bindings. CF, CP, and CFP are all local transformations at the module level. However, DCE is
non-local at the module level since adding more bindings can introduce a reference to a hidden label that
can block the (GC) rule. The FIM transformation is also non-local. To see why, observe that

[X 7→ λw.Y , Z 7→ λx.X ]
FIM
→ [X 7→ λw.Y , Z 7→ λx.λw.Y ]

(the substitution is acyclic), but that

M{[X 7→ λw.Y , Z 7→ λx.X ]} 6
FIM
→ M{[X 7→ λw.Y , Z 7→ λx.λw.Y ]}

where M = [Y 7→ λy.Z,2] (because there are no acyclic substitutions in the filled context).
Non-local transformations can block weak distributivity. For example, let D1 = [X 7→ λw.Y , Z 7→ λx.X ]

and D2 = [Y 7→ λy.Z]. Then FIM(FIM(D1)⊕ FIM(D2)) yields the following result:

[X 7→ λw.Y , Z 7→ λx.X ]⊕ [Y 7→ λy.Z]
FI
→ [X 7→ λw.Y , Z 7→ λx.λw.Y ]⊕ [Y 7→ λy.Z]
−−→L [X 7→ λw.Y , Z 7→ λx.λw.Y , Y 7→ λy.Z]
FI
→ [X 7→ λw.λy.Z, Z 7→ λx.λw.Y , Y 7→ λy.Z]

But since the result of linking D1 and D2 has only cyclic substitutions, FIM(D1 ⊕D2) = D1 ⊕D2.
We have the following result for a restricted class of local transformations:

Lemma 4.2. Suppose that T is a local transformation that is the completion of a confluent and strongly
normalizing transformation T1. Then T is weakly distributive.

Proof. Let T (D1) = D′1 and T (D2) = D′2, and D be the result of linking D1 and D2. Let M1 be a module

context that contains all bindings of D2 and a hole; i.e., D = M1{D1}. By locality M1{D1} −
T1−→
∗

M1{D′1}.
Let M2 be a module context that contains all bindings of of D′1 and a hole; i.e., M1{D′1} = M2{D2}. By

locality M2{D2} −
T1−→
∗

M2{D′2}. Note that M2{D′2} = D′, where D′ is the result of linking D′1 and D′2. Since
T (D) is a normal form of D with respect to T1, and since T1 is confluent by assumption, it must be the case
that T (D) = T (D′), establishing that T (D1 ⊕D2) = T (T (D1)⊕ (D2)).

5 Future Work

There are several directions in which we plan to extend the work presented here:

• Types: We are exploring several type systems for our module calculus, especially ones which express
polymorphism via intersection and union types. These have intriguing properties for modular analysis
and link-time compilation [Jim96, Ban97, KW99]. How to interface intersection and union types, which
we view primarily as implementation types hidden from the user, with universal and exisential types
specified by users is an especially important area for research.

• Non-local Transformations: So far, we have only considered meaning preservation and weak distribu-
tivity in the context of simple local transformations. We are investigating global transformations like
closure conversion, uncurrying, and useless variable elimination in the context of link-time compilation.
Inspired by results like those in [Ban97, FF97], we hypothesize that in many cases (1) the analyses
upon which such transformations are based can be effectively modularized and (2) the results of such
analyses can be stored with the module and combined at link-time without reanalyzing the module
that results from linking.
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• Other Applications of Lift and Project: Thus far we have only applied the lift/project technique of
proving computational soundness to our module calculus. We are searching for other non-confluent
calculi which may benefit from the application of our technique.

• Weakening Weak Distributivity: Weak distributivity requires the rather strong condition of synactic
equality between T (D1⊕D2) and T (T (D1)⊕T (D2)). Weaker notions of equality may also be suitable.
Note that “has the same meaning as” is too weak, since it does not capture the pragmatic relationship
between the two sides; they should have “about the same efficiency”.

• Additional Language Features: We plan to investigate extending our calculus with additional term and
module language features, such as: term recursion, call-by-need evaluation, sharing, side effects, and
nested modules. We will explore the impact of each extension on computational soundness.

• Abstracting over the Base Language: Our framework assumes that the module calculus is built upon
a particular base calculus. Ideally we would like to define a module calculus over any base calculus
that satisfies certain assumptions, but we have not yet found an effective way to abstract over the
base calculus in such a way that we maintain our results. Ideas presented in [AZ99] for parameterizing
modules over base languages may prove helpful in this regard.

• Pragmatics: We plan to empirically evaluate if link-time compilation can give reasonable “bang for
the buck” in the context of a simple prototype compiler. In particular, a key question is whether any
non-trivial compilation can be done before link-time. If not, then link-time compilation degenerates
into a kind of modular approach to whole program compilation. But even this would be a point in the
compiler design space worth exploring.
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A A General Proof of Lift and Project

A.1 What to Call This Subsection?

In section 3 we have discussed two techniques of proving computational soundness of a calculus (prop-
erty 3.16): one by showing that the calculus has confluence 2.6 and standardization 2.7, the other by
showing the properties lift 3.37 and project 3.38. In both cases the calculus has to have the class preser-
vation property 3.31. Additionally, in the second case we require that the calculus evaluation relation is
confluent (if it is non-deterministic). In fact, as we see later in this section, we prove lift and project using
properties of evaluation related to confluence (see properties A.22 and A.23). Even though these properties
are, strictly speaking, independent from confluence, it is likely to be the case that proofs of these properties
and of confluence have a lot in common, as it is the case with our calculi.

In this section we give the next (after section 3), a more detailed layer of the “top-down” presentation of
the soundness proof - a general (i.e. independent of details of a particular calculus) proof of lift and project
via certain properties of developments. Note that, since standardization is equivalent to lift (see lemma 3.39),
some of the same properties of developments can be used for a confluent calculus to show standardization (we
use this approach for the term calculus T - see section B) The subsequent sections provide calculus-specific
proofs of the properties postulated in this section for each of the calculi.
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Since in this section we are concerned only with a general proof, we omit calculus-specific definitions
of some of the notions used in the proofs, for instance the notion of a residual or a development. Instead,
we give axiomatic definitions of these notions, i.e. lists of requirements that a particular definition has to
satisfy. However, in all the cases where a definition can be given precisely via notions that have already been
defined, we give a precise definition, rather than an axiomatic one.

Convention A.1. Even though the discussion in this section is concerned only with general properties of a
calculus, we use more traditional notations used for the term calculus (for instance, M,N for terms, A,B,C
for contexts) We omit a calculus subscript for relations denoted by arrows in this section, unless we want to
stress that we are dealing with a particular calculus.

Formalizing notions of a redex, residuals, and a development. The notions of a redex, a residual,
and a development are widely used in literature. Formal definitions of these notions are given, in particular,
in [Bar84] for a call-by-name lambda-calculus. Our definitions are given from a slightly different point of
view than those by Barendregt. In particular, we work explicitly with contexts containing redexes, and
rather than using annotated (“marked”) terms for defining a development, we use explicit sets of “marked”
redexes. This way of defining redexes and developments is better suited for the proof techniques that we use
(for instance, working with multi-hole contexts). For some of our calculi (in particular, for C) we also have to
define a development in a way that’s different from the traditional definition to guarantee that developments
are finite and confluent.

Redex. The notion of a redex is fairly intuitive. However, a formal definition of a redex presents some
challenges. Consider the term (λx.2 + 3) @ (λy.2 + 3) in the calculus T . If we say that 2 + 3 is a redex
in this term, then we get the following ambiguity: both (λx.5) @ (λy.2 + 3) and (λx.2 + 3) @ (λy.5) are
obtained by reducing a redex 2 + 3 in the original term. In this presentation we resolve this ambiguity by
specifying not only the redex itself, but also the context that contains it. Let us write such context/redex
pairs corresponding to each of the two redexes: the first redex is written as a pair ((λx.2) @ (λy.2 + 3), 2+3),
and the second one as ((λx.2 + 3) @ (λy.2), 2 + 3). We use this notation to denote that a term M gets

reduced to N by the context/redex pair (C, R): M −(C,R)−−−→ N .
One may argue that specifying the term N (the result of the reduction) resolves the ambiguity on its

own, without the need for context/redex pairs. Indeed, given M and N s.t. M −−→ N , it seems that one can
uniquely identify the context/redex pair in M that got reduced in the reduction step (for instance, knowing
the resulting term in the reduction of the example above certainly allows us to determine which of the two
redexes 2 + 3 has been reduced). However, consider the following term from the call-by-name λ-calculus:
(λx.x) @ ((λy.y) @ (λz.z)). Reducing the first application results in the term (λy.y) @ (λz.z), reducing the
second one gives (λx.x) @ (λz.z), but the latter two terms are the same up to α-renaming! Moreover, if we
had chosen to use abbreviation I for λx.x, the original term would’ve been written (omitting the symbol @
for application) as I(II), and the results of both reductions as II (see also a similar example 3.1.19 due to
Levy in [Bar84]). To avoid dealing with these ambiguities, we consider a redex to be a context/redex pair,
as illustrated above.

Definition A.2. A pair (C, R) is called a redex of a term M in a calculus X with reduction −−→X defined by
rules of the form C{R} −−→X C{Q} if C{R} matches the left-hand side of one of the rules and satisfies all the

restrictions of the rule. This implies that there exists N = C{Q} s.t. M −−→X N , and we write M
(C,R)
−−→X N .

If the reduction is an evaluation step in X , then we also write M
(C,R)
==⇒X N , and similarly M

(C,R)
◦−−→X N for a

non-evaluation step.

The condition that C{R} matches the left-hand side of one of reduction rules and satisfies the restrictions
of the rule guarantees that (C, R) is indeed a redex. Note that the restrictions may affect both the context
and a redex. For instance, D{l} is a redex in C only if l is bound to a value in the context D. Another
example of restrictions on the context is the rule (mod-ev) in the calculus L: the rule is applied only in an

empty context, i.e. in this case D =
(2,D)
===⇒L D′. The definition does not require that R and Q are terms in the
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calculus X and C is a context in X . This is because in some cases reductions of a calculus are defined via
embedding of the relation of one calculus into the relation of another one (see definition 3.17). For instance,
in the calculus C (without GC) R,Q ∈ TermT .

Specifying the context together with the subterm being reduced allows us to resolve ambiguities like the
one mentioned above: given the term (λx.x) @ ((λy.y) @ (λz.z)), we can distinguish the two reductions,
because the occur in different contexts: one reduces the redex (2, (λx.x) @ ((λy.y) @ (λz.z)), and the other
reduces ((λx.x) @ 2, (λy.y) @ (λz.z)).

Residual. Definition of a residual is calculus-specific. Below we give an axiomatic definition, i.e. require-
ments that such a definition has to satisfy. As an example of such a definition see B.5.

Definition A.3 (Axiomatic Definition of a Residual). Let (C1, R1) and (C2, R2) be two redexes in a

term M , and let M −(C1,R1)−−−−→ N for some calculus X . A set of residuals of (C2, R2) w.r.t. (C1, R1) denoted
by (C2, R2)/(C1, R1) is a set of redexes in N which satisfies the following property:

1. Let (C1, R1), (C2, R2), and (C3, R3) be 3 redexes inM s.t. (C2, R2) 6= (C3, R3), and supposeM −(C1,R1)−−−−→
N . Then (C2, R2)/(C1, R1) ∩ (C3, R3)/(C1, R1) = ∅.

Note that by definition a residual of a redex is itself a redex. The requirement states that two distinct
redexes in a term can not have the same residual after a reduction, i.e. any residual originates from only
one redex in the term being reduced. Note that we do not require that (C2, R2) and (C3, R3) are different
from (C1, R1). This is because in some calculi (in particular, in C) (C1, R1)/(C1, R1), i.e. a set of residuals
of the redex being reduced, may be non-empty. Also note that a residual set is always finite, since any term
can be parsed as a context/redex pair only in a finite number of ways.

Residuals of Sets. We extend the notion of residuals to reduction sequences in a straightforward manner.

Definition A.4. Let M −(C,R)−−−→M ′, and let F and F ′ be sets of redexes of M and M ′ respectively. Then F ′

is the set of residuals of F w.r.t. the redex (C, R), denoted as F/(C, R), if F ′ =
⋃

(C′,R′)∈F

(C′, R′)/(C, R).

Let S be an ordered sequence of redexes which is either empty (denoted by ε), or a single redex (C, R),
or is of the form S′; (C, R), where S′ is another sequence. We write M −S−→

∗
M ′ to indicate that the reduction

sequence reduces all redexes in S in the left-to-right order. For instance, M −(C1,R1);(C2,R2)−−−−−−−−−→
∗

M ′ denotes the

following reduction sequence: M −(C1,R1)−−−−→ M1 −
(C2,R2)−−−−→ M ′. Note that (C2, R2) is a redex in M1. If S1 = ε,

then by convention both S1;S2 and S2;S1 denote the sequence S2.

Definition A.5. Let (C, R) be a redex in a term M , and suppose M −S−→
∗
M ′. Then the set of residuals of

(C, R) w.r.t. the sequence S, denoted as (C, R)/S, is a set of redexes of M ′ defined as follows:

• If S = ε, then (C, R)/S = (C, R),

• If S = (C′, R′), then (C, R)/S = (C, R)/(C′, R′),

• If S = S′; (C′, R′), where S′ is non-empty, then (C, R)/S = F/(C′, R′), where F = (C, R)/S′.

Note that in the last case of the definition (C, R)/S ′ is a set of redexes in the term M ′′ s.t. M −S
′

−→
∗

M ′′ −(C
′,R′)−−−−→M ′, and the residuals of such sets are defined by definition A.4.

We also introduce a notation F/S, where F is a set of redexes, and S is a sequence, in the obvious way.
Extended calculus relation. To be able to reason about developments, we need to extend our calculus

relation to terms in which some of the redexes are marked. Rather than defining a relation on annotated
terms, we specify a set of “marked” redexes together with the term (note that this corresponds to the situation
when all “marked” redexes are annotated with the same symbol), and define a new calculus relation on pairs
of a term and a set of its “marked” redexes.
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Definition A.6. Let M be a term and let F be a set of redexes. (M,F ) is called a well-formed pair if for
all (C, R) ∈ F C{R} = M , i.e. all elements of F are redexes of M .

Definition A.7. Let (M,F ) be a well-formed pair. We say that a (M,F ) reduces to the pair (M ′, F ′) by

contracting a redex (C, R) (written as (M,F ) −(C,R)−−−→ (M ′, F ′)) if M −(C,R)−−−→ M ′, where (C, R) is a redex of
M , not necessarily in F , and F ′ = {(C′, R′) | (C′, R′) ∈ (C′′, R′′)/(C, R), where (C′′, R′′) ∈ F}. We call this
reduction the extended calculus reduction (or just the extended reduction), and denote it by the same symbol
as the calculus reduction on terms.

Convention A.8. The notation (M,F ) assumes that the pair is well-formed, unless specified otherwise.

Lemma A.9. If (M, ∅) −−→ (N,F ), then F = ∅.

Proof. By definition A.7 F is the union of the sets of residuals of redexes in the set of “marked” redexes of
the first pair. Since the set of such redexes is empty, F = ∅.

We write (M,F ) −S−→
∗
(M ′, F ′), to denote a reduction sequence that reduces redexes in S in the left-to-

right order, completely analogous to M −S−→
∗
M ′.

Given a calculus X with a calculus relation −−→X and definitions of a redex and a residual in this calculus,
the extended reduction is uniquely defined.

We write (M,F ) −S−→
∗
(M ′, F ′), to denote a reduction sequence that reduces redexes in S in the left-to-

right order, completely analogous to M −S−→
∗
M ′.

Developments and γ-developments . The extended reduction is closely connected to the notion of a devel-
opment, which is one of the most important notions in this presentation. Informally, a development is a reduc-
tion that reduces only “marked” redexes, i.e., in our presentation, redexes in F . The two fundamental prop-
erties that we would like developments to have are finiteness and standardization. Finiteness of developments
(see property A.37) means that for a given pair (M,F ) there is no infinite reduction that reduces only marked
redexes (i.e. residuals of those in F ). Standardization of developments means that for any development se-

quence (M1, F1)→∗
dev

(M2, F2) there exists a standard development (M1, F1) ==⇒∗
dev

(M ′, F ′) ◦−−→∗
dev

(M2, F2) (see

property A.29). Note that standardization of developments is different from standardization of the calculus
(property 2.7) which claims that for every calculus reduction (not necessarily a development) there exists a
standard reduction with the same starting and ending terms.

These properties indeed hold for the term calculus T for developments defined in a traditional way (see
definition A.10). However, it turns out (see examples below) that for the calculus C (and consequently for
L) with developments defined in a traditional way none of the above two properties holds. Therefore we
introduce another reduction on pairs (M,F ), which we call a γ-development and denote →

γ
. Similarly to

developments, it reduces only marked redexes. However, it is defined only on a subset of well-formed pairs
(M,F ) and only a subset of residuals of a marked redex is marked after the reduction. As with the definition of
residuals (definition A.3), in this section we give an axiomatic definition of a γ-development (definition A.11),
postponing the calculus-specific details until the sections on the respective calculi. With the generalized
definition of γ-developments in the core module calculus C we are able to show finiteness of developments.
The γ-developments of the module calculus still do not have general standardization of developments A.29,
but we are able to show a weaker property A.31 (standardization of a certain kind of γ-developments ) which
is sufficient for our proofs. Below we give details and examples.

A traditional and straightforward way to define a development reduction step is as follows:

Definition A.10 (Definition of a Development via Extended Reduction). We say that (M,F ) is

reduced to (M ′, F ′) by a development step, and write (M,F )
(C,R)
→
dev

(M ′, F ′), if (M,F ) −(C,R)−−−→ (M ′, F ′)

and (C, R) ∈ F .
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The following example illustrates this approach for the term calculus T .
Example 1. In the term calculus T , consider a term (λx.xx) @ (λy.2 + 3), and suppose the redex in the

second subterm is marked. We denote this term (with the marked redex) as the pair ((λx.xx) @ (λy.2 + 3), {((λx.xx) @ (λy.2), 2+
3)}), where the second component is the set consisting of a single context/redex pair corresponding to the
marked redex. Consider a reduction on this pair that reduces the redex in the marked redex:

((λx.x @ x) @ (λy.2 + 3), {((λx.x @ x) @ (λy.2), 2 + 3)}) →
γ

((λx.x @ x) @ (λy.5), ∅).

This reduction can be considered a development because it reduces a marked redex. According to the rules
of reductions on pairs (M,F ) the resulting pair has an empty set as the second component, i.e. it has no
marked redexes. Now let us consider a different reduction starting from the same pair:

((λx.x @ x) @ (λy.2 + 3), {((λx.x @ x) @ (λy.2), 2 + 3)}) −−→
((λy.2 + 3) @ (λy.2 + 3), {((λy.2) @ (λy.2 + 3), 2 + 3), ((λy.2 + 3) @ (λy.2), 2 + 3)}).

This reduction also satisfies the definition of the extended reduction, but it is not a development, since
the redex reduced in this reduction, i.e. (2, (λx.x @ x) @ (λy.2 + 3)), is not in the set of marked redexes
{((λx.x @ x) @ (λy.2), 2+3)}. Performing a reduction of any one of the two redexes in the above set would
be a development step. If we reduce both redexes, then the resulting pair has ∅ as its second component,
i.e. it does not have any marked redexes:

((λy.2 + 3) @ (λy.2 + 3), {((λy.2) @ (λy.2 + 3), 2 + 3), ((λy.2 + 3) @ (λy.2), 2 + 3)}) →
γ

((λy.5) @ (λy.2 + 3), {((λy.5) @ (λy.2), 2 + 3)}) →
γ

((λy.5) @ (λy.5), ∅).

It is easy to check that reducing the two redexes in the other order gives the same result. We also see that
all the “development sequences” in this example lead to a pair with ∅ as the second component, i.e. they
are finite. It is straightforward to show (see section B) that in the case of T developments defined this way
are both finite and confluent.

The following examples, however, show that this approach does not produce finite and confluent devel-
opments for all calculi. For instance, the example below shows a non-finite reduction in the core module
calculus C which reduces only marked redexes, i.e. satisfies the definition of a development A.10.

Example 2. Consider the calculus C, where a context is defined on figure 1, a redex is defined by A.2 and
a residual is defined in definition C.7. Consider the following reduction:

([A 7→ λx.A], {([A 7→ λx.2], A)}) −−→C
([A 7→ λx.λx.A], {([A 7→ λx.λx.2], A)}) −−→C . . .

We see that the use of the extended reduction in this case produces an infinite sequence s.t. at every step
the contracted redex is in F in the pair being reduced. Therefore, if we define a development step in C as in
definition A.10, we get a non-finite development.

Example 3. This example illustrates that not only finiteness of developments, but also their confluence
fails if we define developments in C by definition A.10. This example adopts the non-confluence example
given in section 2.4 to reductions on pairs: suppose in the module [A 7→ λx.B,B 7→ λy.A] both substitution
redexes are “marked”, i.e. included in F , then we get:

([A 7→ λx.B,B 7→ λy.A], {([A 7→ λx.2, B 7→ λy.A], B), ([A 7→ λx.B,B 7→ λy.2], A)}) −−→C
([A 7→ λx.λy.A,B 7→ λy.A], {([A 7→ λx.λy.2, B 7→ λy.A], A), ([A 7→ λx.λy.A,B 7→ λy.2], A)}),

([A 7→ λx.B,B 7→ λy.A], {([A 7→ λx.2, B 7→ λy.A], B), ([A 7→ λx.B,B 7→ λy.2], A)}) −−→C
([A 7→ λx.B,B 7→ λy.λx.B], {([A 7→ λx.2, B 7→ λy.λx.B], B), ([A 7→ λx.B,B 7→ λy.λx.2], B)}).

As we have seen above, the two resulting modules do not reduce to the same module by the calculus reduction,
and therefore by the extended calculus reduction. We avoid situations like this by restricting the domain of a
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γ-development step. Even though we do not get general confluence of developments even with the restriction,
we get a reduction that’s sufficiently “well-behaved” so that γ-developments are standartizible.

Below we give definition of γ-developments and some related definitions. After that we state the properties
of γ-developments that allow us to prove lift and project.

Definition A.11 (Axiomatic Definition of a γ-development Step). A γ-development is defined by a
set dom(γ) of well-formed pairs (M,F ) s.t. (M, {(C, R)}) ∈ dom(γ)) for all well-formed pairs (M, {(C, R)})
s.t. (C, R) is a non-evaluation redex, and by a relation →

γ
s.t. (M,F )→

γ
(M ′, F ′)) if (M,F ) ∈ dom(γ) and

• either M =M ′, F ′ ⊂ F , and (M ′, F ′) ∈ dom(γ) if F ′ 6= ∅,

• or there exists (C, R) s.t. the 5 conditions below are satisfied (in this case we write (M,F )
(C,R)
→
γ

(M ′, F ′)):

1. M −(C,R)−−−→M ′, i.e. a γ-development projected to terms is a calculus reduction on terms,

2. (C, R) ∈ F (the contracted redex is “marked”),

3. If (M,F ) −(C,R)−−−→ (M ′, F ′′), then F ′ ⊆ F ′′. Here −(C,R)−−−→ is the extended calculus reduction that
reduces the same redex. The requirement says that F ′ can not have any “extra” redexes in
addition to those in F ′′, i.e. in a γ-development some of the redexes that would’ve been marked
by the extended reduction are not marked. By excluding from F ′ some of the redexes that are
included in F ′′ we are able to guarantee finiteness of γ-developments for C.

4. If (M,F ) →
γ

(M ′, F ′) s.t. F ′ 6= ∅, then there exists (M ′′, F ′′) s.t. (M ′, F ′)
(C′,R′)
→
γ

(M ′′, F ′′) for

every (C′, R′) ∈ F ′. This requirement guarantees that if a γ-development is defined for a pair
(M,F ), then it is defined for all descendants of this pair in a sequence of γ-development steps.

5. For all (C, R) ∈ F (C, R)/(C, R) ∩ F ′ = ∅. This guarantees finiteness of developments.

If (M,F )→
γ

(M ′, F ′), then we say that (M,F ) is related to (M ′, F ′) by a γ-development step.

The last condition is necessary to prevent infinite reductions, s.a. the one in example 2.
Note that the reduction defined in definition A.10 satisfies all of the above requirements. In fact, it can

be obtained from the axiomatic definition by setting F ′ = F ′′ in part 3 of the requirements and defining the
domain of →

γ
to be the same as the domain of the extended relation (which consists of all pairs (M,F ) s.t.

all elements of F are redexes in M , see convention A.8). It is easy to check that in this case all the other
requirements are satisfied.

In this section we give a proof of lift and project assuming the axiomatic definition of γ-developments (definition A.11).
In the next section we’ll show how some of the properties that the proof is based on can be deduced assuming
the particular case of γ-developments given in definition A.10. For the rest of this section a γ-development step
is assumed to be as specified in A.11.

We introduce the notation (M,F ) →
γ

(M ′, F ′), omitting the redex. We use the notation (M1, F1)
S

−−→∗
γ

(M2, F2) to denote a reduction sequence S on pairs of the form (M,F ), where every reduction step is a

γ-development step; we call such a sequence a γ-development of (M,F ). Analogously to =
(E,R)
===⇒ and ◦−(C,R)−−−→,

we introduce notations =
(E,R)
===⇒
γ

for a γ-development step that reduces an evaluation redex, and ◦−(C,R)−−−→
γ

for a

γ-development step with a non-evaluation redex. Note that if (M1, F1)
S

−−→∗
γ

(M2, F2), then M1 −
S−→
∗
M2.
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Definition A.12. A combined evaluation relation denoted by ==⇒
∪

is defined as follows: (M,F ) =
(C,R)
===⇒
∪

(M ′, F ′) if either (M,F ) =
(C,R)
===⇒ (M ′, F ′) or (M,F ) =

(C,R)
===⇒
γ

(M ′, F ′). The reflexive transitive closure of

==⇒
∪

is denoted by ==⇒∗
∪

.

A complete γ-development is defined in a traditional manner:

Definition A.13. A γ-development (M,F ) −−→∗

γ
(M ′, ∅) is called a complete γ-development of (M,F ). We

denote it by (M,F ) ³
c−γ

(M ′, ∅).

It easily follows from lemma A.9 and definition of γ-development that for any M there is no N,F s.t.
(M, ∅)→

γ
(N,F ). Therefore a complete γ-development can not be extended further as a γ-development .

Sometimes (see, for instance, properties A.25 and A.26) we need to reason about complete γ-developments of
subsets of marked redexes, i.e. γ-developments that reduce all residuals of some of marked redexes, but not
of all such redexes. The following definition defines such γ-developments . Note that when F1 = F , the
definition is equivalent to definition A.13.

Definition A.14. A sequence (M,F )
S

−−→∗
γ

(M ′, F ′) is a complete γ-development of a set F1 ⊆ F if:

1. For all (C, R) s.t. S = S1; (C, R);S2 there exists (C1, R1) ∈ F1 s.t. (C, R) ∈ (C1, R1)/S1, i.e. all
redexes reduced in the sequences are residuals of redexes in F1,

2. There is no (C, R) ∈ F1 and (C′, R′) ∈ F ′ s.t. (C′, R′) ∈ (C, R)/S, i.e. there are no residuals of F1 in
F ′.

Note that if F1 = ∅, then part 1 of the definition implies that S = ε.

Property A.15 (Composition). If (M1, F1)
S1

−−→∗
γ

(M2, F2)
S2

−−→∗
γ

(M3, F3), then (M1, F1)
S1;S2

−−→∗
γ

(M3, F3).

Lemma A.16. γ-developments have the composition property A.15.

Proof. By condition 4 of the axiomatic definition A.11.

Lift and project on pairs (M,F ). The version of lift and project that we are going to prove in this
section is formulated for the extended reduction on pairs of the form (M,F ) (see below). The proprefT-
wopro:liftpro:project given in section 3 are obtained from the properties below by erasing the second com-
ponent of pairs (M,F ), i.e. by “unmarking” all the marked redexes. See lemma A.20 for details.

The properties below are illustrated on figure 6.

Property A.17 (Lift). If (M1, {(C, R)}) ◦−(C,R)
−−−→
γ

(M2, ∅) ==⇒
∗ (N2, ∅) , then there exists (N1, F1) s.t. (M1, {(C, R)}) ==⇒∗

∪

(N1, F1) ◦−−→∗
γ

(N2, ∅).

Property A.18 (Project). If (M1, {(C, R)}) ◦−(C,R)
−−−→
γ

(M2, ∅) and (M1, {(C, R)}) ==⇒∗ (N1, F1), then there

exist (N2, F2), N3 s.t. (N1, F1) ==⇒∗
γ

(N2, F2) ◦−−→∗
γ

(N3, ∅) and (M2, ∅) ==⇒∗ (N3, ∅).

Lift and project for pairs indeed imply the respective properties for terms without marked redexes due
to the following lemma:
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(M1, {(C, R)}) (N1, F1) · (M1, {(C, R)}) (N1, F1) (N2, F2)

(M2, ∅) (N2, ∅) (M2, ∅) (N3, ∅)

lift A.17 project A.18

∪

(C, R) γ γ

γ

(C, R) γ γ

Figure 6: Lift and project for the extended reduction

Lemma A.19. If (M1, F1) ==⇒∗
γ

(M2, F2) (respectively (M1, F1) ◦−−→∗
γ

(M2, F2)), then M1 ==⇒∗ M2 (respec-

tively M1 ◦−−→∗ M2).

Proof. Each of the (M1, F1) ==⇒
γ

(M2, F2) is either s.t. M1 = M2 or it is a step (M1, F1) =
(E,R)
===⇒
γ

(M2, F2),

where (E, R) is an evaluation redex, and by definition A.11 M1 =
(E,R)
===⇒M2. Therefore (M1, F1) ==⇒∗

γ
(M2, F2)

implies M1 ==⇒∗ M2. Similarly for ◦−−→∗
γ

.

Lemma A.20. Lift property for pairs (property A.17) implies lift property for terms (property 3.37). Sim-
ilarly project property for pairs (property A.18) implies project property for terms (property 3.38).

Proof. We show the claim of the lemma for lift property, the proof for project is completely analogous.

Suppose M1 ◦−−→ M2 ==⇒∗ N2. Then there exists a redex (C, R) s.t. M1 ◦−
(C,R)−−−→ M2. Then (M1, {(C, R)}) ∈

dom(γ) by definition A.11, and by condition 5 of the definition (M1, {(C, R)}) ◦−(C,R)−−−→
γ

(M2, ∅). By defini-

tion of extended reduction (M2, ∅) ==⇒∗ (N2, ∅). Then by lift property for pairs there exists (N1, F1) s.t.
(M1, {(C, R)}) ==⇒∗

∪
(N1, F1) ◦−−→∗

γ
(N2, ∅), and by lemma A.19 M1 ==⇒∗ N1 ◦−−→∗ N2.

Properties sufficient to prove lift and project. Showing the following properties of γ-developments and
residuals allows us to prove lift and project.

Confluence of ==⇒ and related properties. The proof of computational soundness given in section 3 requires
==⇒ to be confluent (see definition 2.6): if M1 ==⇒∗ M2 and M1 ==⇒∗ M3, then there exists M4 s.t. M2 ==⇒∗ M4

and M3 ==⇒∗ M4. Note that we do not formulate this property for pairs (M,F ), since such pairs are only a
tool in the proof of lift and project (recall that the goal of this section is to show lift and project as formulated
in 3.37 and 3.38), and confluence is applied in the proof of computational soundness which assumes that lift
and project have been already shown.

However, the proof of project given in this section requires a property of ==⇒ which is similar to confluence.
We give two versions of this property, one implied by the other, because the stronger version is simpler, but
holds only in some of the calculi we consider. In the cases when it does not hold (for instance, see “erasing”
γ-development steps in the calculus C, defined in C.9) we are able to show the weaker version. Note that since
these properties are used in the proof of project based on reductions on pairs (M,F ), they are formulated for
such pairs. We call these properties γ-confluence of ==⇒. Note that there may be the case when one or both
of the resulting reductions are 0-step. This happens when the two given reduction steps reduce the same
redex. It is possible (for instance, in C) that the resulting γ-development sequence is non-empty, whereas
the resulting evaluation step is empty. See the proof of lemma C.28 for an example of such situation.

Notation A.21. For a one-step relation −−→, let −
0/1
−−→ denote its reflexive closure.
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(M1, F1) (M3, F3)

1

(M2, F2) (M4, F4)

A.22

γ γ0/1
0/1

(M1, F1) (M3, F3)

1

(M2, F2) (M4, F4)

A.23

γ γ
0/1

Figure 7: Properties of evaluation

Property A.22 (Strong γ-confluence of ==⇒.). If (M1, F1) ==⇒
γ

(M2, F2) and (M1, F1) ==⇒ (M3, F3), then

there exists (M4, F4) s.t. (M2, F2) =
0/1
=⇒ (M4, F4) and (M3, F3) =

0/1
=⇒
γ

(M4, F4).

Property A.23 (Weak γ-confluence of ==⇒). If (M1, F1) ==⇒
γ

(M2, F2) and (M1, F1) ==⇒ (M3, F3), then

there exists (M4, F4) s.t. (M2, F2) =
0/1
=⇒ (M4, F4) and (M3, F3) ==⇒∗

γ
(M4, F4).

It is clear that property A.22 implies A.23. Note that both properties are independent from confluence
of ==⇒: even though (M,F ) ==⇒

γ
(M ′, F ′) implies M ==⇒ M ′, the converse is not true, i.e. it is possible that

for some F there is no F ′ s.t. (M,F ) ==⇒
γ

(M ′, F ′) (for instance, if (M,F ) 6∈ dom(γ)). However, in the case

when a γ-development step is in fact an extended reduction step (definition A.10), both confluence of ==⇒
and strong γ-confluence of ==⇒ are implied by the following property:

Property A.24. If M1 =
(E,R)
===⇒ M2 and M1 =

(E′,R′)
===⇒ M3, then there exists M4 s.t. M2 =

(E′,R′)/(E,R)
=======⇒ M4,

M3 =
(E,R)/(E′,R′)
=======⇒M4, provided (E, R) 6= (E′, R′).

Elementary lift and project diagrams. The next group of properties deals with interactions between
evaluation and non-evaluation redexes.

1 (M1, F1) (M3, F3) 12345678900 (M1, F1) (M3, F3)

1

1 (M2, F2) (M4, F4) (M2, F2) (M3, F3)

1
Elem. project
diagram A.25

Elem. lift
diagram A.26

(E, R′)

(C, R) γ
c− γ of
(C, R)/(E, R′)

(E, R′)

(C, R) γ
c− γ of
(C, R)/(E, R′)

Figure 8: Elementary project and lift diagrams

Property A.25 (Elementary project diagram). If (M1, F1) ◦−
(C,R)−−−→
γ

(M2, F2), and (M1, F1) =
(E,R′)
===⇒ (M3, F3),

then there exists (M4, F4) s.t. (M2, F2) ==⇒ (M4, F4), and (M3, F3) −−→∗
γ

(M4, F4), where the latter sequence

is a complete γ-development of (C, R)/(E, R′) (see figure 8).
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Property A.26 (Elementary lift diagram). If (M1, F1) ◦−
(C,R)−−−→
γ

(M2, F2) ==⇒ (M4, F4), then there ex-

ists (M3, F3) s.t. (M1, F1) =
(E,R′)
===⇒ (M3, F3) −−→

∗

γ
(M4, F4), where the latter γ-development is a complete

γ-development of (C, R)/(E, R′) (see figure 8).

Lemma A.27. Properties A.25 and A.15 imply the following: if (M1, F1) ◦−
S−→
∗

γ
(M2, F2) and (M1, F1) =

(E,R)
===⇒

(M3, F3), then there exists (M4, F4) s.t. (M2, F2) ==⇒ (M4, F4), and (M3, F3) −−→∗
γ

(M4, F4).

Proof. The proof is by induction on n, where n is the number of steps in the non-evaluation sequence S.
The case when n = 0 is trivial. The base case n = 1 is straightforward by property A.25.

1 (M1, F1) (M3, F3) 1234567 (M1, F1) (M3, F3)

1 IH

1 (M ′
2, F

′
2) (M ′

4, F
′
4) −→

A.15

1 A.25

1 (M2, F2) (M4, F4) (M2, F2) (M4, F4)

(E, R)

S γ

(C, R̃) γ

(E′, R′)

γ

γ

S; (C, R̃) γ

(E, R)

γ

Figure 9: Inductive step of proof of lemma A.27

Induction step. The induction step is illustrated on figure 9.

Lemma A.28. Properties A.26 and A.15 imply the following: if (M1, F1) ◦−
S−→
∗

γ
(M2, F2) and (M2, F2) =

(E,R)
===⇒

(M4, F4), then there exists (M3, F3) s.t. (M1, F1) =
(E1,R1)
====⇒ (M3, F3), and (M3, F3) −−→∗

γ
(M4, F4), where

(E, R) = (E1, R1)/S.

Proof. Similarly to the proof of lemma A.27, the proof is by induction on n - the number of steps in S. The
base case is by property A.26. The induction step is illustrated on figure 10.

Standardization of Developments. Standardization of (complete) γ-developments is a crucial property
in proving lift and project, and therefore computational soundness. We give two versions of this property,
where version 1 is stronger than version 2: version 1 does not require the γ-development to be complete, and
does not put any restriction on the initial pair (M,F ), whereas version 2 requires this pair to be obtained
from a pair (N, {(C, R)}), where (C, R) is a non-evaluation redex, by an evaluation sequence. Moreover, we
also require that the resulting pair (M ′, ∅) of the development does not have any marked redexes (i.e. the
development is complete), and we also require the evaluation sequences leading to (M,F ) and to (M ′, ∅)
to be related by elementary diagrams (see definition A.30 below). The reason for such requirements is that
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1 (M1, F1) (M3, F3) 1234567 (M1, F1) (M3, F3)

1 A.26

1 (M ′
4, F

′
4) −→

A.15

1 IH

1 (M2, F2) (M4, F4) (M2, F2) (M4, F4)

(E1, R1)

(C, R̃) γ

S γ

(E′, R′)

(E, R)

γ

γ

(C, R̃);S γ

(E1, R1)

(E, R)

γ

Figure 10: Inductive step of proof of lemma A.28

core module calculus has complete developments that are not standartizible. The restriction on the starting
and ending modules rules out such complete developments.

Property A.29 (Standardization of γ-developments (stronger version)). If (M,F ) −−→∗

γ
(M ′, F ′),

then there exists (M ′′, F ′′) s.t. (M,F ) ==⇒∗
γ

(M ′′, F ′′) ◦−−→∗
γ

(M ′, F ′).

Definition A.30. Let (N, {(C, R)}) ◦−(C,R)−−−→
γ

(N ′, ∅). We say that the evaluation sequences (N, {(C, R)}) ==⇒∗

(M,F ) and (N ′, ∅) ==⇒∗ (M ′, ∅) are related by elementary diagrams if for every step (Ni, Fi) ==⇒ (Ni+1, Fi+1)
s.t. (N, {(C, R)}) ==⇒∗ (Ni, Fi) ==⇒ (Ni+1, Fi+1) ==⇒

∗ (M,F ) and

• there exists (N ′
i , ∅) s.t. (N

′, ∅) ==⇒∗ (N ′i , ∅) ==⇒
∗ (M ′, ∅), (Ni, Fi) ³

c−γ
(N ′i , ∅),

• there exist (Ñi, F̃i) and (Ñi+1, F̃i+1) s.t. (Ni, Fi) ==⇒∗
γ

(Ñi, F̃i) =
0/1
=⇒ (Ñi+1, F̃i+1) and (Ni+1, Fi+1) ==⇒∗

γ

(Ñi+1, F̃i+1), where the sequences are constructed of the diagrams as in properties A.22 and A.23 (see
figure 7), and one of the following takes place:

– the step (Ñi, F̃i) =
0/1
=⇒ (Ñi+1, F̃i+1) is a 0-step,

– the step (Ñi, F̃i) =
0/1
=⇒ (Ñi+1, F̃i+1) is a non-zero step, and there exist sequences (Ñi, F̃i) ◦−−→∗

γ

(N ′i , ∅), (Ñi+1, F̃i+1) −−→∗
γ

(N ′i+1, ∅), and (N ′i , ∅) ==⇒ (N ′i+1, ∅), which, together with the step

(Ñi, F̃i) ==⇒ (Ñi+1, F̃i+1) are constructed from the elementary diagrams A.25 as in lemma A.27
(see figure 9).

Property A.31 (Standardization of γ-developments (weaker version)). Suppose (N, {(C, R)}) ==⇒∗

(M,F ) −−→∗
γ

(M ′, ∅) and (N, {(C, R)}) ◦−(C,R)−−−→
γ

(N ′, ∅) ==⇒∗ (M ′, ∅), where the sequences (N, {(C, R)}) ==⇒∗

89



(M,F ) and (N ′, ∅) ==⇒∗ (M ′, ∅) are related by elementary diagrams, then there exists (M ′′, F ′′) s.t. (M,F ) ==⇒∗
γ

(M ′′, F ′′) ◦−−→∗
γ

(M ′, ∅).

Theorem A.32. Suppose a calculus has the following properties:

• Property A.26,

• Standardization of γ-developments (property A.29 or a weaker property A.31),

• Composition of γ-developments (property A.15).

Then the calculus has lift property A.17.

Proof. The proof is by induction on the number of steps in the sequence (M2, ∅) ==⇒∗ (N2, ∅). Let n denote
this number. The proof is illustrated on figure 11.

(M1, {(C, R)}) (M ′
1, F

′
1) · (M1, {(C, R)}) (M ′

1, F
′
1) (M ′′

1 , F
′′
1 )

·

A.26 and
A.29 or A.31

(N1, F1) IH
A.28 and
A.29 or A.31

(N1, F1)

(M2, ∅) (N2, ∅) (M2, ∅) (M ′
2, ∅) (N2, ∅)

Base case Induction step

γ(C, R)

γ

γ

γ γ

∪

γ

γ

Figure 11: Proof of lift property

Base case (n = 1). Let (M1, {(C, R)}) ◦−−→
γ

(M2, ∅) ==⇒ (N2, ∅). By property A.26 there exists (M ′
1, F

′
1) s.t.

(M1, {(C, R)}) ==⇒ (M ′
1, F

′
1) −−→

∗

γ
(N2, ∅). By property A.29 or A.31 there exists (N1, F1) s.t. (M ′

1, F
′
1) ==⇒

∗

γ

(N1, F1) ◦−−→∗
γ

(N2, ∅). Therefore (M1, {(C, R)}) ==⇒∗
∪

(N1, F1) ◦−−→∗
γ

(N2, ∅).

Induction step. Inductive hypothesis: let (M1, {(C, R)}) ◦−−→
γ

(M2, ∅), and let (M2, ∅) ==⇒∗ (M ′
2, ∅) in n−1

steps. Then we suppose that there exists (M ′
1, F

′
1) s.t. (M1, {(C, R)}) ==⇒∗

∪
(M ′

1, F
′
1) ◦−−→

∗

γ
(M ′

2, ∅).

Now let (M ′
2, ∅) ==⇒ (N2, ∅). By lemma A.28 properties A.26 and A.15 imply that there exists (M ′′

1 , F
′′
1 )

s.t. (M ′
1, F

′
1) ==⇒ (M ′′

1 , F
′′
1 ) −−→

∗

γ
(N2, ∅). Then by standardization of γ-developments (property A.29 or A.31)

there exists (N1, F1) s.t. (M
′′
1 , F

′′
1 ) ==⇒

∗

γ
(N1, F1) ◦−−→∗

γ
(N2, ∅). Therefore (M1, {(C, R)}) ==⇒∗

∪
(N1, F1) (since

(M1, {(C, R)}) ==⇒∗
∪

(M ′
1, F

′
1) ==⇒ (M ′′

1 , F
′′
1 ) ==⇒

∗

γ
(N1, F1)) and (N1, F1) ◦−−→∗

γ
(N2, ∅).

Theorem A.33. Suppose a calculus has the following properties:

• Property A.25,

• Standardization of γ-developments (property A.29 or a weaker property A.31),

• γ-diamond property of ==⇒ (property A.22) or its weaker analog A.23,

• Composition of γ-developments (property A.15),
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Then the calculus has project property A.18.

Proof. The proof is by induction on the number of steps in the given evaluation sequence (M1, {(C, R)}) ==⇒∗
(N1, F1), which we denote by n. See figure 12 for the illustration of the proof.

(M1, {(C, R)}) (N1, F1) · (M1, {(C, R)}) (N ′
1, F

′
1) (N1, F1)

A.22 or A.23

A.25 and
A.29 or A.31

(N2, F2) IH (N ′
2, F

′
2) (N ′′

2 , F
′′
2 )

A.27 and
A.29 or A.31

(N2, F2)

(M2, ∅) (N3, ∅) (M2, ∅) (M ′
2, ∅) (N3, ∅)

Base case
Induction step
(case 1)

γ(C, R)

γ

γ

γ

γ γ

γ

γ

γ

Figure 12: Proof of project property

Base case (n = 1). Let (M1, {(C, R)})
(C,R)
→
γ

(M2, ∅), (M1, {(C, R)}) ==⇒ (N1, F1). Then by property A.25

there exists (N3, F3) s.t. (N1, F1) −−→∗
γ

(N3, F3) and (M2, ∅) ==⇒ (N3, F3). The latter reduction implies that

F3 = ∅ (since ∅/(A, R) = ∅ for any (A, R)). Then by property A.29 or A.31 there exists (N2, F2) s.t.
(N1, F1) ==⇒∗

γ
(N2, F2) ◦−−→∗

γ
(N3, ∅) (note that we are able to use property A.31 because, as we have shown,

F3 = ∅, so (N1, F1) −−→∗
γ

(N3, ∅) is a complete development).

Induction step. As the induction hypothesis suppose the following: if (M1, {(C, R)}) ==⇒∗ (N ′1, F ′1) in n−1
steps and (M1, {(C, R)})

(C,R)
→
γ

(M2, ∅), then there exist (N ′2, F
′
2) and (M ′

2, ∅) s.t. (N
′
1, F

′
1) ==⇒

∗

γ
(N ′2, F

′
2) ◦−−→

∗

γ

(M ′
2, ∅) and (M2, ∅) ==⇒∗ (M ′

2, ∅).
Let (N ′1, F

′
1) ==⇒ (N1, F1). Each of the properties A.22 and A.23 implies that, given (N ′

1, F
′
1) ==⇒

∗

γ
(N ′2, F

′
2)

and (N ′1, F
′
1) ==⇒ (N1, F1), there exists (N ′′2 , F

′′
2 ) s.t. (N1, F1) ==⇒∗

γ
(N ′′2 , F

′′
2 ) and (N ′2, F

′
2) =

0/1
=⇒ (N ′′2 , F

′′
2 ).

Case 1. Suppose (N ′2, F
′
2) ==⇒ (N ′′2 , F

′′
2 ). Then the existence of the sequence (N ′

2, F
′
2) ◦−−→

∗

γ
(M ′

2, ∅) implies

that there exists N3 s.t. (M ′
2, ∅) ==⇒ (N3, ∅), (N ′′2 , F

′′
2 ) −−→

∗

γ
(N3, ∅) (from properties A.25 and A.15 by

lemma A.27). As in the base case, the set of redexes marked in N3 is empty, since the set of marked redexes
in M ′

2 is empty. Then by A.29 or A.31 there exists (N2, F2) s.t. (N ′′2 , F
′′
2 ) ==⇒∗

γ
(N2, F2) ◦−−→∗

γ
(N3, ∅). We

have shown that there exist (N2, F2) and N3 s.t. (N1, F1) ==⇒∗
γ

(N2, F2) ◦−−→∗
γ

(N3, ∅).

Case 2. Suppose (N ′2, F
′
2) = (N ′′2 , F

′′
2 ). By the inductive hypothesis (N ′′2 , F

′′
2 ) ◦−−→

∗

γ
(M ′

2, ∅), and the claim

of the theorem holds.
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We extend the definition of standardization property to reductions on pairs of a term and a set of its
marked redexes, similarly to the extensions for lift and project (properties A.17 and A.18):

Property A.34 (Standardization). If (M,F ) −−→∗ (M ′, F ′), then there exists (M ′′, F ′′) s.t. (M,F ) ==⇒∗

(M ′′, F ′′) ◦−−→∗ (M ′, F ′).

As shown in section 3.6 (lemma 3.39), the lift property implies standardization. The proof of lemma 3.39
works for reductions on pairs of the form (M,F ) as well.

A.2 Properties of γ-developments in more detail.

The previous section presents proofs of lift and project via certain properties of γ-developments , s.a. stan-
dardization of γ-developments (A.29 or A.31). Continuing moving from more general properties to more
specific ones, we discuss the ways of proving the properties defined in the previous section.

Property A.35. For any (M,F ) there exists a complete γ-development of n steps s.t. any other γ-development of
(M,F ) has no more than n steps.

Notation A.36. Let MAX[(M,F )] denote the number of reduction steps in a γ-development of (M,F ) of
the maximal length (see property A.35 above).

Property A.37 (Finiteness of γ-developments ). There is no infinite reduction sequence (M1, F1) →
γ

(M2, F2)→
γ
. . . .

Property A.37 trivially follows from property A.35.

Property A.38. If (M1, F1) ◦−−→
γ

(M2, F2) ==⇒
γ

(M3, F3), then there exists (M ′, F ′) s.t. (M1, F1) ==⇒
γ

(M ′, F ′) −−→∗
γ

(M3, F3).

This property seems similar to property A.26 (see also figure 8). However, the two properties are in fact
independent (i.e. one neither implies, nor is implied by the other), because A.38 restricts the given evaluation
step to be a γ-development step, and requires the resulting evaluation step to be a γ-development step as
well. The calculus C is an example of a calculus that has property A.26 but not A.38.

Lemma A.39. If a calculus has properties A.35 and A.38, then it has strong standardization of γ-developments (property A.29),

i.e. for any sequence (M,F ) −−→∗
γ

(M ′, F ′) there exists (M ′′, F ′′) s.t. (M,F ) ==⇒∗
γ

(M ′′, F ′′) ◦−−→∗
γ

(M ′, F ′).

Proof. Let (M,F ) −−→∗
γ

(M ′, F ′) be a γ-development sequence. The following construction repeatedly ap-

plied to this sequence will in a finite number of applications produce a standard sequence (M,F ) ==⇒∗
γ

(M ′′, F ′′) ◦−−→∗
γ

(M ′, F ′):

Construction of a standard γ-development .

• Step 1. Check if the given sequence (M,F ) −−→∗
γ

(M ′, F ′) is standard. If yes, then the construction is

finished. If no, go to step 2.

• Step 2. Since the given sequence is not standard, it can be parsed as follows:

(M,F ) ==⇒∗
γ

(M0, F0) ◦−−→
∗

γ
(M1, F1) ◦−−→

γ
(M2, F2) ==⇒

γ
(M3, F3) −−→

∗

γ
(M ′, F ′).
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Then by property A.38 there exists (M ′
2, F

′
2) s.t. (M,F ) ==⇒

γ
(M ′

2, F
′
2) −−→

∗

γ
(M3, F3). Then we replace

the initial reduction sequence by the sequence

(M,F ) ==⇒∗
γ

(M0, F0) ◦−−→
∗

γ
(M1, F1) ==⇒

γ
(M ′

2, F
′
2) −−→

∗

γ
(M3, F3) −−→

∗

γ
(M ′, F ′).

and repeat step 1.

The construction terminates. To show it, we associate a pair of non-negative integers (n1, n2) to every

sequence S s.t. (M,F )
S

−−→∗
γ

(M ′, F ′) in the following way: suppose S is not standard, then it can be parsed

as above, i.e.

(M,F ) =
S1

=⇒
∗

γ
(M0, F0) ◦−

S2−→
∗

γ
(M1, F1) ◦−−→

γ
(M2, F2) ==⇒

γ
(M3, F3) −−→

∗

γ
(M ′, F ′).

Then n1 is the number of evaluation steps immediately following (M,F ), i.e. the length of the sequence S1,
and n2 is the number of non-evaluation steps immediately following S1, i.e. n2 = m2 + 1, where m2 is the
length of the sequence S2. If S is standard, then it can be parsed as

(M,F ) =
S1

=⇒
∗

γ
(M0, F0) ◦−

S2−→
∗

γ
(M ′, F ′),

and in this case n1 is the length of S1, and n2 is the length of S2.
We consider pairs (n1, n2) to be ordered lexicographically, i.e. (n1, n2) < (n′1, n

′
2) if n1 < n′1 or n1 = n′1

and n2 < n′2. It is easy to observe that if (n1, n2) corresponds to a sequence S before an iteration of the
construction, and (n′1, n

′
2) corresponds to S′ which is the result of the iteration, then (n1, n2) < (n′1, n

′
2):

either the subsequence (M0, F0) ◦−
S2−→

∗

γ
(M1, F1) is non-empty, in which case n1 does not change, and n2

increases by 1, or the subsequence is empty, and then the sequence (M,F ) =
S1

=⇒
∗

γ
(M0, F0) becomes followed

by at least one more evaluation step, so n1 increases.

On the other hand, if (n1, n2) is associated with a sequence S s.t. (M,F )
S

−−→∗
γ

(M ′, F ′), then (n1, n2) ≤

(MAX[(M,F )], 0), since a γ-development of (M,F ) can not have more than MAX[(M,F )] steps. Therefore
the construction terminates.

Special case of γ-developments : traditional developments. A special case of a γ-development step

is a development step defined in definition A.10: a development step (M,F )
(C,R)
→
dev

(M ′, F ′) is an extended

reduction step (M,F )
(C,R)
→
dev

(M ′, F ′), where (C, R) ∈ F . In this case we may simplify some of the proofs. In

particular, the following corollary A.42 allows us to prove properties A.25 and A.26 only for the case when
the initial pair (M1, F1) (see figure 8) has only one marked redex in F1, the general case of an arbitrary F1

follows automatically. Note that we use notation →
dev

to distinguish this particular case from the general case

of →
γ
.

Lemma A.40. If (M, {(C1, R1)}) −
(A,R)
−−−→ (M ′, F ′1) and (M, {(C2, R2)}) −

(A,R)
−−−→ (M ′, F ′2), then (M, {(C1, R1), (C2, R2)})

−(A,R)−−−→ (M ′, F ′1 ∪ F
′
2).

Proof. The lemma follows directly from definition A.7 of the extended reduction (i.e. reduction on pairs
(M,F )).

Note that since →
dev

is a particular case of the extended reduction −−→, the lemma above is true when one of

the two given reductions is a development step. For instance, if (A, R) = (C1, R1) and (C1, R1) 6= (C2, R2),
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then the first of the two given reductions is a →
dev

step, and the reduction (M, {(C1, R1), (C2, R2)}) −
(A,R)−−−→

(M ′, F ′1 ∪ F
′
2) is also a →

dev
step.

Lemma A.41. Let S be an arbitrary sequence of −−→ steps. If (M, {(C1, R1)}) −
S−→
∗
(M ′, F ′1) and (M, {(C2, R2)})

−S−→
∗
(M ′, F ′2), then (M, {(C1, R1), (C2, R2)}) −

S−→
∗
(M ′, F ′1 ∪ F

′
2).

Proof. Follows from lemma A.40 by induction on the number of steps in S.

Finally, we generalize the result to arbitrary sets of “marked” redexes in M .

Corollary A.42. Let S be an arbitrary sequence of −−→ steps. If (M,F1) −
S−→
∗
(M ′, F ′1) and (M,F2) −

S−→
∗

(M ′, F ′2), then (M,F1 ∪ F2) −
S−→
∗
(M ′, F ′1 ∪ F

′
2).

B Soundness of the Term Calculus.

In this section we give the calculus-specific definitions of a redex and a residual for the term calculus T
and prove that the calculus is computationally sound by showing that it has confluence, class preservation,
and standardization properties. The approach in this section largely follows the line of reasoning in [Bar84],
in particular the proofs of finiteness of developments, confluence, and standardization. The approach has
been slightly extended to cover the case of constants and operations on constants in the proof of finiteness
of developments. A more significant change is that instead of the notion of a head redex we use an notion
of an evaluation redex, which is defined via an evaluation context.

Recall that the general definition of a redex in section A (definition A.2) defines a redex for all the calculi.
However, the definition of residuals in section A is axiomatic, i.e. it specifies the properties of a residual,
but the details are left to the calculus-specific definition. Before we define residuals in T , let us introduce
some important notations.

Definition B.1 (Multi-hole contexts in T ). A multi-hole context in T is defined as follows:

A,B,C ::= M | 2 | C @ C | C op C | λx.C.

H(C) denotes the number of holes in a context C (defined in the obvious way). ContextnT denotes the set
{C | H(C) = n}. Note that Context0T = TermT , Context

1
T = ContextT as defined in section 2.3.

If C ∈ ContextnT , then C{A1, . . . ,An} denotes the result of filling the holes of C left-to-right with
contexts A1, . . . ,An.

By convention the notation (C, R) for a redex implies that C ∈ Context1T .

Definition B.2 (glb of contexts). The greatest lower bound of two contexts glb(C1,C2) is a context
defined the following way:

glb(M,M) = M,
glb(C,2) = 2 for any C,
glb(2,C) = 2 for any C,

glb(C1 @ C2,C′1 @ C′2) = glb(C1,C′1) @ glb(C2,C′2),
glb(C1 op C2,C′1 op C′2) = glb(C1,C′1) op glb(C2,C′2),

glb(λx.C1, λx.C2) = λx. glb(C1,C2),
otherwise undefined

The greatest lower bound of n > 2 contexts is defined as

glb(C1,C2, . . . ,Cn) = glb(glb(C1,C2),C3, . . . ,Cn).
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We also define free variables of a multi-hole context and substitution in a context:

Definition B.3. The set of free variables of a multi-hole context C, denoted FV (C), is defined as follows:

FV (C) = FV (M) if C = M,
∅ if C = 2,
FV (C1) ∩ FV (C2) if C = C1 @ C2 or C = C1 op C2,
FV (C1) \ {x} if C = λx.C1.

We say that a variable x is not bound in C if either x ∈ FV (C) or x does not appear in C.

Definition B.4. If x is not bound in C, then substitution of a term M for x in C, denoted C[x := M ], is
defined as follows:

C[x := M ] = N [x := M ] if C = N,
2 if C = 2,
C1[x := M ] @ C2[x :=M ] if C = C1 @ C2,
C1[x := M ] op C2[x :=M ] if C = C1 op C2,
λy.(C1[x := M ]) if C = λy.C1.

Note that in the last clause x 6= y and y 6∈ FV (M) by the distinct variable convention.

Now we give definition of a set of residuals of a redex in T . It is easy to check that the set of residuals
defined below satisfies the properties postulated in the axiomatic definition A.3.

Definition B.5. Let (C1, R1) be a redex in a term M , and suppose M −
(C2,R2)−−−−→T N . A set of residuals of

(C1, R1) w.r.t. the reduction −
(C2,R2)−−−−→T (denoted (C1, R1)/(C2, R2)) is defined as follows: let A = glb(C1,C2),

and let R2 Ã Q2, then

1. if C1 = C2 (and therefore R1 = R2), then (C1, R1)/(C2, R2) = ∅,

2. if A ∈ Context2T , then (C1, R1)/(C2, R2) = {(A{2, Q2}, R1)} (assuming w.l.o.g. that R1 fills the first
hole in A).

3. if M = A{λx.Bn{x, . . . , x} @ V }, and R2 = λx.Bn{x, . . . , x} @ V , where Bn contains all occurrences
of x in the operand, and V = C{R1}, then (C1, R1)/(C2, R2) = {(A{Bn{V, . . . , V,Ci, V, . . . V }}, R1) |
1 ≤ i ≤ n}, where Ci is the context C filling the i-th hole of Bn.

4. if M = A{λx.B{R1} @ V }, where R2 = λx.B{R1} @ V , then (C1, R1)/(C2, R2) = {(A{B}, R1[x :=
V ])}.

5. if M = A{R1}, where R1 = B{R2}, then (C1, R1)/(C2, R2) = {(A,B{Q2})}.

Having defined a set of residuals of a redex w.r.t. a reduction step, we can extend it to a set of residuals
of a set of redexes w.r.t. a reduction step and to a set of residuals of a redex or a set of redexes w.r.t.
a reduction sequence by definitions A.4 and A.5. We also use the notion of extended reduction given in
definition A.7.

For the term calculus T we define a development step via the extended reduction, i.e. by definition A.10.

According to this definition (M1, F1)
(C,R)
→
dev

(M2, F2) if (M1, F1) −
(C,R)−−−→ (M2, F2) and (C, R) ∈ F1.

Below we prove an important property of the term calculus: finiteness of developments, where a devel-
opment step →

dev
is as defined above. Even though the proof is traditional (see Chapter 11 of [Bar84]), we

give it in some detail, since some notions defined for the proof will be used later in the proof of finiteness of
γ-developments of the core module calculus C. In particular the notion of a weighting introduced below will
be used in both this and the next section.
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Definition B.6. A calculus of weighted terms T ′ is defined as follows: let n range over positive integers,
then

xn ∈ T ′, where x ∈ Variable,
cn ∈ T ′, where c ∈ Const
ln ∈ T ′ where l ∈ Label

λx.M ∈ T ′ if M ∈ T ′

M @ N ∈ T ′ if M,N ∈ T ′

M op N ∈ T ′ if M,N ∈ T ′

Here n is called a weight of the respective variable, constant, or label. Note that a variable immediately
preceded by a lambda does not have a weight.

If M ∈ T ′, the measure of M (denoted || M ||) is by definition the sum of all weights (of variables,
constants, and labels) occurring in M . Note that ||M ||> 0.

Assuming that all occurrences of variables (except for those immediately preceded by a lambda), con-
stants, and labels in a term M ′ ∈ T ′ are ordered by their position from left to right in M ′, we can consider
M as a pair (M, I), where M ∈ T is a term obtained from M ′ by erasing all weights, and I is a list of
weights of variables, labels, and constants in M ′ from left to right. I is called a weighting of M . Note that
there is a one-to-one correspondence between terms M ′ ∈ T ′ and pairs (M, I).

We write I(x), where x is a particular occurrence of x in M , to denote the weight of the occurrence of x
in the corresponding M ′ ∈ T ′, and similarly for I(c) and I(l).

Now we extend the reduction on pairs (M,F ) to include weightings.

Definition B.7. Let M,N ∈ T ′. Then M −−→ N if and only if M = C{R}, N = C{Q}, and one of the
following takes place:

• R = (λx.M̃ ) @ V , Q = M̃ [x := V ], where M [x := N ] is defined as follows:

xn[x := N ] = N,
yn[x := N ] = yn if y 6= x,
cn[x := N ] = cn,
ln[x := N ] = ln,

and the rest of the rules as usual.

• R = cn1 op cm2 , Q = c
max(n,m)
3 , where c3 = δ(c1, c2, op ).

Note: in the above definition C is a context over terms of T ′. We omit a straightforward definition of
such contexts.

Remark B.8. Since terms of T ′ are in one-to-one correspondence with pairs (M, I), definition B.7 also
defines a reduction on such pairs.

Definition B.9. A weighting I is called a decreasing weighting of a pair (M,F ) (M ∈ TermT ) if for any
(C, R) ∈ F s.t. R = (λx.N) @ V for all occurrences of x in N || x ||>|| V ||.

Lemma B.10. For any pair (M,F ) there exists a decreasing weighting.

Proof. Mark all occurrences of variables, constants, and labels in M right-to-left by non-negative integers
in increasing order, starting at 0. Then the weight of the i-th occurrence is 2i. The weighting is decreasing
since 2n > 2n−1 + · · ·+ 2+ 1. The weighting is decreasing for any redex in M , therefore it is decreasing for
all redexes in F .
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Definition B.11. We say that a triple (M1, F1, I1) reduces to a triple (M2, F2, I2) by a redex (C, R) (denoted
(M1, F1, I1) −

(C,R)−−−→ (M2, F2, I2)) if both conditions below hold:

• (M1, I1) −
(C,R)−−−→ (M2, I2), as defined in B.7, see also remark B.8.

• (M1, F1) −
(C,R)−−−→ (M2, F2) by the extended calculus reduction.

Convention: the notation (M,F, I) assumes that the triple is well-formed, i.e. I is a weighting of M , and
the pair (M,F ) is well-formed. Trivially generalizing definition of developments to the triples (M,F, I), we
say that a development step of (M,F, I) is a reduction step that reduces a redex in F , and a development is
a sequence of such steps.

Note: in the lemma below we consider measure || · || on pairs (M, I), since this measure is defined on
terms of T ′ which are in one-to-one correspondence with such pairs.

Lemma B.12. If (M1, F1, I1) −
(C,R)−−−→ (M2, F2, I2), and I1 is a decreasing weighting of (M1, F1), then I2 is a

decreasing weighting of (M2, F2), and || (M1, I1) ||>|| (M2, I2) ||.

Proof. The proof is a straightforward proof by cases, analogous to the proof in Chapter 11 of [Bar84].

Lemma B.13. Any development of a pair (M,F ) is finite.

Proof. By lemma B.10 there exists a decreasing weighting of (M,F ), let I denote such a weighting. Consider
a development of (M,F, I). By lemma B.12 for every development step (M,F, I) →

dev
(M ′, F ′, I ′), where I

is decreasing, we have: I ′ is also decreasing, and || (M, I) ||<|| (M ′, I ′) ||. Since || (M, I) ||> 0 for any
well-defined pair (M, I), there can not be an infinite development.

In order to prove confluence of T , we prove a parallel move lemma (lemma B.19 below) for pairs (M,F ),
i.e. terms with sets of marked redexes. To do this, we need to show not only weak confluence for unmarked
terms, but also that for any marked redex in the original term the set of its residuals on both reduction
paths given by the parallel move lemma is the same. Note that in general (i.e. for arbitrary reduction paths,
not necessarily those given by the parallel move lemma) the former does not imply the latter: it is possible
that a term M reduces to a term N by two different reduction paths, but a marked redex in M has different
residual sets in M . For more on this issue see discussion of strongly equivalent reductions in [Bar84].

We prove parallel move lemma in two steps: first we show the property for one marked redex (lemma B.18),
and then generalize it to an arbitrary set of marked redexes. Before we prove the lemmas, we need to define
terminology for mutual positions of two subterms in a term.

Definition B.14. 1. A subterm of a term M ∈ TermT is a pair (C, N) s.t. M = C{N} (specifying
C allows us to avoid ambiguity if N occurs in M more than once). If the position of N in M is
unambiguous or irrelevant, we say that N is a subterm of M .

2. 2 subterms (C1, N1) and (C2, N2) of a term M are independent if there exists a two-hole context A s.t.
C1 = A{2, N2} and C2 = A{N1,2} or, alternatively, C1 = A{N2,2} and C2 = A{2, N1}. Note that
this implies M = A{N1, N2} or M = A{N2, N1}.

3. If (C1, N1) and (C2, N2) are subterms of the same term M and are not independent, then it must be
the case that either N2 is a subterm of N1 (in which case we say that (C1, N1) contains (C2, N2)) or
vice versa (i.e. (C2, N2) contains (C1, N1)). As in case 1, sometimes we will omit the contexts, e.g. say
that N1 contains N2.

4. We say that two redexes (C1, R1) and (C2, R2) of a term M are independent (respectively (C1, R1)
contains (C2, R2)) if they are independent as subterms (respectively (C1, R1) contains (C2, R2) as
subterms).

97



Now we state and prove some important properties of redexes and evaluation contexts which will be used
in further proofs, both for the term and for the core module calculus.

Lemma B.15. If R is a redex and x is not bound in R, then R[x := V ] is a redex.
If E ∈ EvalContextT and x is not bound in E, then E[x := V ] ∈ EvalContextT

Proof. The two cases of a redex are c1 op c2 and λy.M @ V , in both cases the claim clearly holds.
The proof for E ∈ EvalContextT is straightforward by induction on the structure of an evaluation

context.

Lemma B.16. If R = A{l} is a redex, then R′ = A{V } is also a redex.
If E = A{2, l} ∈ EvalContextT (respectively E = A{l,2} ∈ EvalContextT ), then E′ = A{2, V } ∈

EvalContextT (respectively E′ = A{V,2} ∈ EvalContextT ).

Proof. Similar to the proof of lemma B.15. Note that labels in a term are not bound, therefore the occurrence
of l is free in a redex or in an evaluation context.

Lemma B.17. If E = A{2, R} ∈ EvalContextT (or E = A{R,2} ∈ EvalContextT ) and RÃT Q, then
E′ = A{2, Q} ∈ EvalContextT (respectively E′ = A{Q,2} ∈ EvalContextT ).

Proof. By induction on the structure of an evaluation context.

The following is a key lemma for many subsequent proofs. In addition to weak confluence of the calculus
reduction −−→T , it shows that for any marked redex in M1 its residuals are the same on both reduction paths.
We also show confluence of a complete development of (C1, R1)/(C2, R2) for any two redexes. Note that we
do not show and do not use a general confluence of complete developments, i.e. confluence of a complete
development of an arbitrary F/S, even though such confluence holds in T . This is because our goal is to
show standardization of developments, and for this purpose it is sufficient to show that a non-evaluation step
followed by an evaluation step in a development can be replaced by a development sequence which starts
with an evaluation step (corollary B.26). This property, in addition to finiteness of developments that we
have already shown, implies standardization of developments.

Lemma B.18. Part 1. Let (M1, {(A, R̃)}) −(C1,R1)−−−−→ (M2, F2), (M1, {(A, R̃)}) −(C2,R2)−−−−→ (M3, F3) s.t. (C1, R1) 6=

(C2, R2). Then there exists (M4, F4) s.t. (M2, F2)
(C2,R2)/(C1,R1)

→∗
dev

(M4, F4), (M3, F3)
(C1,R1)/(C2,R2)

→∗
dev

(M4, F4).

Part 2. If (M2, F2)
(C2,R2)/(C1,R1)

→∗
dev

(M4, F4) for some complete development sequence
(C2,R2)/(C1,R1)

→∗
dev

, then

(M2, F2)
(C2,R2)/(C1,R1)

→∗
dev

(M4, F4) for any complete development sequence
(C2,R2)/(C1,R1)

→∗
dev

, and the same for a

complete development
(C1,R1)/(C2,R2)

→∗
dev

.

Proof. The proof is by cases on mutual positions (and the kinds) of the three redexes in M1. We show
enough cases to demonstrate the proof technique. The other cases are similar to the ones shown. We don’t
list cases symmetric to the ones given (i.e. those obtained by switching (C1, R1) and (C2, R2)). We suppose
that R1 Ã Q1, R2 Ã Q2, R̃Ã Q̃.

1. All three redexes are independent - trivial.

2. (A, R̃) = (C1, R1), (C2, R2) is independent from (C1, R1) - trivial.

3. (A, R̃) = (C1, R1), (C2, R2) is contained in (C1, R1).

Since (C1, R1) contains (C2, R2), it must be the case that R1 = (λx.N1) @ V1. We have two subcases:
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• N1 = B{R2, x, . . . , x}, i.e. N1 has several occurrences of x and an occurrence22 of R2. Then

(λx.B{R2, x, . . . , x}) @ V1 −−→T B{R2, V1, . . . , V1} −−→T B{Q2, V1, . . . , V1},
(λx.B{R2, x, . . . , x}) @ V1 −−→T (λx.B{Q2, x, . . . , x}) @ V1 −−→T B{Q2, V1, . . . , V1}.

• R1 = (λx.B{x, . . . , x}) @ λy.B̃{R2}. Then

(λx.B{x, . . . , x}) @ λy.B̃{R2} −−→T B{λy.B̃{R2}, . . . , λy.B̃{R2}} −−→∗T B{λy.B̃{Q2}, . . . , λy.B̃{Q2}},

(λx.B{x, . . . , x}) @ λy.B̃{R2} −−→T (λx.B{x, . . . , x}) @ λy.B̃{Q2} −−→T B{λy.B̃{Q2}, . . . , λy.B̃{Q2}}.

In both cases since (A, R̃) = (C1, R1), (A, R̃) does not have a residual in the resulting term on both
reduction paths. The second part of the lemma follows from the observation that the order in which
copies of R2 are reduced in the multi-step reduction does not matter.

4. (A, R̃) = (C1, R1), (C2, R2) contains (C1, R1). By the result of the previous case if a redex contains
another redex, then they can be reduced in any order. Since (C2, R2) in the previous case does not
have a residual on any of the two reduction paths, we conclude that (A, R̃) does not have a residual as
well.

5. (C1, R1) contains (C2, R2), (A, R̃) is independent from both (C1, R1) and (C2, R2).

In this case M1 = B{R1, R̃}. By case 3 we know that since (C1, R1) contains (C2, R2), the two redexes
can be performed in any order. (A, R̃) is independent from these redexes, so clearly it has the same
residual on both reduction paths. As in case 3, the order in which copies of R2 are reduced in the
multi-step reduction does not matter.

6. (C1, R1) contains (C2, R2), (A, R̃) is contained in (C1, R1), (A, R̃) is independent from (C2, R2).

In this case R1 = (λx.N1) @ V1, and we have the following 4 subcases:

• R1 = (λx.B{R2, R̃, x, . . . , x}) @ V1. In this case both reduction paths lead to a term B{Q2, R̃, V1, . . . , V1}.

• R1 = (λx.B{R2, x, . . . , x}) @ λy.B̃{R̃}. Both reduction paths lead to a term B{Q2, λy.B̃{R̃}, . . . , λy.B̃{R̃}}.
• R1 = (λx.B{R̃, x, . . . , x}) @ λy.B̃{R2}. The resulting term on both paths is B{R̃, λy.B̃{Q2}, . . . , λy.B̃{Q2}}.

• R1 = (λx.B{x, . . . , x}) @ λy.B̃{R2, R̃}. The resulting term on both paths is B{λy.B̃{Q2, R̃}, . . . , λy.B̃{Q2, R̃}}.

In the second and the last cases the redex (A, R̃) gets duplicated, but in all 4 cases the set of residuals
of (A, R̃) is the same on both reduction paths.

In the first two cases both resulting reductions are one-step. In the other two cases we observe, as
before, that the reduction of the multiple copies of R2 can be performed in any order with the same
resulting term.

7. (C1, R1) contains (C2, R2), (A, R̃) contains (C1, R1).

In this case R̃ = (λx.Ñ ) @ Ṽ . Let Q′1 be a term s.t. M1 = C1{R1} −
(C1,R1)−−−−→ C1{Q1} −

(C2,R2)/(C1,R1)−−−−−−−−−−→
∗

C1{Q′1} By case 1 it is also the case that C1{R1} −
(C2,R2)−−−−→ C1{R′1} −

(C1,R1)/(C2,R2)−−−−−−−−−−→
∗

C1{Q′1}. We have
two subcases:

• A{R̃} = A{(λx.B{R1}) @ Ṽ } −(C1,R1);(C2,R2)/(C1,R1)−−−−−−−−−−−−−−−→
∗

A{(λx.B{Q′1}) @ Ṽ }, so the residual of
(A, R̃) on both reduction paths is (A, (λx.B{Q′1}) @ Ṽ ),

• A{R̃} = A{(λx.Ñ) @ λy.B{R1}} −
(C1,R1);(C2,R2)/(C1,R1)−−−−−−−−−−−−−−−→

∗

A{(λx.Ñ) @ λy.B{Q′1}}, so the residual
of (A, R̃) on both reduction paths is (A, (λx.Ñ ) @ λy.B{Q′1}).

22Here and below we show only one ordering of occurrences of subterms in a term, provided all other orderings are analogous.
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As before, if the reduction of R1 duplicates R2, then the order in which copies of R2 are reduced does
not matter.

8. (C1, R1) contains (C2, R2), (A, R̃) is contained in (C2, R2). Similar to previous cases.

9. (C1, R1) contains (C2, R2), (A, R̃) is contained in (C1, R1), (A, R̃) contains (C2, R2). Similar to previous
cases.

10. (C1, R1) and (C2, R2) are independent, (A, R̃) contains both (C1, R1) and (C2, R2). Similar to previous
cases.

11. (C1, R1) and (C2, R2) are independent, (A, R̃) contains (C1, R1), but not (C2, R2). Similar to previous
cases.

12. (C1, R1) and (C2, R2) are independent, (A, R̃) is contained in (C1, R1). Similar to previous cases.

Lemma B.19 (Parallel Moves Lemma). Let (M1, F1) −
(C1,R1)−−−−→ (M2, F2), (M1, F1) −

(C2,R2)−−−−→ (M3, F3).

Then there exists (M4, F4) s.t. (M2, F2) −
(C2,R2)/(C1,R1)−−−−−−−−−−→

∗

(M4, F4), (M3, F3) −
(C1,R1)/(C2,R2)−−−−−−−−−−→

∗

(M4, F4).

Proof. By induction on the number of redexes in F1. The base case is given by Part 1 of lemma B.18.

Suppose F ′1 contains n redexes, and (M1, F
′
1) −

(C1,R1)−−−−→ (M2, F
′
2), (M1, F

′
1) −

(C2,R2)−−−−→ (M3, F
′
3) imply that

there exists (M4, F
′
4) s.t. (M2, F

′
2) −

(C2,R2)/(C1,R1)−−−−−−−−−−→
∗

(M4, F
′
4), (M3, F

′
3) −

(C1,R1)/(C2,R2)−−−−−−−−−−→
∗

(M4, F
′
4). Let F =

F ′1 ∪ {(A, R̃)}, where (A, R̃) 6∈ F ′1. Let F̃2, F̃3 be s.t. (M1, {(A, R̃)}) −(C1,R1)−−−−→ (M2, F̃2) and (M1, {(A, R̃)})
−
(C2,R2)−−−−→ (M3, F̃3). By Part 1 of lemma B.18 there exist (M̃4, F̃4) s.t. (M2, F̃2) −

(C2,R2)/(C1,R1)−−−−−−−−−−→
∗

(M̃4, F̃4) and

(M3, F̃3) −
(C1,R1)/(C2,R2)−−−−−−−−−−→

∗

(M̃4, F̃4). By Part 2 of lemma B.18 all complete developments of the same sets of

marked redexes end at the same pair (M̃4, F̃4). Therefore we can assume that the sequences −(C2,R2)/(C1,R1)−−−−−−−−−−→
∗

and −(C1,R1)/(C2,R2)−−−−−−−−−−→
∗

constructed for the initial pair (M1, {(A, R̃)}) are the same as the respective sequences
in the inductive hypothesis. Then M̃4 = M4, since by the inductive hypothesis (and by definition of

extended reduction) M3 −
(C2,R2)/(C1,R1)−−−−−−−−−−→

∗

M4, where the reduction sequence is the same as the sequence in

(M3, F̃3) −
(C1,R1)/(C2,R2)−−−−−−−−−−→

∗

(M̃4, F̃4). Finally, by corollary A.42 (M1, F
′
1 ∪ {(A, R̃)}) −

(C1,R1)−−−−→ (M2, F
′
2 ∪ F̃2)

and (M1, F
′
1 ∪ {(A, R̃)}) −

(C2,R2)−−−−→ (M3, F
′
3 ∪ F̃3) imply that (M2, F

′
2 ∪ F̃2) −

(C2,R2)/(C1,R1)−−−−−−−−−−→
∗

(M4, F
′
4 ∪ F̃4) and

(M3, F
′
3 ∪ F̃3) −

(C1,R1)/(C2,R2)−−−−−−−−−−→
∗

(M4, F
′
4 ∪ F̃4).

An important corollary of the finiteness of developments and the parallel move lemma is a so-called strip
lemma which allows, in particular, to prove confluence of the calculus relation. Our proof of confluence of
−−→ is similar to that in [Bar84] (Chapters 11 and 12).

Lemma B.20 (Strip Lemma). Let (M1, F1) −−→ (M2, F2), (M1, F1) −−→∗ (M3, F3). Then there existM4, F4

s.t. (M2, F2) −−→∗ (M4, F4), (M3, F3) −−→∗ (M4, F4).

Proof. Let (C, R) be the redex reduced in the reduction (M1, F1) −−→ (M2, F2), and let S be the reduction
sequence (M1, F1) −−→∗ (M3, F3).

Claim 1. Given (M1, F1) −
(C,R)−−−→ (M2, F2) and (M1, F1) −

S−→
∗
(M3, F3), there existM4, F4 s.t. (M2, F2) −

S′−→
∗

(M4, F4) and (M3, F3) −
(C,R)/S−−−−−→

∗

(M4, F4).
We prove the claim by induction on the number of steps in S. Base case follows immediately from

lemma B.19. Induction step: suppose Claim 1 holds for a sequence S of n steps. Let us consider a sequence

S; (A, R̃) of n + 1 steps s.t. (M1, F1) −
S−→
∗
(M ′

3, F
′
3) −

(A,R̃)−−−→ (M3, F3). By the inductive hypothesis there exist

M ′
4, F

′
4 s.t. (M2, F2) −

S′−→
∗
(M ′

4, F
′
4), (M

′
3, F

′
3) −

(C,R)/S−−−−−→
∗

(M ′
4, F

′
4).
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Let F̂ be the set of residuals of (C, R) in M3 w.r.t. S; (A, R̃), and let F̃ be the set of residuals of (A, R̃)
in M ′

4 w.r.t. the reduction sequence (M ′
3, F

′
3) −

(C,R)/S−−−−−→
∗

(M ′
4, F

′
4). Let (C′, R′) be the first redex reduced

in the sequence −
(C,R)/S
−−−−−→

∗

. By lemma B.19 there exist M ′, F ′ s.t. (M3, F3) −
(C′,R′)/(A,R̃)
−−−−−−−−→

∗

(M ′, F ′) and

(M ′
3, F

′
3) −

(C′,R′)−−−−→ (M ′′, F ′′) −(A,R̃)/(C′,R′)−−−−−−−−→
∗

(M ′, F ′). Now we can apply lemma B.19 to the first redex in

the sequence −(A,R̃)/(C′,R′)−−−−−−−−→
∗

and the first redex in −(C
′,R′)/(A,R̃)−−−−−−−−→

∗

, and so on. This process is guaranteed to
terminate, because all redexes reduced in all the constructed sequences are residuals of redexes in the sets
F̂ or F̃ , therefore by lemma B.13 on finiteness of developments these reductions must be finite.

We have shown Claim 1. The claim of the lemma follows by omitting the redex annotations from the
reduction sequences.

Confluence of the (extended) reduction of term calculus immediately follows from the strip lemma B.20
(see [Bar84], Chapter 11 for the proof).

Theorem B.21 (Confluence of T ). If (M1, F1) −−→∗T (M2, F2) and (M1, F1) −−→∗T (M3, F3), then there
exist M4, F4 s.t. (M2, F2) −−→∗T (M4, F4), (M3, F3) −−→∗T (M4, F4).

Now when we have proven confluence, it remains to show class preservation and standardization in order
to show computational soundness. Before we prove these two properties, we show some results needed for
the proofs.

Lemma B.22. Let M ◦−(C,R1)−−−−→T N , where N = R2 is a redex in T . Then N = (λx.N1) @ V and M =
(λx.A{R1}) @ V or M = (λx.N1) @ λy.A{R1}.

Proof. Given M ◦−(C,R1)−−−−→T N , where N = R2 is a redex, suppose N = c1 op c2. By definition of a non-

evaluation step M = C{R1} ◦−
(C,R1)−−−−→T C{Q1} = N , where C is a non-evaluation context, i.e., in particular

C 6= 2, C 6= c1 op 2, and C 6= 2 op c2. Therefore there are no possibilities for C in this case.

Now suppose N = (λx.N1) @ V . Again we have M = C{R1} ◦−
(C,R1)−−−−→T C{Q1} = N , where C is a non-

evaluation context, i.e. C 6= 2, C 6= 2 @ V , and C 6= (λx.N1) @ 2. The remaining cases are C = (λx.A) @ V
and C = (λx.N1) @ λy.A, and the claim of the lemma is shown.

Lemma B.23. Let M ◦−(C,R1)−−−−→T N . Then M = E{R} if and only if N = E′{R′}. If M = E{R}, N =
E′{R′}, then (E′, R′) = (E, R)/(C, R1) (recall that the notation implies that (E′, R′) is the only residual of
(E, R)).

Proof. The proof is by induction on the structure of an evaluation context. We want to show thatM = E{R}
if and only if N = E′{R′} and E and E′ are of the same shape (see 5 cases of definition of an evaluation
context in T on figure 1).

Base case. Suppose M = E{R} and E = 2. Then M = c1 op c2 or M = λx.M1 @ V . However, since
M ◦−−→T N , it can not be the case that M = c1 op c2. Therefore M = (λx.M1) @ V . The redex R1 reduced
by the non-evaluation step may occur either in M1 or in V , i.e. there are the following two cases:

M = (λx.A{R1, x, . . . , x}) @ V ◦−(C,R1)−−−−→T (λx.A{Q1, x, . . . , x}) @ V = N

M = (λx.A{x, . . . , x}) @ λy.B{R1} ◦−
(C,R1)−−−−→T (λx.A{x, . . . , x}) @ λy.B{Q1} = N

In both cases N = E′{R′1}, where E′ = 2.
Now suppose thatN = E′{R′1}, E′ = 2. By lemma B.22N = λx.N1 @ V and eitherM = (λx.A{R1}) @ V

or M = (λx.N1) @ λy.A{R1}. In both cases M is a redex, i.e. M = E{R}, where E = 2.
Induction step. As an inductive hypothesis suppose that the claim holds for the evaluation subcontext

of the context. We have 4 cases:
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1. M = E{R2}, where E = E1 @ M1. Since M ◦−(C,R1)−−−−→T N , we have two possibilities: either C =
C1 @ M1, in which case C1 is a non-evaluation context, or C = (E1{R2}) @ C1. In the former

case E1{R2} = C1{R1} ◦−
(C1,R1)−−−−→T C1{Q1}, and by inductive hypothesis (since E1 is a subcontext of

E) we have C1{Q1} = E′1{R′2}, and hence N = E′{R′2}, where E′ = E′1 @ M1. In the latter case

(E1{R2}) @ C1{R1} ◦−
(C,R1)−−−−→T (E1{R2}) @ C1{Q1}, i.e. N = E′{R2}, where E′ = E1 @ C1{Q1}.

Now suppose that N = E′{R′2}, where E′ = E′1 @ N1. Since M ◦−
(C,R1)−−−−→T N , we have two cases:

• M = (C1{R1}) @ N1, where C1 is a non-evaluation context. Then C1{R1} ◦−
(C1,R1)−−−−→T C1{Q1} =

E′1{R′2}, and by the inductive hypothesis C1{R1} = E1{R2}, so M = (E1{R2}) @ N1.

• M = (E′1{R′2}) @ C1{R1}, where C1 may be an evaluation or a non-evaluation context. In this
case M = E{R′2}, where E = E′1 @ C1{R1}, i.e. E is of the same shape as E′.

2. SupposeM = (λx.M1) @ E{R2}. Then eitherM = (λx.C1{R1}) @ E{R2} orM = (λx.M1) @ C1{R1},
in the latter case C1 is a non-evaluation context. Similarly to the first part of case 1 above, we get
N = (λx.N1) @ E{R2} or N = (λx.M1) @ E′1{R′2}.
Now suppose N = (λx.N1) @ E′{R′2}. Then, as in the previous case, either M = (λx.N1) @ C1{R1},
where C1 is a non-evaluation context, orM = C1{R1} @ E′{R′2}. In the former caseM = (λx.N1) @ E{R2}
by inductive hypothesis, analogously to case 1. In the latter case note that C1 6= 2, since otherwise
C = 2 @ N2 is an evaluation context (N2 = E′{R′2}). Therefore M = (λx.C′′1{R1}) @ E′{R′2} for some
C′′1 , and the claim of the lemma holds.

3. The case of the evaluation context of the form E op M is analogous to case 1.

4. The case of the evaluation context of the form c op E is analogous to case 2.

Lemma B.24 (Class Preservation). If M ◦−(C,R1)−−−−→T N , then ClT (M) = ClT (N).

Proof. It is straightforward to show that if ClT (M) is one of the following: const(c),var, abs, or stuck(l),
then ClT (N) = ClT (M). Similarly if we assume that ClT (N) is one of the above 4 classes, then ClT (M) =
ClT (N). The cases of classes const(c),var, and abs are easy. Below we show the case stuck(l):

Suppose ClT (M) = stuck(l). By induction on the structure of M we show that ClT (N) = stuck(l).
Base case: the case when M = l is impossible, since there is no N s.t. M ◦−−→T N . Instead we

use the following as base cases for M : l @ M1, (λx.M1) @ l, l op M1, c op l. If M = l @ M1, then
M ◦−−→T N = l @ N1, where M1 ◦−−→T N1, i.e. ClT (N) = stuck(l). Similarly, N = (λx.N1) @ l, where
M1 −−→T N1 (i.e. λx.M1 ◦−−→T λx.N1) if M = (λx.M1) @ l, N = l op N1, where M1 ◦−−→T N1 if M = l op M1,
and it may not be the case that M ◦−−→T N if M = c op l.

As the inductive hypothesis assume that if M1 = E{l} is a subterm of M and M1 ◦−−→T N1, then
N1 = E′{l}. Suppose M = (E{l}) @ M ′ ◦−−→T N . If the reduction step is (E{l}) @ M ′ ◦−−→T N ′ @ M ′,
then by inductive hypothesis N ′ = E′{l}, so ClT (N) = ClT ((E′{l}) @ M ′) = stuck(l). If the step is
(E{l}) @ M ′ ◦−−→T (E{l}) @ N ′, then ClT (N) = stuck(l). The cases M = (λx.M ′) @ E{l}, M = E{l} op c,
and M = c op E{l} are analogous.

Now suppose ClT (N) = stuck(l), and show that ClT (M) = stuck(l).
Base case: as above, the case when N = l is impossible, since there is no M s.t. M ◦−−→T l. Therefore

we consider the following base cases for N : N = l @ M1, N = (λx.M1) @ l, N = l op M1. The case
N = c op l is impossible. In all three base cases it easily follows that M has the same shape as N , i.e.
ClT (M) = ClT (N) = stuck(l).

The induction step is similar to the one above. We assume that if N1 = E{l} is a subterm of N and
M1 ◦−−→T N1, then M1 = E′{l}. By considering all cases of N we show that ClT (M) = stuck(l) for every N .

It follows from lemma B.23 that ClT (M) = evaluatable if and only if ClT (N) = evaluatable. This
concludes the proof since the remaining class error is defined as the class of terms that do not belong to
any of the above classes.
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Our proof of standardization of developments follows the approach described in section A.2, i.e. we
show property A.38, and since we have shown the finiteness of developments, by lemma A.39 we prove
standardization of developments. The following lemma implies property A.38 of T .

Lemma B.25. If M1 ◦−
(C,R1)−−−−→M2 =

(E′,R′
2
)

====⇒M3. Then there exists M4 s.t. M1 =
(E,R2)
===⇒M4 −

(C,R1)/(E,R2)−−−−−−−−→
∗

M3,
where (E′, R′2) = (E, R2)/(C, R1).

Proof. The proof is by induction on the structure of the evaluation context E′, similarly to the proof of
lemma B.23 above.

Base case. Suppose M2 = E′{R′2} and E′ = 2. By lemma B.22 M2 = (λx.N) @ V , and either
M1 = (λx.A{R1, x, . . . , x}) @ V (where A is an n + 1-hole context if x occurs in N n times) or M1 =
(λx.N) @ λy.B{R1}. Suppose R1 Ã Q1. In the first case, we have:

(λx.A{R1, x, . . . , x}) @ V ==⇒T A{R1, V, . . . , V } −−→T A{Q1, V, . . . , V },
(λx.A{R1, x, . . . , x}) @ V ◦−−→T (λx.A{Q1, x, . . . , x}) @ V ==⇒T A{Q1, V, . . . , V }.

If we take M4 = A{R1, V, . . . , V }, then the claim of the lemma holds (note that the redex reduced in
A{R1, V, . . . , V } −−→T A{Q1, V, . . . , V } is the residual of the non-evaluation redex w.r.t. the standard redex,
i.e. the application). The second case is similar. Let N = A{x, . . . , x}, where A is an n-hole context. Then

(λx.A{x, . . . , x}) @ λy.B{R1} ==⇒T A{λy.B{R1}, . . . , λy.B{R1}} −−→∗T A{λy.B{Q1}, . . . , λy.B{Q1}},
(λx.A{x, . . . , x}) @ λy.B{R1} ◦−−→T (λx.A{x, . . . , x}) @ λy.B{Q1} ==⇒T A{λy.B{Q1}, . . . , λy.B{Q1}}.

We takeM4 = A{λy.B{R1}, . . . , λy.B{R1}} and observe that all redexes reduced in A{λy.B{R1}, . . . , λy.B{R1}}
−−→∗T A{λy.B{Q1}, . . . , λy.B{Q1}} are residuals of the non-evaluation redex.

Induction Step. As in the proof of lemma B.22, we have 4 cases. We only show one case, the rest is
similar.

• Suppose M2 = (E′1{R′2}) @ N ==⇒T (E′1{Q′2}) @ N = M3. Since M1 ◦−
(C,R1)−−−−→T M2, we have one of the

following: either M1 = (C1{R1}) @ N , or M1 = (E′1{R′2}) @ C1{R1}.

In the former case C1{R1} ◦−
(C1,R1)−−−−→T E′1{R′2}, hence by lemma B.22 C1{R1} = E1{R2}, and by

the inductive hypothesis (E′1, R′2) = (E1, R2)/(C1, R1), and there exists M ′
4 s.t. E1{R2} =

(E1,R2)
====⇒T

M ′
4 −

(C,R1)/(E1,R2)
−−−−−−−−−→

∗

T E′1{Q′2}. Therefore if we take M4 = M ′
4 @ N , then the claim of the lemma holds.

In the latter caseM1 = (E′1{R′2}) @ C1{R1} ==⇒T (E′1{Q′2}) @ C1{R1} −−→T (E′1{Q′2}) @ C1{Q1} =M3

(assuming R1 Ã Q1), and the claim holds.

Cases when M2 = (λx.N) @ E′1{R′2}, M2 = E′1{R′2} op N , and M2 = c1 op E′1{R′2}, are similar.
In all the cases we observe that (E′, R′2) = (E, R2)/(C, R1).

In the case when both given redexes in M1 are marked, lemma B.25 immediately implies the following:

Corollary B.26. If (M1, F1) ◦−−→
dev

(M2, F2) ==⇒
dev

(M3, F3), then there exists (M4, F4) s.t. (M1, F1) ==⇒
dev

(M4, F4)→∗
dev

(M3, F3).

Proof. Let (C, R1) be the redex reduced in the step (M1, F1) ◦−−→
dev

(M2, F2), and (E′, R′2) be the redex

reduced in (M2, F2) ==⇒
dev

(M3, F3). Then by lemma B.25 there exists a redex (E, R2) in M1 s.t. for some

M4 M1 =
(E,R2)
===⇒ M4 −

(C,R1)/(E,R2)−−−−−−−−→
∗

M3. Since both given steps are developments, i.e. they reduced marked

redexes, it must be the case that {(C, R1), (E, R2)} ⊆ F1. Then M1 =
(E,R2)
===⇒ M4 is a development step, and

the sequence M4 −
(C,R1)/(E,R2)−−−−−−−−→

∗

M3 is a development sequence (since all the redexes reduced in this sequence
are marked).
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If F1 = {(C, R1), (E, R2)}, then F3 = ∅ and we are done. Otherwise let (A, R) 6∈ {(C, R1), (E, R2)},

(A, R) ∈ F1. Let us consider an initial pair (M1, {(A, R)}). By lemma B.25 M1 ◦−
(C,R1)−−−−→
dev

M2 =
(E′,R′

2
)

====⇒
dev

M3

implies that there exists M ′
4 s.t. M1 =

(E,R2)
===⇒M ′

4 −
(C,R1)/(E,R2)−−−−−−−−→

∗

M3, where (E′, R′2) = (E, R2)/(C, R1). Since

the reduction =
(E,R2)
===⇒ fromM1 is uniquely defined,M ′

4 = M4. By part 1 of lemma B.18 (M1, {(A, R)}) ◦−(C,R1)−−−−→
dev

(M2, F
′
2) and (M1, {(A, R)}) =

(E,R2)
===⇒ (M3, F

′
3) imply that there exists (M ′′

4 , F
′
4) s.t. (M2, F

′
2) −

(E,R2)/(C,R1)−−−−−−−−→
∗

(M ′′
4 , F

′
4) and (M ′′

4 , F
′
4) −

(C,R1)/(E,R2)−−−−−−−−→
∗

(M ′
3, F

′
3). Since (E′, R′2) = (E, R2)/(C, R1), we get M ′′

4 = M4. By

part 2 of lemma B.18 all reductions −(C,R1)/(E,R2)−−−−−−−−→
∗

lead to the same result, therefore we may assume that

the reductions M4 −
(C,R1)/(E,R2)−−−−−−−−→

∗

M3 above and (M ′′
4 , F

′
4) −

(C,R1)/(E,R2)−−−−−−−−→
∗

(M ′
3, F

′
3) reduce the same sequence

of redexes.
Now, when we have shown the claim for one redex, we can show the general claim by induction on

the number of redexes in F1, with the initial pair (M1, {(C, R1), (E, R2)}) as the base case. The induction
is similar to that in the proof of the parallel moves lemma B.19 and uses corollary A.42 to join sets of
residuals.

Now we can show standardization of developments for T :

Lemma B.27 (Standardization of Developments). Given (M1, F1)→∗
dev

(M2, F2), there exists (M
′, F ′)

s.t. (M1, F1) ==⇒∗
dev

(M ′, F ′) ◦−−→∗
dev

(M2, F2).

Proof. We have shown that the calculus T has finiteness of developments property A.37 (lemma B.13). In
fact, lemma B.10 gives a maximal value of || (M,F ) ||, so T also has property A.35. Corollary B.26 above
states that T has property A.38. Therefore by lemma A.39 it has standardization of developments.

Another property implied by lemma B.25 is the elementary lift diagram (property A.26).

Lemma B.28 (Elementary Lift Diagram). If (M1, F1) ◦−
(C,R)−−−→
dev

(M2, F2) ==⇒ (M4, F4), then there exists

(M3, F3) s.t. (M1, F1) =
(E,R′)
===⇒ (M3, F3)→∗

dev
(M4, F4), where the latter development is a complete development

of (C, R)/(E, R′).

Proof. Follows from lemma B.25 in the case when only the redex (C, R) is marked.

Since developments in T are just extended calculus reductions, the calculus has property A.15, and we
can show that T has the standardization property A.34:

Theorem B.29 (Standardization). If (M,F ) −−→∗T (M ′, F ′), then there exists (M ′′, F ′′) s.t. (M,F ) ==⇒∗T
(M ′′, F ′′) ◦−−→∗T (M ′, F ′).

Proof. T the following properties: property A.26 by lemma B.28, standardization of developments (prop-
erty A.29 by lemma B.27), and composition of developments (property A.15) since developments are defined
via extended reduction. Therefore by theorem A.32 T has the lift property A.17. By lemma 3.39 T has
standardization property.

Theorem B.30 (Computational Soundness of T ). IfM ↔T N , then OutcomeT (M) = OutcomeT (N).

Proof. The calculus with the extended reduction (i.e. reductions on pairs (M,F )) has confluence (theo-
rem B.21), class preservation (lemma B.24), and standardization (theorem B.29). By lemma A.20 standard-
ization (i.e. lift) property holds for terms of T without marked redexes. Similarly confluence for marked
terms implies confluence for terms with no marked redexes. Therefore by theorem 3.35 T is computationally
sound.
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C Soundness of the Core Module Calculus.

In this section we show soundness of the core module calculus without a GC reduction, as defined in sec-
tion 2.4. The next section proves soundness of the calculus CGC with a GC reduction as defined in section 2.6.
Definitions. Section A gives general proofs of lift and project properties based on axiomatic definitions of
a residual and a γ-development step. In this section we fill in calculus-specific details of these definitions and
show that they satisfy the requirements given in section A.

Similarly to definition of residuals in the term calculus (Definition B.5) we define a set of residuals of a
redex using multi-hole contexts and the greatest lower bound of contexts. To be able to define filling of a
module context, we assume that labels in Label are ordered according to some total order < (for instance,
label names are ordered lexicographically). This allows us to specify the order in which holes of a module
context are filled. Note that in this section we are dealing with particular modules, not with α-equivalence
classes of modules, and therefore the order of hidden labels in a module is fixed.

Definition C.1. A multi-hole module context is defined as follows:

D = [l1 7→ C1, . . . , ln 7→ Cn],

where Ci are multi-hole term contexts.
Suppose that l1 < l2 < · · · < ln, and H(Ci) = mi for 1 ≤ i ≤ n. Then for a context D given above by

definition

D{A1,1, . . . ,A1,m1
, . . . ,An,1, . . . ,Amn

} = [l1 7→ C1{A1,1, . . . ,A1,m1
}, . . . , ln 7→ Cn{An,1, . . . ,Amn

}].

Recall that Ai,j are multi-hole term contexts.

Definition C.2. The greatest lower bound of two module contexts is defined as

glb([l1 7→ C1, . . . , ln 7→ Cn], [l1 7→ C′1, . . . , ln 7→ C′n]) = [l1 7→ glb(C1,C′1), . . . , ln 7→ glb(Cn,C′n)],

provided glb(Ci,C′i) is defined for all i s.t. 1 ≤ i ≤ n, otherwise it is undefined. Note that for glb to be
defined the two module contexts must have the same labels of all components.

As for the term calculus, for n > 2

glb(D1,D2, . . . ,Dn) = glb(glb(D1,D2),D3, . . . ,Dn).

Definition C.3 (Projection). If D = [l1 7→ M1, . . . , ln 7→ Mn], then Mi is called a projection of D on a
label li, denoted by D ↓ li.

If D = [l1 7→ C1, . . . , ln 7→ Cn], then Ci is called a projection of D on a label li, denoted by D ↓ li.

Definition C.4. Let (D, R), where D = [li
k
7→
i=1

Mi, lk 7→ C, li
n
7→

i=k+1
Mi], be a module redex. Then lk is called

the binding label of (D, R), and (C, R) is called the term projection of the redex (D, R) (denoted (D, R) ↓).
Note that C = D ↓ lk.

If F = {(D1, R1), . . . , (Dn, Rn)}, then F ↓ l = {(Di, Ri) | (Di, Ri) ∈ F, and l is the binding label of (Di, Ri)}.

The following definition of independent subterms and redexes in the module calculus is analogous to
definition B.14 of independent subterms and redexes in the term calculus. Note that the “term” part of a
module subterm is a term of the calculus T , not C.

Definition C.5. 1. A T -subterm of a module D is a pair (D,M), where D ∈ ContextC , M ∈ TermT ,
and D{M} = D.
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2. Two T -subterms (D1,M1), (D2,M2) of a module D are called independent if either their binding labels
are different, or (D1 ↓ l,M1) and (D2 ↓ l,M2) are independent, where l is the binding label of the two
T -subterms.

3. Two redexes (D1, R1) and (D2, R2) of a module D are independent if they are independent as T -
subterms.

Definition C.6. A redex (D, l) is called a self-referential redex if l is its binding label. In this case D ↓ l is
called the self-referential context of the redex.

Definition C.7. Let D = D1{R1}, where (D1, R1) is a redex, and assume that D −(D2,R2)−−−−→ D′. A set of

residuals of (D1, R1) w.r.t. the reduction −(D2,R2)−−−−→ denoted (D1, R1)/(D2, R2) is defined as follows: let D3 =
glb(D1,D2) and assume (without loss of generality) that D = D3{R1, R2} in the case when D3 ∈ Context

2
C ,

i.e. that R1, R2 fill the two holes of D3 in this order, and R2 Ã Q2 if R2 ∈ TermRedex, then

1. If (D, l) is a self-referential redex and D{l} ↓ l = A{l}, then (D, l)/(D, l) = {(D{A}, l)}. Otherwise
(D, R)/(D, R) = ∅.

2. If D3 ∈ Context
2
C , R2 ∈ TermRedex, then (D1, R1)/(D2, R2) = {(D3{2, Q2}, R1)}. The case when

the reduction reduces a term redex, and the other redex (either a term or a substitution redex) is
independent from the redex being reduced.

3. If D3 ∈ Context
2
C , R2 = l, and D2 ↓ l = V ∈ ValueT , then (D1, R1)/(D2, R2) = {(D3{2, V }, R1), (D3{R1,A}, R1)}

if V = A{R1} for A = D1 ↓ l, and (D1, R1)/(D2, R2) = {(D3{2, V }, R1)} otherwise. I.e. if the reduc-
tion step reduces a substitution redex, then a given redex has two residuals if it has been duplicated
by the substitution, and one otherwise.

4. In this case a given redex is contained in a term redex being reduced. Note that a term redex of
the form c1 op c2 can not contain another redex, so the term redex can only be an application. If
D3 ∈ Context

1
C and R2 = A{R1}, then R2 ∈ TermRedex, and:

• If R2 = λx.Cn{R1, x, . . . , x} @ V , then (D1, R1)/(D2, R2) = {(D2{Cn{2, V, . . . , V }}, R1[x :=
V ])}. This case defines the residual of a redex inside the abstraction when an application is
reduced.

• If R2 = λx.Cn{x, . . . , x} @ V , V = A{R1}, then (D1, R1)/(D2, R2) = {(D2{B1
i }, R1) | 1 ≤ i ≤ n},

where B1
i = Cn{V, . . . , V,2i, V . . . , V }, so that 2 fills the i-th hole of Cn. In this case a given

redex is contained in the operand part of an application.

5. If D3 ∈ Context
1
C and R1 = A{R2}, then R1 ∈ TermRedex, and (D1, R1)/(D2, R2) = {(D1,A{Q2})}

if R2 ∈ TermRedex, and (D1, R1)/(D2, R2) = {(D1,A{V })} if R2 = l and D2 ↓ l = V . In this case
R2 is contained in R1, so R1 has one residual.

Note that the definition exhausts all possible cases of the kinds and mutual positions of (D1, R1) and
(D2, R2).

Lemma C.8. A set of residuals of a redex (D1, R1) w.r.t. a redex (D2, R2) defined in C.7 satisfies the
axiomatic definition A.3.

Proof. We need to check, firstly, that every element of a set (D1, R1)/(D2, R2) defined in C.7 is a module
redex, and, secondly, that the set it satisfies the requirements of axiomatic definition A.3. Both conditions
can be easily checked by considering all possible cases.

106



We generalize the notion of a set of residuals to a set of redexes (rather than a single redex) and to a
sequence of reduction steps. The precise definitions and notations are given in section A.

According to the framework described in section A we define γ-developments for C. First we define
a non-restricted γ-development step, and then restrict it to particular kinds of modules with marked re-
dex - those that originate from a module with a single marked non-evaluation redex. In this case the
γ-development reduction has the desired properties, s.a. finiteness and standardization.

Definition C.9. • A non-restricted γ-development step of (D,F ) is a reduction (D,F )
(D,R)
→
n−γ

(D′, F ′) s.t.

D −(D,R)−−−→ D′, (D, R) ∈ F , and

– If R is a term redex, then F ′ = F/(D, R),

– If R = l is a substitution redex, then F ′ = F/(D, R) −
⋃

(D̃,l)∈F̃l

{(D{D̃ ↓ l}, l)}, where F̃l ⊂ F is

the set of marked self-referential redexes of D whose binding label is l (here − denotes the set
difference).

– Also, (D,F )
(D,R)
→
n−γ

(D,F ′), where (D, R) ∈ F and (D, R) is not self-referential, if F ′ = F−{(D, R)}.

In this case we say that the redex (D, R) gets erased.

Let =
(G,R)
===⇒
n−γ

denote a step
(G,R)
→
n−γ

, where (G, R) is an evaluation redex. If (D,F )
(D,R)
→
n−γ

(D,F ′), then

(D,F ) =
(D,R)
===⇒
n−γ

(D,F ′), regardless of whether the redex (D, R) is an evaluation redex, i.e. a step erasing

a redex is always considered an evaluation step. If (D,F )
(D,R)
→
n−γ

(D′, F ′), but not (D,F ) =
(D,R)
===⇒
n−γ

(D′, F ′),

then (D,F ) ◦−(D,R)−−−→
n−γ

(D′, F ′).

• A domain of γ-development dom(γ) is defined as follows: (D,F ) ∈ dom(γ) if

– either there exists a module D0 and a non-evaluation redex (D, R) s.t. (D0, {(D, R)}) ==⇒∗
∪′

(D,F ′),

where ==⇒
∪′

is either a ==⇒ step or a ==⇒
n−γ

step, and F ⊂ F ′,

– or there exists (D′, F ′) ∈ dom(γ) s.t. (D′, F ′) →
n−γ

(D,F ).

• If (D,F ) ∈ dom(γ) and (D,F ) →
n−γ

(D′, F ′), then we say that this reduction is a γ-development step,

and write (D,F )→
γ

(D′, F ′) (and respectively ==⇒
n−γ

and ◦−−→
n−γ

). We also use the notation =
e
=⇒
γ

for a single

erasing γ-development step and =
e
=⇒
∗

γ
for a sequence of such steps.

Note that for a term redex or for a non-self-referential redex a γ-development step
(D,R)
→
γ

is just a regular

extended reduction step. This fact is used in further proofs, so we formulate it as a lemma.

Lemma C.10. If (D, R) is not a self-referential substitution redex, then (D,F )
(D,R)
→
γ

(D′, F ′) implies that

F ′ = F/(D, R), i.e. (D,F ) −(D,R)−−−→ (D′, F ′).

Proof. By definition C.9 if R is a term redex, then F ′ = F/(D, R). If R = l is a substitution redex and it is
not self-referential, then the binding label of (D, R) is not l, so F̃l = ∅, and therefore F ′ = F/(D, R).
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The difference between the extended reduction and the γ-development is as follows: if (D, l) is a self-
referential redex substituted for a marked label l, then, even though by the extended calculus reduction a
redex duplication takes place, one of the residuals is not included in the set of residuals by the →

γ
step. For

instance:

[l 7→ λx.l, l′ 7→ l] ==⇒
γ

[l 7→ λx.l, l′ 7→ λx.l].

Here and in the further presentation we denote marked redexes by underlining. The result of the substitution
of λx.l for the marked label in the second component is λx.l (i.e. the label is not marked). The self-referential
redex has a single residual – itself. In contrast, the extended calculus reduction preserves the marking of the
label:

[l 7→ λx.l, l′ 7→ l] ==⇒ [l 7→ λx.l, l′ 7→ λx.l].

In this case the self-referential redex has two residuals.

Lemma C.11. A reduction (D,F )→
γ

(D′, F ′) defined in C.9 satisfies the requirements of axiomatic defini-

tion A.11.

Proof. By definition (D, {(D, R)}) ∈ dom(γ) for all non-evaluation redexes (D, R).

If (D,F ) =
(D,R)
===⇒
γ

(D,F ′), then the first part of definition A.11 is satisfied.

If (D,F )
(D,R)
→
γ

(D′, F ′), then the 4 requirements in the second part of the definition are satisfied: the first

two requirements of A.11 are explicitly stated in C.9. The third one holds because the set of marked redexes
in the resulting pair (D′, F ′) is defined as F/(D, R) for a term redex and as F/(D, R) with some redexes
excluded for a substitution redex. Therefore F ′ ⊆ F/(D, R). The forth requirement holds by definition of
dom(γ). If (D, R) is not a self-referential redex, then (D, R)/(D, R) = ∅, and the fifth requirement of the
axiomatic definition holds. If (D, l) is a self-referential redex, then the reduction is

[l 7→ λx.C{l}, . . . ] ◦−−→
γ

[l 7→ λx.C{λx.C{l}}, . . . ],

so (D, l)/(D, l) is not included into the set of marked redexes in the resulting module.

Note that if (D,F ) ∈ dom(γ) and (D,F )
(D,R)
→
n−γ

(D′, F ′), then (D,F )
(D,R)
→
γ

(D′, F ′), and therefore if

(D0, {(D, R)}) ==⇒∗
∪′

(D′, F ′), then (D0, {(D, R)}) ==⇒∗
∪

(D′, F ′) (see A.12 for definition of ==⇒
∪
). In the further

discussion we use the notation ==⇒∗
∪

in this situation.

It easily follows from definition C.9 that (D,F ) ∈ dom(γ) if and only if there exist a module D0 with a

redex (D, R) s.t. (D0, {(D, R)}) ==⇒∗
∪

(D′, F ′) −−→∗
γ

(D,F ).

Definition C.12. If (D0, {(D, R)}) ==⇒∗
∪

(D′, F ′) −−→∗
γ

(D,F ), then (D, R) is called a starting redex of (D,F ).

A starting redex of a pair (D,F ) is not uniquely defined, but this ambiguity does not affect our proofs.
Let us consider three kinds of module redexes: a term redex, a self-referential substitution redex (see

definition C.6), and a substitution redex which is not self-referential.

Lemma C.13. Let (D, R) be a starting redex of (D,F ).

• If (D, R) is a term redex, then every (D′, R′) ∈ F is a term redex,
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• If (D, R) = (D, l) is a non-self-referential substitution redex, then every redex in F is a non-self-
referential substitution redex of the form (D′, l).

• If (D, R) = (D, l) is a self-referential substitution redex, then there is no more than one self-referential
redex (D̃, l) ∈ F , and all other redexes in F (if any) are of the form (D′, l).

Proof. Firstly we note that a step =
(D,R)
===⇒
γ

does not produce new marked redexes, only removes already existing

ones. Therefore we do not need to consider this step in the rest of the proof.
The first claim of the lemma easily follows from the observation that if (D, R) is a term redex, then

for every redex (D1, R1) if (D′, R′) ∈ (D, R)/(D1, R1), then (D′, R′) is a term redex (see definition C.7).
Therefore all residuals of a term redex w.r.t. any reduction sequence are term redexes.

Similarly, it is clear that if a redex (D, l) is a substitution redex, and (D′, R′) ∈ (D, l)/(D1, R1), then
R′ = l, i.e. all residuals of a substitution redex with a label l are substitution redexes with the same label
l. However, this is not enough to prove the second and the third claims of the lemma, since, in general, a
residual of a self-referential redex may be not self-referential, and vice versa.

Let (D0, {(D, l)}) ==⇒∗
∪

(D′, F ′) −−→∗
γ

(D,F ), where (D, l) is a non-self-referential substitution redex. We

show that F has only non-self-referential redexes by induction on the total number of steps in the above
sequence. The base case of 0 steps satisfies the claim, since the pair (D0, {(D, l)}) has only non-self-referential
marked substitution redexes.

Part 1. Suppose (D0, {(D, l)}) ==⇒∗
∪

(D1, F1) =
(G,R)
===⇒
∪

(D2, F2), and F1 has only non-self-referential redexes.

We want to show that F2 also has only such redexes. Note that D1 ↓ l = V ∈ ValueT by definition of a
substitution redex. By the inductive hypothesis there is no (D1, l) ∈ F1 s.t. the binding label of (D1, l) is l, in
other words V does not contain marked occurrences of l. By class preservation property of T (lemma B.24)
V 6= E{R} for any term redex R and V 6= E{l′} for any l′. Therefore the evaluation step occurs in a
component of D1 other than the one bound to l. Let l̃ denote the label of this component.

There are several possibilities for a reduction step =
(G,R)
===⇒
∪

: it may be a ==⇒, which either reduces an

unmarked redex (which may be a term or a substitution redex), or a marked redex (i.e. a redex (D′, l) ∈ F1).

Alternatively, =
(G,R)
===⇒
∪

may be a ==⇒
γ

step. However, in all these cases we observe the following: by considering

the cases in definition of a residual (definition C.7) we can see that the only way a self-referential marked
redex may appear in the component bound to l in (D2, F2) is if a marked occurrence of l is copied to this
component by a substitution. However, since the reduction step happens in a different component of D1 (a
component with a label l̃), a self-referential redex may not be created.

Part 2. Similarly, suppose that (D0, {(D, l)}) ==⇒∗
∪

(D′, F ′) −−→∗
γ

(D1, F1)
(D1,l)
→
γ

(D2, F2), where F1 contains

only non-self-referential redexes (note that the step
(D1,l)
→
γ

is a part of a development sequence, therefore it

reduces a substitution redex with a label l). By the inductive hypothesis F1 does not contain self-referential
redexes, so the binding label of (D1, l) is not l. Therefore reducing this redex can not create a marked
occurrence of l in the component bound to l, so no self-referential redexes occur in F2. This concludes the
proof of the second claim of the lemma.

Now suppose (D0, {(D, l)}) ==⇒∗
∪

(D′, F ′) −−→∗
γ

(D,F ), where (D, l) is a self-referential redex, i.e. D0 ↓ l =

C{l}, where C is a non-evaluation context, and D ↓ l = C. We prove this claim by induction, similarly to the
previous claim. Base case: (D0, {(D, l)}) satisfies the claim, since {(D, l)} contains just one self-referential
redex.

Part 1. Suppose that (D0, {(D, l)}) ==⇒∗
∪

(D1, F1) =
(G,R)
===⇒
∪

(D2, F2), and F1 contains no more than one

self-referential redex. We want to show that F2 contains no more than one self-referential redex. If F1 does
not contain a self-referential redex, then by the same argument as in Part 1 of the proof of the second claim
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we show that F2 does not have a self-referential redex. Now suppose that F1 has a self-referential redex.
Since the component bound to l is a value, the evaluation step occurs in a different component (let l̃ denote
its label). There are three cases of evaluation step ==⇒ reducing an unmarked redex. We show marked redexes
by underlining. Note that C is a non-evaluation context.

Term redex: [l 7→ C{l}, l̃ 7→ E{R}, . . . ] ==⇒ [l 7→ C{l}, l̃ 7→ E{Q}, . . . ],
Substitution redexes: [l 7→ C{l}, l̃ 7→ E{l1}, l1 7→ V ′, . . . ] ==⇒ [l 7→ C{l}, l̃ 7→ E{V ′}, l1 7→ V ′, . . . ],

[l 7→ C{l}, l̃ 7→ E{l}, . . . ] ==⇒ [l 7→ C{l}, l̃ 7→ E{C{l}}, . . . ].

No new self-referential redexes has been created as the result of the evaluation step. Note that in the last
case, even though the self-referential redex has been duplicated, the second copy is not self-referential, since
it does not occur in the component bound to l.

If the =
(G,R)
===⇒
∪

step is a ==⇒ step reducing a marked redex, we have the only possibility (note that a marked

redex must be a substitution redex with the label l, and may not occur in a component bound to l since
D1 ↓ l ∈ ValueT ):

[l 7→ C{l}, l̃ 7→ E{l}, . . . ] ==⇒ [l 7→ C{l}, l̃ 7→ E{C{l}}].

Again, no other self-referential redexes has been created in the component bound to l.

The case when the =
(G,R)
===⇒
∪

step is a ==⇒
γ

step is very similar to the previous one, with the difference that

the occurrence of l in the component bound to l̃ is not marked in the resulting module:

[l 7→ C{l}, l̃ 7→ E{l}, . . . ] ==⇒
γ

[l 7→ C{l}, l̃ 7→ E{C{l}}].

The difference, however, does not affect the fact that the resulting module still has just one self-referential
redex.

Part 2. Suppose that (D0, {(D, l)}) ==⇒∗
∪

(D′, F ′) −−→∗
γ

(D1, F1)
(D1,l)
→
γ

(D2, F2), where F1 contains no more

than one self-referential redex. If F1 does not contain any such redexes, then by the same argument as in
part 2 of the proof of the second claim we show that F2 does not contain self-referential redexes as well.
Suppose F1 has one self-referential redex. We have one of the following two cases:

Case 1: [l 7→ C{l}, l̃ 7→ A{l}, . . . ] →
γ

[l 7→ C{l}, l̃ 7→ A{C{l}}, . . . ],
Case 2: [l 7→ C{l}, . . . ] ◦−−→

γ
[l 7→ C{C{l}}, . . . ].

In the first case a marked occurrence of l is reduced in a component other than the one bound to l.
Then the original self-referential redex is still marked, and therefore F2 still has one self-referential redex.
Note that in the first case A may or may not be an evaluation context, so the reduction may or may not
be an evaluation step. In the second case the self-referential redex is reduced (the reduction step must be a
non-evaluation step, since l occurs in a non-evaluation context). Since the step is a γ-development step, l is
not marked after the substitution. By the inductive hypothesis (D1, F1) has just one self-referential redex,
so there are no other labelled occurrences of l in C{l}. Therefore there are no self-referential redexes in F2.
Combining the two cases, we conclude that F2 has one or no self-referential redexes. This proves the third
claim of the lemma.

Lemma C.10 suggests that in the case of a term redex or a non-self-referential substitution redex the
proofs of properties implying lift and project may be simplified, since γ-developments of these redexes are
just extended calculus reductions. Lemma C.13 guarantees that these two cases are indeed separate from
the case of a self-referential redex (and from each other), i.e. by starting from a single non-evaluation redex,
which is either a term redex, or a non-self-referential substitution redex, in a lift or project diagram one can
get only developments of redexes of the same kind. This allows us to consider the first two (simpler) cases
of redexes separately from the third (i.e. self-referential redex) in the proofs below.
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Properties. In order to prove lift and project (A.17 and A.18 respectively) for the core module calculus C, we
need to show properties required by theorems A.32 and A.33. We also prove finiteness of γ-developments and
the diamond property of the evaluation relation ==⇒, which implies its confluence. Recall that confluence of
==⇒ is used in the proof of computational soundness from lift and project (see theorem 3.41).

Lemma C.14 (Finiteness of γ-developments ). Let (D, R) be a starting redex of (D,F ). There is no
infinite sequence (D,F )→

γ
(D1, F1)→

γ
(D2, F2) . . . .

Proof. We have two cases:
Case 1. (D, R) is a term redex. By lemma C.13 all redexes in F are term redexes.

Let D′ = [li
m
7→
i=1

Mi], and suppose that for every module component Mi we have defined a weighting Ii

according to definition B.6. Then we define a weighting of the module to be a tuple I = (I1, . . . , Im). We
also extend a module reduction on pairs (D,F ) to a module reduction on triples (D,F, I) analogously to
definition B.11.

We say that a weighting I = (I1, . . . , Im) of a module D is decreasing if I1, . . . , Im are decreasing on
(D ↓ l1, F ↓ l1), . . . (D ↓ lm, F ↓ lm) respectively. Let || (D, I) ||=

∑m
i=1 || (D ↓ li, Ii) ||.

Suppose (D,F, I)
(D̃,R̃)
→
dev

(D′, F ′, I ′), and I is decreasing. We want to show that:

1. I is decreasing on (D′, F ′),

2. and || (D, I) ||>|| (D′, I ′) ||.

Let lk be the binding label of (D̃, R̃), and let (C̃, R̃) = (D̃, R̃) ↓ lk. Then

(D ↓ lk, F ↓ lk)
(C̃,R̃)
→
dev

(D′ ↓ lk, F
′ ↓ lk).

Taking into account the weighting of D, we can consider the term reduction on triples (recall definition B.11):

(D ↓ lk, F ↓ lk, Ik)
(C̃,R̃)
→
dev

(D′ ↓ lk, F
′ ↓ lk, I

′
k),

where Ik is the component of the module weighting (I1, . . . , Ik, . . . , Im) corresponding to the label lk, and
I ′k is the weighting of the result of term reduction (recall definition B.7). Note that Ik is decreasing on
(D ↓ lk, F ↓ lk) by definition of a decreasing module weighting. Then by lemma B.12 I ′k is decreasing and ||
(D ↓ lk, Ik) ||>|| (D′ ↓ lk, I ′k) ||. Since the other components of the module are not changed by the reduction,
the new module weighting I ′ = (I1, . . . , Ik−1, I

′
k, Ik+1, . . . , Im) is decreasing and || (D, I) ||>|| (D′, I ′) ||.

We also note the following important facts:

1. || (D, I) ||> 0 for any D, I (since the measure of every module component is greater than 0),

2. for every pair (D,F ) there exists a decreasing weighting I (such a weighting can be obtained as a
combination of decreasing weightings of all components, which exist by lemma B.10)

Combining all the properties of decreasing module weightings that we have shown, we can apply the same
argument as in lemma B.13 to show that all module developments are finite when (D, R) is a term redex.

Note that the erasing γ-development step =
(D,R)
===⇒
γ

also reduces the measure, since it “erases” the marking

of a redex.
Case 2. (D, R) = (D, l) is a substitution redex. By lemma C.13 all redexes in F are substitution redexes

with the label l, and at most one of them is a self-referential redex.
We define a measure23 || (D,F ) || to be the number of elements in F . Note that since every (D, R) is a

module redex in D, the measure || (D,F ) || is finite for every (D,F ) (every module has a finite number of
redexes). Clearly || (D,F ) ||≥ 0 for any D,F .

23This measure is independent from the measure defined in case 1 of the proof.
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By definition C.7 of a residual and C.9 of γ-development every substitution step reduces the number of

marked redexes by one. As in the case of the term redex, an erasing step =
(D,l)
==⇒
γ

also reduces the number of

marked redexes, and therefore the measure, by one. Therefore the γ-developments are finite in C.

Remark C.15. It follows from the proof of lemma C.14 that for a pair (D,F ) no γ-development sequence
can exceed a maximum length that can be easily determined from the pair.

Lemma C.16. The evaluation relation of the calculus C satisfies the following property: if D1 =
(G1,R1)
====⇒ D2

and D1 =
(G2,R2)
====⇒ D3, then there exists D4 s.t. D2 =

(G2,R2)/(G1,R1)
=========⇒ D4 and D3 =

(G1,R1)/(G2,R2)
=========⇒ D4, provided

(G1, R1) 6= (G2, R2).

Proof. The proof is by cases on pairs of redexes (G1, R1) and (G2, R2). Note that the two redexes occur in
two different components of D1, since they are both evaluation redexes, and therefore are independent.

Note that, as the lemma suggests, each of the sets (G1, R1)/(G2, R2) and (G2, R2)/(G1, R1) consists of
just a single redex.

Lemma C.16 implies two important properties of ==⇒C stated in theorem 2.60 and in lemma 2.62 in
section 2.4.

Lemma C.17 (Confluence of ==⇒C). The evaluation relation ==⇒C of the calculus C is confluent.

Proof. By lemma C.16.

Lemma C.18. If D ==⇒∗C D
′ = Eval(D), then there is no infinite sequence D ==⇒C D1 ==⇒C D2 . . . .

Proof. By lemma C.16 if D =
S1

=⇒
∗

C D
′ andD =

S2

=⇒
∗

C D
′, then the two sequences S1 and S2 have the same number

of steps. By confluence (lemma C.17) for everyDi s.t. D ==⇒∗C Di there exists a sequenceDi ==⇒∗C D
′, therefore

there is no infinite evaluation sequence starting from D.

Lemma C.19. The evaluation relation of the calculus C has the following property: if (D1, {(G, R)}) =
(G,R)
===⇒
γ

(D2, ∅), (D1, {(G, R)}) =
(G′,R′)
====⇒ (D3, F ), and (G, R) 6= (G′, R′), then there exists D4 s.t. (D2, ∅) =

(G′,R′)/(G,R)
=======⇒

(D4, ∅) and (D3, F ) =
(G,R)/(G′,R′)
=======⇒

γ
(D4, ∅).

Proof. The two given reductions imply that D1 =
(G,R)
===⇒ D2 by definition A.11, and D1 =

(G′,R′)
====⇒ D3 by defi-

nition A.7. By lemma C.16 there exists D4 s.t. D2 =
(G′,R′)/(G,R)
=======⇒ D4 and D3 =

(G,R)/(G′,R′)
=======⇒ D4. Note that

F = (G, R)/(G′, R′) contains just one redex (by C.16).

Note that (G, R) can not be a self-referential redex, since the step (D1, {(G, R)}) =
(G,R)
===⇒
γ

(D2, ∅) is an

evaluation step, but a self-referential redex is a non-evaluation redex. Therefore (lemma C.13) the redex
(G′′, R′′) = (G, R)/(G′, R′) also can not be self-referential. Since no self-referential redexes are marked, by

definition A.7 of extended calculus reduction the reduction stepD3 =
(G′′,R′′)
====⇒ D4 implies that (D3, {(G′′, R′′)})

=
(G′′,R′′)
====⇒ (D4, ∅). This, and the fact that by definition C.9 (D3, {(G′′, R′′)}) ∈ dom(γ), imply by lemma C.10

that the step (D3, {(G′′, R′′)}) =
(G′′,R′′)
====⇒ (D4, ∅) is a ==⇒

γ
step. So we have shown that (D3, F ) ==⇒

γ
(D4, ∅).

The condition (G, R) 6= (G′, R′) is necessary. Otherwise the two resulting pairs are the same:

Lemma C.20. If (D1, {(G, R)}) =
(G,R)
===⇒
γ

(D2, ∅), (D1, {(G, R)}) =
(G,R)
===⇒ (D3, F ), then (D3, F ) = (D2, ∅).
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Proof. The only marked redex in this case is not a self-referential one. If (D, R) is not self-referential, then
(D, R)/(D, R) = ∅.

Lemmas C.19 and C.20 prove γ-confluence of evaluation for a single marked redex. Our goal is to
generalize this proof arbitrary pairs (D1, F1) ∈ dom(γ), and also to arbitrary γ-development steps (i.e. not
only those reducing a redex, but also erasing steps). Below we consider two cases. If the set F1 does not
contain a self-referential redex, it is enough to show the property for one marked redex other than the redex
(G, R) reduced in the given γ-development step. Since in this case a γ-development step is the same as the
corresponding extended reduction step, we can use lemma A.40 to combine the results for each marked redex
in F1. The second case is when F1 contains a self-referential redex. Since in this case an γ-development step
is different from an extended reduction step and its result depends on the marking of the self-referential
redex, we need to consider two marked redexes (the evaluation redex and the self-referential one). We also

need to take into account erasing steps =
e
=⇒. The proofs are given in the following lemmas.

Lemma C.21. Let F1 = {(G, R), (D, R̃)}, where (D, R̃) is not a self-referential redex, and suppose (D1, F1) =
(G,R)
===⇒
γ

(D2, F2), (D1, F1) =
(G′,R′)
====⇒ (D3, F3), where (G, R) 6= (G′, R′). Then there exists (D4, F4) s.t. (D2, F2)

=
(G′,R′)/(G,R)
=======⇒ (D4, F4) and (D3, F3) =

(G,R)/(G′,R′)
=======⇒

γ
(D4, F4).

Proof. By lemma C.13 the redexes (G, R) and (D, R̃) are of the same kind. Note also that (G, R) and (G′, R′)
can not be in the same module component, since they are both evaluation redexes. Let l, l′ denote the labels
of the components where (G, R) and (G′, R′) appear, respectively. We also use notation l̃ for the label where
(D, R̃) appears. It may be the case that l̃ is the same as l or l′.

The proof is by cases of the kinds of the three redexes. Note that (G, R) and (D, R̃) are of the same kind
by lemma C.13.

• (G, R), (D, R̃), and (G′, R′) are all term redexes. If l̃ 6= l, l̃ 6= l′, then all three redexes occur in different
components of the module, so the claim obviously holds. Suppose l̃ = l′, i.e. R′ and R̃ occur in the
same component. If these redexes are independent (i.e. one does not contain the other), then the claim
of the lemma clearly holds. It may not be the case that R̃ contains R′, since (G′, R′) is an evaluation
redex, and therefore cannot be contained in another redex. If R′ contains R̃, then R′ = (λx.B{R̃}) @ V
or R′ = (λx.M) @ λy.B{R̃}. In the first case, assuming B′ = B[x := V ] and R̃′ = R̃′[x := V ], we have:

[l 7→ G{R}, l′ 7→ G′{(λx.B{R̃}) @ V }, . . . ] ==⇒
γ

[l 7→ G{Q}, l′ 7→ G′{(λx.B{R̃}) @ V }, . . . ] ==⇒

[l 7→ G{Q}, l′ 7→ G′{B′{R̃′}}, . . . ],
[l 7→ G{R}, l′ 7→ G′{(λx.B{R̃}) @ V }, . . . ] ==⇒ [l 7→ G{R}, l′ 7→ G′{B′{R̃′}}, . . . ] ==⇒

γ

[l 7→ G{Q}, l′ 7→ G′{B′{R̃′}}, . . . ].

The other case is similar, with the only difference that the redex R̃ gets duplicated rather than changed.
The case when l̃ = l is similar to the case when l̃ = l′, since the marked redexes are term redexes, and
therefore γ-developments are just extended reductions.

• (G, R) and (D, R̃) are term redexes, (G′, R′) is a substitution redex. In this case R′ is an unmarked
label (since F1 contains term redexes, it can not contain a label). Let R′ = l1. The label l1 is bound
to a value, so l1 6= l, l1 6= l′. If l1 6= l̃, then the three redexes are independent, and the claim of the
lemma clearly holds. If l1 = l̃, then reducing the redex (G′, l1) duplicates R̃. However, it is clear that
(D, R̃) has the same two residuals on both reduction paths.

• (G, R) and (D, R̃) are substitution redexes, (G′, R′) is a term redex. Then R = R̃ = l1. Since F1 does
not contain self-referential redexes, l1 6= l, l1 6= l̃. Since l1 is bound to a value, l1 6= l′.
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If l̃ 6= l, l̃ 6= l′, then all 4 labels are distinct, and the claim of the lemma clearly holds. If l̃ = l′, i.e. of
l1 of the marked redex (D, l1) occurs in the same component as R′, and the module can be of one of
the following forms (as before, we show marked labels by underlining):

[l 7→ E{l1}, l′ 7→ A{R′, l1}, l1 7→ V, . . . ],
[l 7→ E{l1}, l′ 7→ E′{(λx.B{l1}) @ V }, l1 7→ V, . . . ], or
[l 7→ E{l1}, l′ 7→ E′{(λx.M) @ λy.B{l1}}, l1 7→ V, . . . ],

where in the first case A{2, l1} is an evaluation context24. It is easy to see that the claim holds in all
three cases (in the last case the redex (D, l1) gets duplicated, but its residuals are the same on both
reduction paths). The remaining case is when l̃ = l, then the module is of the form

[l 7→ A{l1, l1}, l′ 7→ E{R′}, l1 7→ V, . . . ].

Again, clearly both reduction paths lead to the same module with the same residual of (D, l1).

• (G, R), (D, R̃), and (G′, R′) are all substitution redexes. Let R = l1 (hence R̃ = l1) and R′ = l2. There
are 3 possibilities:

1. l1 6= l2,

2. l1 = l2, (G′, l1) 6∈ F1, i.e. it is not marked,

3. l1 = l2, (G′, l1) ∈ F1, i.e. it is marked.

Let us consider all three possibilities:

1. If l1 6= l2, then the 4 labels l, l′, l1, l2 are all pairwise distinct (in addition to the given conditions,
we notice that l1, l2 are bound to values, and l, l′ contain evaluation redexes, so none of the first
two labels equals to any of the other two). We have the following 4 possibilities for l̃:

If l̃ = l, then the module is of the form

[l1 7→ V1, l2 7→ V2, l 7→ A{l1, l1}, l′ 7→ E{l2}, . . . ],

where, as above, A{2, l1} is an evaluation context One can check that reducing (G, l1) and (G′, l2)
in any order leads to a module with the same residual of (D, l1).
If l̃ = l′, then the case is similar to the case when l̃ = l.

If l̃ = l2, then the marked redex (D, l1) gets duplicated:

[l1 7→ V1, l2 7→ λx.C{l1}, l 7→ E{l1}, l′ 7→ E′{l2}, . . . ] ==⇒
γ

[l1 7→ V1, l2 7→ λx.C{l1}, l 7→ E{V1}, l′ 7→ E′{l2}, . . . ] ==⇒
[l1 7→ V1, l2 7→ λx.C{l1}, l 7→ E{V1}, l′ 7→ E′{λx.C{l1}}, . . . ],
[l1 7→ V1, l2 7→ λx.C{l1}, l 7→ E{l1}, l′ 7→ E′{l2}, . . . ] ==⇒
[l1 7→ V1, l2 7→ λx.C{l1}, l 7→ E{l1}, l′ 7→ E′{λx.C{l1}}, . . . ] ==⇒

γ

[l1 7→ V1, l2 7→ λx.C{l1}, l 7→ E{V1}, l′ 7→ E′{λx.C{l1}}, . . . ].

The remaining possibility is that l̃ 6∈ {l, l′, l2}. Then all five labels are distinct, and the claim of
the lemma clearly holds. Note that the case l̃ = l1 is impossible because (D, l1) ∈ F1, but F1 does
not contain self-referential redexes.

24Here and below we specify only one order in which two (or more) subterms occur in a context if all the cases are analogous.
For instance, here we do not consider the case when the evaluation context is A{l1, R′}, because it is completely analogous to
the case we have considered
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2. If l1 = l2, and (G′, l1) is not marked, then we have one of the following choices:

l̃ 6∈ {l, l′} : [l1 7→ V1, l 7→ E{l1}, l′ 7→ E′{l1}, l̃ 7→ C{l1}, . . . ],
l̃ = l : [l1 7→ V1, l 7→ A{l1, l1}, l′ 7→ E′{l1}, . . . ],
l̃ = l′ : [l1 7→ V1, l 7→ E{l1}, l′ 7→ A{l1, l1}, . . . ].

In all three cases (D, l1) has the same residual on both reduction paths.

3. If l1 = l2, and (G′, l1) is marked, then the case is completely analogous to case 2. Even though the
occurrence of l1 in the component bound to l′ is marked, this does not affect the non-development
reduction, because this reduction does not remove the mark of a label regardless of whether the
target of the substitution is marked or unmarked.

The remaining case is when the γ-development step erases a redex.

Lemma C.22. Suppose F1 does not contain a self-referential redex. If (D1, F1) =
(D,R)
===⇒
γ

(D2, F2), (D1, F1)

=
(G,R̃)
===⇒ (D3, F3), then there exists (D4, F4) s.t. (D2, F2) =

(G,R̃)
===⇒ (D4, F4) and (D3, F3) =

e
=⇒
∗

γ
(D4, F4).

Proof. By definition of an erasing γ-development step (D, R) is marked. Therefore if (G, R̃) is marked, by
lemma C.13 it must be of the same kind as (D, R). We also observe that the residuals of both redexes do
not depend on what other redexes are marked in the modules. We have the following cases:

1. (D, R) is a term redex. Then:

• If (G, R̃) is an unmarked term redex, then either the two redexes are independent, in which case
the claim clearly holds, or (D, R) is contained in (G, R̃) (note that (G, R̃) is an evaluation redex,
and therefore can not be contained in (D, R)). In the latter case suppose (D, R) is contained in
the operand of (G, R̃):

[l 7→ E{(λx.A{x, . . . , x}) @ λy.B{R}}, . . . ] ==⇒ [l 7→ E{A{λy.B{R}, . . . , λy.B{R}}}, . . . ] =
e
=⇒
∗

γ

[l 7→ E{A{λy.B{R}, . . . , λy.B{R}}}, . . . ],
[l 7→ E{(λx.A{x, . . . , x}) @ λy.B{R}}, . . . ] =

e
=⇒
γ

[l 7→ E{(λx.A{x, . . . , x}) @ λy.B{R}}, . . . ] ==⇒

[l 7→ E{A{λy.B{R}, . . . , λy.B{R}}}, . . . ].

The case when (D, R) is contained in the operator of (G, R̃) is similar, but no redex duplication
happens in this case.

• If (G, R̃) is a marked term redex, then the case is analogous to the previous one, but additionally
we need to consider the following case: if (G, R̃) = (D, R), then (D3, F3) = (D4, F4), since the
residual of (G, R̃) is unmarked in D3.

• If (G, R̃) = (G, l) is a substitution redex, then it is unmarked. Since (G, l) is an evaluation redex,
the label l can not be contained in (D, R). Suppose (D, R) is contained in the value bound to l:

[l 7→ λx.C{R}, l′ 7→ E{l}, . . . ] ==⇒ [l 7→ λx.C{R}, l′ 7→ E{λx.C{R}}, . . . ] =
e
=⇒
∗

γ

[l 7→ λx.C{R}, l′ 7→ E{λx.C{R}}, . . . ],
[l 7→ λx.C{R}, l′ 7→ E{l}, . . . ] =

e
=⇒
γ

[l 7→ λx.C{R}, l′ 7→ E{l}, . . . ] ==⇒

[l 7→ λx.C{R}, l′ 7→ E{λx.C{R}}, . . . ].

In the remaining case (D, R) is independent from (G, l), and the claim of the lemma clearly holds.
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2. (D, R) = (D, l) is a substitution. We have the subcases:

• (G, R̃) is a term redex. It can not be contained in the value bound to l.

If (G, R̃) contains the marked occurrence of l of (D, l), then this occurrence may be duplicated,
in which case the resulting erasing γ-development remove all residuals of the marked l from the
set of marked redexes. The case similar to the cases above where duplication of the marked redex
occurs.

Otherwise (D, l) is independent from (G, R̃), no duplication occurs, and the claim clearly holds.

• (G, R̃) = (G, l′), l′ 6= l. If (D, l) is not contained in the value bound to l′, then the claim clearly
holds. Otherwise the marked occurrence of l gets duplicated by the evaluation redex, and both
marked copies of l need to be “erased”.

• (G, R̃) = (G, l). Note that the value bound to l does not contain a marked occurrence of l, since
by the condition of the lemma there is no self-referential redex among marked redexes. In this
case either (G, l) is independent of (D, l) and the claim clearly holds, or (G, l) = (D, l):

[l 7→ V, l′ 7→ E{l}, . . . ] ==⇒ [l 7→ V, l′ 7→ E{V }, . . . ],
[l 7→ V, l′ 7→ E{l}, . . . ] =

e
=⇒
γ

[l 7→ V, l′ 7→ E{l}, . . . ] ==⇒

[l 7→ V, l′ 7→ E{V }, . . . ].

Lemma C.23. Suppose F1 does not contain a self-referential redex. If (D1, F1) =
(G,R)
===⇒
γ

(D2, F2), (D1, F1)

=
(G′,R′)
====⇒ (D3, F3), then:

• If (G, R) 6= (G′, R′), then there exists (D4, F4) s.t. (D2, F2) =
(G′,R′)/(G,R)
=======⇒ (D4, F4) and (D3, F3) =

(G,R)/(G′,R′)
=======⇒

γ

(D4, F4);

• If (G, R) = (G′, R′), then (D2, F2) = (D3, F3).

Proof. The first part by lemmas C.19 and C.21 and by corollary A.42. The second part by lemma C.20 and
by corollary A.42.

The case when F1 has a self-referential redex is slightly more complicated: we can not apply corollary A.42,
as we did for the case above when F1 does not have self-referential redexes, because in the case of a self-
referential redex γ-development reduction is different from the extended reduction:

[l1 7→ λx.l1, l2 7→ l1] ==⇒ [l1 7→ λx.l1, l2 7→ λx.l1], but
[l1 7→ λx.l1, l2 7→ l1] ==⇒

γ
[l1 7→ λx.l1, l2 7→ λx.l1].

The label l1 in the second component of the result is marked in the first case, but not in the second. However,
it turns out that for both reductions a residual set of a redex does not depend on the marking of any redexes
in the module other than the self-referential one, as shown in the following two lemmas. Note that the second
lemma considers an arbitrary γ-development step, not just an evaluation step, and thus will be used for the
proofs of elementary lift and project diagrams later in this section.

Lemma C.24. Suppose (D,F ) =
(G,R)
===⇒ (D′, F ′), (D, l) ∈ F is a self-referential redex, and (D,F ) ∈ dom(γ).

Let (D′, l) be a non-self-referential redex in D s.t. (D′, l) 6∈ F . Then (D,F ∪ {(D′, l)}) =
(G,R)
===⇒ (D′, F ′ ∪

(D′, l)/(G, R)).
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Proof. This follows directly from definition A.7 of extended reduction. Note that the lemma holds for both
marked and unmarked (G, R).

Lemma C.25. Let (D1, {(D, l), (D′, l)})
(D,l)
→
γ

(D2, F2) and (D1, {(D, l), (D′′, l)})
(D,l)
→
γ

(D2, F
′
2), and suppose

that no more than one of the three redexes is self-referential. (D1, {(D, l), (D′, l), (D′′, l)}) ∈ dom(γ). Then

(D1, {(D, l), (D′, l), (D′′, l)})
(D,l)
→
γ

(D2, F2 ∪ F ′2).

Proof. Since at most one of the three redexes may be a self-referential redex, we consider the following 3
cases:

• None of the three redexes is self-referential. Let D̃ be a 4-hole context s.t. the first hole contains the
value of the component bound to l, then

Given D̃{V, l, l, l} (D,l)
→
γ

D̃{V, V, l, l}

and D̃{V, l, l, l} (D,l)
→
γ

D̃{V, V, l, l},

we have D̃{V, l, l, l} (D,l)
→
γ

D̃{V, V, l, l}.

Here the first reduction corresponds is the reduction when only (D′, l), but not (D′′, l), is marked, and
the second reduction is the case when (D′′, l), but not (D′, l), is marked.

• (D′, l) is self-referential (note that this is completely analogous to the case when (D′′, l) is self-referential,
so we show only one of these cases). In this case no other marked redex occurs in the component bound
to l. The redexes (D, l) and (D′′, l) may occur in the same or in different components. Let us show the
case when they occur in the same component, the other case is analogous:

Given [l 7→ λx.C{l}, l′ 7→ A{l, l}, . . . ] (D,l)
→
γ

[l 7→ λx.C{l}, l′ 7→ A{λx.C{l}, l}, . . . ]

and [l 7→ λx.C{l}, l′ 7→ A{l, l}, . . . ] (D,l)
→
γ

[l 7→ λx.C{l}, l′ 7→ A{λx.C{l}, l}, . . . ],

we have [l 7→ λx.C{l}, l′ 7→ A{l, l}, . . . ] (D,l)
→
γ

[l 7→ λx.C{l}, l′ 7→ A{λx.C{l}, l}, . . . ].

• (D, l) is self-referential (in this case the γ-development step is a non-evaluation step). As in the previous
case, the other two redexes may occur in the same component or in two different ones. As before, we
show only the former case, the latter one is analogous.

Given [l 7→ λx.C{l}, l′ 7→ A{l, l}, . . . ] (D,l)
→
γ

[l 7→ λx.C{λx.C{l}}, l′ 7→ A{l, l}, . . . ]

and [l 7→ λx.C{l}, l′ 7→ A{l, l}, . . . ] (D,l)
→
γ

[l 7→ λx.C{λx.C{l}}, l′ 7→ A{l, l}, . . . ],

we have [l 7→ λx.C{l}, l′ 7→ A{l, l}, . . . ] (D,l)
→
γ

[l 7→ λx.C{λx.C{l}}, l′ 7→ A{l, l}, . . . ].

We can generalize the previous lemma to the case of arbitrary sets of marked redexes in a module:

Corollary C.26. Let (D1, F1)
(D,l)
→
γ

(D2, F2) and (D1, {(D, l), (D′, l)})
(D,l)
→
γ

(D2, F
′
2), where (D′, l) 6∈ F1. If

(D1, F1 ∪ {(D′, l)}) ∈ dom(γ), then (D1, F1 ∪ {(D′, l)})
(D,l)
→
γ

(D2, F2 ∪ F
′
2).
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Proof. If F1 = ∅, the claim trivially holds. If F1 consists of one redex, the claim holds by lemma C.25.
Suppose F1 consists of n redexes. By the condition (D1, F1 ∪ {(D′, l)}) ∈ dom(γ) at most one of the

marked redexes is self-referential. By lemma C.25 the set of residuals of the marked redex (D′, l) with respect
to the redex (D, l) does not depend on whether any other redexes in the module are marked. Similarly the
set of residuals of any redex in F1 does not depend on whether (D′, l) is marked. Therefore the resulting set
of marked redexes is the union F2 ∪ F ′2, where F2 = F1/(D, l), and F ′2 = (D′, l)/(D, l).

The following two lemmas deal with the cases when the self-referential redex is the only marked one (in
addition to the redex being reduced) and when there is one more marked redex. Lemmas C.29 and C.30
generalize these two cases to an arbitrary set of marked redexes containing a self-referential redex.

Lemma C.27. If (D1, {(D, l1), (G, l1)}) =
(G,l1)
===⇒
γ

(D2, F2), (D1, {(D, l1), (G, l1)}) =
(G′,R′)
====⇒ (D3, F3), where

(D, l1) is a self-referential redex and (G, l1) 6= (G′, R′), then there exists (D4, F4) s.t. (D2, F2) =
(G′,R′)/(G,l1)
========⇒

(D4, F4) and (D3, F3) =
(G,l1)/(G

′,R′)
========⇒

γ
(D4, F4).

Proof. The proof is by cases on (G′, R′). Note that both (G′, R′) and (G, l1) are evaluation redexes, and
therefore they occur in two different components, and none of these components is bound to l1.

• (G′, R′) is a term redex:

D1 = [l1 7→ λx.C{l1}, l 7→ E{l1}, l′ 7→ E′{R′}, . . . ]

The two redexes reduced are independent, and on both reduction paths we arrive at the module:

D4 = [l1 7→ λx.C{l1}, l 7→ E{λx.C{l1}}, l′ 7→ E′{Q′}, . . . ]

So the self-referential redex has only one residual - itself.

• (G′, R′) is a substitution redex, R′ = l2 6= l1. Analogous to the previous case.

• (G′, R′) is a substitution redex, R′ = l1. Note that l1 in (G′, R′) is not marked, since, by the conditions
of the lemma, only the other two redexes are marked. Then

D1 = [l1 7→ λx.C{l1}, l 7→ E{l1}, l′ 7→ E′{l1}, . . . ],
D4 = [l1 7→ λx.C{l1}, l 7→ E{λx.C{l1}}, l′ 7→ E′{λx.C{l1}}, . . . ].

The case when the two evaluation steps reduce the same redex needs to be treated separately, since the
label on one of the redexes gets preserved, and the resulting γ-development step erases this redex:

Lemma C.28. Suppose (D1, {(D, l), (G, l)}) =
(G,l)
==⇒
γ

(D2, F2) and (D1, {(D, l), (G, l)}) =
(G,l)
==⇒ (D3, F3), where

(D, l) is self-referential. Then (D3, F3) =
(G,l)
==⇒
γ

(D2, F2).

Proof. The following reduction sequences prove the claim. Here =
e
=⇒
γ

denotes the erasing γ-development step.

[l 7→ λx.C{l}, l′ 7→ E{l}, . . . ] ==⇒
γ

[l 7→ λx.C{l}, l′ 7→ E{λx.C{l}}, . . . ],
[l 7→ λx.C{l}, l′ 7→ E{l}, . . . ] ==⇒

[l 7→ λx.C{l}, l′ 7→ E{λx.C{l}}, . . . ] =
e
=⇒
γ

[l 7→ λx.C{l}, l′ 7→ E{λx.C{l}}, . . . ].
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Lemma C.29. Suppose F1 has a self-referential redex. If (D1, F1) =
(G,l)
==⇒
γ

(D2, F2), (D1, F1) =
(G′,R′)
====⇒ (D3, F3),

then there exists (D4, F4) s.t. (D2, F2) =
(G′,R′)/(G,l)
=======⇒ (D4, F4) and (D3, F3) =

(G,l)/(G′,R′)
=======⇒

γ
(D4, F4).

Proof. The proof is by induction on the number of redexes in F1. If F1 consists of just the self-referential
redex in addition to the redex (G, l), then by lemma C.27 the claim of the lemma holds.

Suppose the lemma holds for an n-redex subset of F1, let F ′1 denote this subset. Let (D′, l) ∈ F1,
(D′, l) 6∈ F ′1. Let (D, l) be the self-referential redex of F ′. Note that (D′, l) is not self-referential, since
(D1, F1) ∈ dom(γ), and therefore by lemma C.13 F1 has no more than one self-referential redex.

By the inductive hypothesis (D1, F
′
1) =

(G,l)
==⇒
γ

(D2, F
′
2), (D1, F

′
1) =

(G′,R′)
====⇒ (D3, F

′
3) implies that there exists

(D4, F
′
4) s.t. (D2, F

′
2) =

(G′,R′)/(G,l)
=======⇒ (D4, F

′
4), (D3, F

′
3) =

(G,l)/(G′,R′)
=======⇒

γ
(D4, F

′
4).

By lemma C.21 (D1, {(D, l), (G, l)}) =
(G,l)
==⇒
γ

(D2, F̃2) and (D1, {(D, l), (G, l)}) =
(G′,R′)
====⇒ (D3, F̃3) implies that

there exists (D4, F̃4) s.t. (D2, F̃2) =
(G′,R′)/(G,l)
=======⇒ (D4, F̃4), (D3, F̃3) =

(G,l)/(G′,R′)
=======⇒

γ
(D4, F̃4).

We combine the two diagrams by lemma C.24 for the ==⇒ steps and by lemma C.25 for the ==⇒
γ

steps:

(D1, F
′
1 ∪ {(D, l)}) =

(G,l)
==⇒
γ

(D2, F
′
2 ∪ F̃2) and (D1, F

′
1 ∪ {(D, l)}) =

(G′,R′)
====⇒ (D3, F

′
3 ∪ F̃3) imply that (D2, F

′
2 ∪

F̃2) =
(G′,R′)/(G,l)
=======⇒ (D4, F

′
4 ∪ F̃4), (D3, F

′
3 ∪ F̃3) =

(G,l)/(G′,R′)
=======⇒

γ
(D4, F

′
4 ∪ F̃4). This shows that the claim of the

lemma holds for a set of n+ 1 redexes of D1.

Lemma C.30. Suppose F1 has a self-referential redex. If (D1, F1) =
(D,l)
==⇒
γ

(D2, F2) and (D1, F1) =
(G,R̃)
===⇒

(D3, F3), then there exists (D4, F4) s.t. (D2, F2) =
(G,R̃)
===⇒ (D4, F4) and (D3, F3) =

e
=⇒
∗

γ
(D4, F4).

Proof. We observe that the only redex in F1 that affects the reductions is the self-referential redex. The
marking of all other redexes (i.e. those not equal to (D, l) and (G, R̃)) is preserved by the reductions, so we
are not considering any other marked redexes.

The subcases are as follows:

1. If (G, R̃) is a term redex, then the marked occurrence of l corresponding to (D, l) is either independent
of (G, R̃), or is contained in (G, R̃). In the former case the claim of the lemma clearly holds. In the
latter case the marked occurrence of l may be duplicated by the reduction of (G, R̃), in which case all

the copies of l need to be “erased” by the =
e
=⇒
∗

γ
sequence.

2. If (G, R̃) = (G, l′) is a substitution redex and l′ 6= l, then the only dependency between the two redexes
is when (D, l) occurs in the value bound to l′. In this case:

[l 7→ λx.C{l}, l′ 7→ λy.B{l}, l′′ 7→ E{l′}, . . . ] ==⇒

[l 7→ λx.C{l}, l′ 7→ λy.B{l}, l′′ 7→ E{λy.B{l}}, . . . ] =
e
=⇒
∗

γ

[l 7→ λx.C{l}, l′ 7→ λy.B{l}, l′′ 7→ E{λy.B{l}}, . . . ],
[l 7→ λx.C{l}, l′ 7→ λy.B{l}, l′′ 7→ E{l′}, . . . ] =

e
=⇒
γ

[l 7→ λx.C{l}, l′ 7→ λy.B{l}, l′′ 7→ E{l′}, . . . ] ==⇒
[l 7→ λx.C{l}, l′ 7→ λy.B{l}, l′′ 7→ E{λy.B{l}}, . . . ].

The other cases are trivial.

3. If (G, R̃) = (G, l), then we have the following possibilities:
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• (G, l) is not marked. In this case the two redexes are independent (since (D, l) is not self-referential,
and therefore can not occur in the component bound to l), and the claim of the lemma holds.

• (G, l) is marked, (G, l) 6= (D, l). The two redexes also must be independent, and the case is similar
to previous one.

• (G, l) = (D, l). This case is considered in lemma C.28.

Lemma C.31 (γ-confluence of Evaluation of C). The calculus C has strong γ-confluence of evaluation
(property A.22), i.e. if (D1, F1) ==⇒

γ
(D2, F2), (D1, F1) ==⇒ (D3, F3), then there exists (D4, F4) s.t. (D2, F2)

==⇒ (D4, F4) and (D3, F3) ==⇒
γ

(D4, F4).

Proof. If F1 does not contain a self-referential redex, then the lemma follows by lemma C.23, otherwise by
lemmas C.29 and C.30.

Elementary Lift and Project Diagrams. Properties A.25 and A.26 are another two properties required
for the proof of lift and project. To prove these properties, we use an approach similar to that of the proof
of γ-confluence of evaluation above.

The following property of terms is used in the further proofs.

Lemma C.32. If M = E{l}, then there is no such context C and redex R that M = C{R} and R = A{l},
i.e. such that R contains the occurrence of l.

Proof. Suppose such C and R exist. If M = E{l} and l is contained in a redex R, then M = C{A{l}}, and
E = C{A}. Therefore C = E′ ∈ EvalContextT , and M = E′{R}, which contradicts the class preservation
lemma B.24.

The following 4 lemmas show all cases for the proof of property A.25 (elementary project diagram).

Lemma C.33. Suppose (D1, {(D, R), (D′, R′)}) ◦−(D,R)−−−→
γ

(D2, F2) and (D1, {(D, R), (D′, R′)}) =
(G,R̃)
===⇒ (D3, F3),

where (D, R) and (D′, R′) are not self-referential. Then there exists (D4, F4) s.t. (D2, F2) =
(G,R̃)/(D,R)
=======⇒

(D4, F4) and (D3, F3)
(D,R)/(G,R̃)

−−→∗
γ

(D4, F4). Moreover, if the sequence
(D,R)/(G,R̃)

−−→∗
γ

consists of more than one

step, then for any such reduction (D3, F3)
(D,R)/(G,R̃)

−−→∗
γ

(D4, F4).

Proof. Let l, l′, l̃ be the labels of the components containing (D, R), (D′, R′), and (G, R̃) respectively. We
have the following cases:

1. All three redexes are term redexes. When all three redexes are independent, the claim obviously holds.
It also clearly holds in the case when (D, R) and (G, R̃) are in different terms, even if (D′, R′) is in the
same term with one of the former redexes. If (G, R̃) contains (D, R), then we apply lemma B.18 to
the term where both of these redexes occur. This is the only case when (D, R) may be duplicated, i.e.

the sequence
(D,R)/(G,R̃)

−−→∗
γ

may consist of more than one step. By lemma B.18 the order of steps in this

sequence does not matter.

There are no other cases, since (D, R) can not contain (G, R̃) because the latter is an evaluation redex.

2. The marked redexes are term redexes, and the evaluation redex is a substitution redex. Let R̃ = l1.
Note that l1 6= l̃, since (G, l1) is an evaluation redex, and therefore can not be self-referential. We have
the following subcases:
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(a) Among the 4 labels l, l′, l1, and l̃, no two are equal. In this case the claim of the lemma clearly
holds.

(b) l1 6∈ {l, l′}. It may be the case that l = l̃ 6= l′, l′ = l̃ 6= l, or l = l′ = l̃. Assume the third
possibility. By lemma C.32 the redexes R and R′ can not contain the redex occurrence of l1. We
have the following options:

I. [l̃ 7→ A{l1, R,R′}, l1 7→ V, . . . ] R, R′ independent

II. [l̃ 7→ A{l1,B{R′}}, l1 7→ V, . . . ] R = B{R′}
III. [l̃ 7→ A{l1,B{R}}, l1 7→ V, . . . ] R′ = B{R}

By lemma B.17 in all three cases the context containing l is still an evaluation context after the
reduction of R. The substitution does not affect the reduction of R, and from the properties of
the term calculus it follows that in all three cases the residual(s) of R′ will be the same regardless
of which of the redexes has been reduced first: l1 or R. No duplication happens in this case, so
the resulting γ-development sequence consists of a single step.

The other two cases (l = l̃ 6= l′ and l′ = l̃ 6= l) are analogous to the case we have considered, but
simpler.

(c) l̃ 6∈ {l, l′}. As in the previous case, let us consider the subcase l = l′ = l1 in detail, the other two
subcases (l = l1 6= l′ and l′ = l1 6= l) are similar, but easier.

If l = l′ = l1, then both R and R′ occur in the value being substituted by the evaluation redex.
Since this case is more complex than the previous one, we show the actual reductions rather than
just the initial modules. As above, we have the following possibilities for mutual positions of R
and R′:

I. R and R′ are independent:

[l̃ 7→ E{l1}, l1 7→ λx.C{R,R′}, . . . ] ◦−−→
γ

[l̃ 7→ E{l1}, l1 7→ λx.C{Q,R′}, . . . ] ==⇒

[l̃ 7→ E{λx.C{Q,R′}}, l1 7→ λx.C{Q,R′}, . . . ],
[l̃ 7→ E{l1}, l1 7→ λx.C{R,R′}, . . . ] ==⇒

[l̃ 7→ E{λx.C{R,R′}}, l1 7→ λx.C{R,R′}, . . . ] −−→∗
γ

[l̃ 7→ E{λx.C{Q,R′}}, l1 7→ λx.C{Q,R′}, . . . ].

The order of reduction of the copies of R in the sequence −−→∗
γ

does not matter. II. R contains R′.

If R′ is contained in the operand of R, we have the following:

[l̃ 7→ E{l1}, l1 7→ λx.C{λy.A{y, . . . , y} @ λz.B{R′}}, . . . ] ◦−−→
γ

[l̃ 7→ E{l1}, l1 7→ λx.C{A{λz.B{R′}, . . . , λz.B{R′}}}, . . . ] ==⇒

[l̃ 7→ E{λx.C{A{λz.B{R′}, . . . , λz.B{R′}}}}, l1 7→ λx.C{A{λz.B{R′}, . . . , λz.B{R′}}}, . . . ],
[l̃ 7→ E{l1}, l1 7→ λx.C{λy.A{y, . . . , y} @ λz.B{R′}}, . . . ] ==⇒

[l̃ 7→ E{λx.C{λy.A{y, . . . , y} @ λz.B{R′}}}, l1 7→ λx.C{λy.A{y, . . . , y} @ λz.B{R′}}, . . . ] −−→∗
γ

[l̃ 7→ E{λx.C{A{λz.B{R′}, . . . , λz.B{R′}}}}, l1 7→ λx.C{A{λz.B{R′}, . . . , λz.B{R′}}}, . . . ].

In this case R′ gets duplicated by both redexes, but its residuals are the same on both reduction
paths. The order of reduction of the two copies of the redex λy.A{y, . . . , y} @ λz.B{R′} does not
matter.

If R′ is contained in the operator of R, then it gets changed, rather than duplicated, by reduction
of R. The redex R gets duplicated by the substitution. It is clear that R′ has the same residuals
on both reduction paths and that the order of reduction of the two copies of R does not matter.
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III. R′ contains R. Let R′ = A{R}. It does not matter if R is contained in the operand or in the
operator of R′, because R′ is not reduced in these reductions. We have:

[l̃ 7→ E{l1}, l1 7→ λy.C{A{R}}, . . . ] ◦−−→
γ

[l̃ 7→ E{l1}, l1 7→ λy.C{A{Q}}, . . . ] ==⇒

[l̃ 7→ E{λy.C{A{Q}}}, l1 7→ λy.C{A{Q}}, . . . ].
[l̃ 7→ E{l1}, l1 7→ λy.C{A{R}}, . . . ] ==⇒

[l̃ 7→ E{λy.C{A{R}}}, l1 7→ λy.C{A{R}}, . . . ] −−→∗
γ

[l̃ 7→ E{λy.C{A{Q}}}, l1 7→ λy.C{A{Q}}, . . . ]

The redex R′ has two residuals of the form A{Q} on both reduction paths. The copies of the
redex R can be reduced in any order.

(d) l = l̃, l′ = l1. As in case (b), by lemma C.32 the redex occurrence of l1 in the component bound
to l̃ is independent from the redex R. The initial module is

[l̃ 7→ A{l1, R}, l1 7→ λx.C{R′}, . . . ].

Here R′ gets duplicated by the substitution redex, but clearly has the same residuals on both
reduction paths. By lemma B.17 A{l1, Q} ∈ EvalContextT .

(e) l = l1, l
′ = l̃. The initial module is

[l̃ 7→ A{l1, R′}, l1 7→ λx.C{R}, . . . ].

Here R, not R′, gets duplicated by the substitution. The two residuals of R can be reduced in
any order. R′ has only one residual in this case.

3. The marked redexes are substitution redexes, and the evaluation redex is a term redex. Let R = l1,
then R′ = l1 by lemma C.13. By the condition of this lemma the marked redexes are not self-referential,
so l1 6= l, l1 6= l′. Also l1 6= l̃, since l1 is bound to a value, and l̃ is bound to an evaluatable term. As in
the previous case, we have several subcases of mutual positions of the labels. Let us consider the case
when l = l′ = l̃, i.e. all three redexes occur in the same term. There may be several possibilities:

• R̃ and the two occurrences of l1 in the component bound to l̃ are independent, i.e. the initial
module is:

[l̃ 7→ A{R̃, l1, l1}, l1 7→ V, . . . ]

Without loss of generality, suppose that the first occurrence of l1 is the redex R. By lemma B.16
A{2, l1, l1} ∈ EvalContextT implies that A{2, V, l1} ∈ EvalContextT , therefore the reduction

of (G, R̃)/(D, l1) is indeed an evaluation step. It is clear that both reduction paths result in the
same module with the same (single) residual of R′.

• Both R and R′ occur in the operand part of R̃:

[l̃ 7→ E{(λx.A{x, . . . , x}) @ λy.B{l1, l1}}, l1 7→ V, . . . ] ◦−−→
γ

[l̃ 7→ E{(λx.A{x, . . . , x}) @ λy.B{V, l1}}, l1 7→ V, . . . ] ==⇒

[l̃ 7→ E{A{λy.B{V, l1}, . . . , λy.B{V, l1}}}, l1 7→ V, . . . ],

[l̃ 7→ E{(λx.A{x, . . . , x}) @ λy.B{l1, l1}}, l1 7→ V, . . . ] ==⇒

[l̃ 7→ E{A{λy.B{l1, l1}, . . . , λy.B{l1, l1}}}, l1 7→ V, . . . ] −−→∗
γ

[l̃ 7→ E{A{λy.B{V, l1}, . . . , λy.B{V, l1}}}, l1 7→ V, . . . ].

The copies of R = l can be reduced in any order in the sequence −−→∗
γ

.
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• The other cases (when both R and R′ occur in the operator part of R̃, or when one of them occurs
in the operator and the other in the operand) are similar.

The other cases (l = l′ 6= l̃, l = l̃ 6= l′, l′ = l̃ 6= l, and all the three labels distinct) are similar to the
one we have considered, but easier.

4. All three redexes are substitution redexes, where R̃ = l2 6= l1. In this case l̃ 6= l2, since R̃ is an
evaluation redex. As in case 3, l1 6∈ {l, l′, l̃}. We have the following cases:

(a) All 5 labels are different. In this case the lemma trivially holds.

(b) l = l′ = l̃. The initial module is

[l̃ 7→ A{l2, l1, l1}, l1 7→ V1, l2 7→ V2, . . . ].

By lemma B.16 A{2, V1, l1} ∈ EvalContextT , so the residual of the evaluation redex is indeed
an evaluation redex. In this case no redexes get duplicated, and the claim clearly holds.

(c) l = l′ = l2. Assuming (without loss of generality) that the first marked occurrence of l1 corre-
sponds to the redex R, the initial and the final modules in this case are:

[l̃ 7→ E{l2}, l1 7→ V1, l2 7→ λx.C{l1, l1}, . . . ],
[l̃ 7→ E{λx.C{V1, l1}}, l1 7→ V1, l2 7→ λx.C{V1, l1}, . . . ].

The two copies of R can be reduced in any order.

(d) l = l′, l 6= l̃, l 6= l2. The claim clearly holds.

(e) l = l̃, l′ = l2. The initial and the final modules are:

[l̃ 7→ A{l2, l1}, l1 7→ V1, l2 7→ λx.B{l1}, . . . ],
[l̃ 7→ A{λx.B{l1}, V1}, l1 7→ V1, l2 7→ λx.B{l1}, . . . ].

Again we use lemma B.16 to show that the residual of the evaluation redex is an evaluation redex.
Redex R′ gets duplicated.

(f) l = l̃, l′ 6= l2, l
′ 6= l̃. Similar to the previous case.

(g) l = l2, l
′ = l̃. The initial and the final modules are:

[l̃ 7→ A{l2, l1}, l1 7→ V1, l2 7→ λx.B{l1}, . . . ],
[l̃ 7→ A{λx.B{V1}, l1}, l1 7→ V1, l2 7→ λx.B{V1}, . . . ].

Here the redex R gets duplicated. Its two residuals can be reduced in any order. The redex R′

has just a single residual on both reduction paths.

(h) l = l2, l
′ 6= l2, l

′ 6= l̃. Similar to the previous case.

5. All three redexes are substitution redexes, R̃ = l1. Note that R̃ is not marked since by the condition
of the lemma the only two marked redexes are R and R′. Similarly to the previous case, l1 6∈ {l, l′, l̃}.
Since none of the redexes R and R′ occur in the component bound to l1 (i.e. in the value being
substituted), no redex duplication is possible, so the claim of the lemma clearly holds in this case.

Lemma C.34. Suppose (D1, {(D, l), (D′, l)}) ◦−(D,l)−−→
γ

(D2, F2) and (D1, {(D, l), (D′, l)}) =
(G,R̃)
===⇒ (D3, F3), where

(D′, l) is self-referential. Then there exists (D4, F4) s.t. (D2, F2) =
(G,R̃)/(D,l)
======⇒ (D4, F4) and (D3, F3)

(D,l)/(G,R̃)

−−→∗
γ
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(D4, F4). If the sequence
(D,l)/(G,R̃)

−−→∗
γ

consists of more than one step, then for any order of steps in the reduction

sequence we have (D3, F3)
(D,l)/(G,R̃)

−−→∗
γ

(D4, F4).

Proof. Let l, l1, l̃ be the labels of components where (D′, l), (D, l), and (G, R̃) occur, respectively. Note that
l 6= l̃ by class preservation, since (D′, l) is a self-referential redex, and therefore the component bound to l
is a value. Also l1 6= l by lemma C.13, since (M1, F1) ∈ dom(γ), and therefore F1 contains at most one
self-referential redex. We have the following cases:

1. R̃ is a term redex, suppose R̃ÃT Q̃. If l1 6= l̃, we have the following initial and final modules:

[l 7→ λx.C{l}, l1 7→ A{l}, l̃ 7→ E{R̃}, . . . ],
[l 7→ λx.C{l}, l1 7→ A{λx.C{l}}, l̃ 7→ E{Q̃}, . . . ].

The self-referential redex has just one marked residual – itself.

If l1 = l̃, i.e. R̃ and the non-self-referential marked occurrence of l are in the same component, we have
one of the following:

• R̃ and the marked occurrence of l are independent. This case is similar to the case when l1 6= l̃.
By lemma B.16 the residual of the evaluation redex is itself evaluation redex.

• The marked l occurs in the operator of R̃ (R̃ is an application since it contains l). Without loss
of generality assume that l occurs in the first hole of the multi-hole context A below. The initial
and the final modules are:

[l 7→ λx.C{l}, l̃ 7→ E{(λy.A{l, y, . . . , y}) @ V }, . . . ],

[l 7→ λx.C{l}, l̃ 7→ E{A{λx.C{l}, V, . . . , V }}, . . . ].

As before, the self-referential redex has a single marked residual – itself.

• The marked l occurs in the operand of R̃. The initial and the final modules are:

[l 7→ λx.C{l}, l̃ 7→ E{(λy.A{y, . . . , y}) @ λz.B{l}}, . . . ],
[l 7→ λx.C{l}, l̃ 7→ E{A{λz.B{λx.C{l}}, . . . , λz.B{λx.C{l}}}}, . . . ].

Here the non-self-referential marked occurrence of l gets duplicated by the term redex. The result-
ing module is the same, regardless of which redex (the marked substitution or the application)
is performed first and regardless of the order in which the residuals of (D, l) w.r.t. (G, R̃) are
reduced. The self-referential redex does not have any marked residuals besides itself.

2. R̃ = l2 6= l is a substitution redex. Note that l̃ 6= l2, since R̃ is an evaluation redex. We have the
following possibilities:

• l1 6= l2, l1 6= l̃. It is easy to check that the claim of the lemma holds in this case.

• l1 = l2. The reductions on both paths lead to the same module with the same residuals of the
self-referential redex. The two residuals of (D, l) in the γ-development reduction can be reduced
in any order.

[l 7→ λx.C{l}, l̃ 7→ E{l1}, l1 7→ λy.A{l}, . . . ] ◦−−→
γ

[l 7→ λx.C{l}, l̃ 7→ E{l1}, l1 7→ λy.A{λx.C{l}}, . . . ] ==⇒

[l 7→ λx.C{l}, l̃ 7→ E{λy.A{λx.C{l}}}, l1 7→ λy.A{λx.C{l}}, . . . ],
[l 7→ λx.C{l}, l̃ 7→ E{l1}, l1 7→ λy.A{l}, . . . ] ==⇒

[l 7→ λx.C{l}, l̃ 7→ E{λy.A{l}}, l1 7→ λy.A{l}, . . . ] −−→∗
γ

[l 7→ λx.C{l}, l̃ 7→ E{λy.A{λx.C{l}}}, l1 7→ λy.A{λx.C{l}}, . . . ].
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• l1 = l̃. In this case the initial and the final modules are as shown below. By lemma B.16
A{2, λx.C{l}} ∈ EvalContextT .

[l 7→ λx.C{l}, l̃ 7→ A{l2, l}, l2 7→ V, . . . ],

[l 7→ λx.C{l}, l̃ 7→ A{V, λx.C{l}}, l2 7→ V, . . . ].

3. R̃ = l is a substitution redex. This occurrence of l is not marked, since by the condition of the lemma
only the other two redexes are marked.

If l1 = l̃, the initial and the final modules are as follows:

[l 7→ λx.C{l}, l̃ 7→ A{l, l}, . . . ],
[l 7→ λx.C{l}, l̃ 7→ A{λx.C{l}, λx.C{l}}, . . . ].

The residual of the self-referential redex obtained by the ==⇒ step is marked, since the marking is
removed only by a development step that substitutes into a marked occurrence of the same label. Thus
in this case the self-referential redex has two marked residuals in the resulting module. It is easy to
see that these residuals are the same on both reduction paths. As in the previous case, we have used
lemma B.16 to show that the residual of the evaluation redex is evaluation redex.

The case when l1 6= l̃ is similar to case when l1 = l̃. In this case the self-referential redex also has two
marked residuals.

The next case is when a self-referential redex gets reduced by the ◦−−→
γ

step:

Lemma C.35. Suppose (D1, {(D, l), (D′, l)}) ◦−(D,l)−−→
γ

(D2, F2) and (D1, {(D, l), (D′, l)}) =
(G,R̃)
===⇒ (D3, F3), where

(D, l) is self-referential. Then there exists (D4, F4) s.t. (D2, F2) =
(G,R̃)/(D,l)
======⇒ (D4, F4) and (D3, F3)

(D,l)/(G,R̃)

−−→∗
γ

(D4, F4). The γ-development sequence
(D,l)/(G,R̃)

−−→∗
γ

either consists of one step, or of two steps, where the self-

referential redex is reduced the second.

Proof. Let l, l′, and l̃ denotes labels of the components where (D, l), (D′, l), and (G, R̃) occur, respectively.
Similarly to the previous lemma C.34, l 6= l′, l 6= l̃. As in the proof of the previous lemma, we have 3 cases:

1. R̃ is a term redex. Let R̃ÃT Q̃.

Suppose l′ = l̃. We have the following possibilities:

• R̃ and the marked occurrence of l are independent in the component bound to l̃. The initial and
the final modules are:

[l 7→ λx.C{l}, l̃ 7→ A{R̃, l}, . . . ],
[l 7→ λx.C{λx.C{l}}, l̃ 7→ A{Q̃, l}, . . . ].

Note that since the self-referential redex is reduced by a γ-development step, it does not have a
residual, i.e. the occurrence of l after the substitution is unmarked.

• The marked l occurs in the operator of R̃. Below are the initial and the final modules:

[l 7→ λx.C{l}, l̃ 7→ E{(λy.A{l, y, . . . , y}) @ V }, . . . ],

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{A{l, V, . . . , V }}, . . . ].
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• The marked l occurs in the operand of R̃. In this case the marked non-self-referential redex gets
duplicated. As in the previous cases, we show the initial and the final modules:

[l 7→ λx.C{l}, l̃ 7→ E{(λy.A{y, . . . , y}) @ λz.B{l}}, . . . ],
[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{A{λz.B{l}, . . . , λz.B{l}}}, . . . ].

The case when l′ 6= l̃ is analogous to the first of the subcases above.

Note that in all cases the resulting γ-development reduction is one-step.

2. R̃ = l1 6= l is a substitution redex. In this case l1 6= l̃, since an evaluation redex can not be self-
referential. We have the following subcases:

• l1 = l′. The marked non-self-referential redex gets duplicated. The initial and the final modules
are:

[l 7→ λx.C{l}, l̃ 7→ E{l1}, l1 7→ λy.A{l}, . . . ],
[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{λy.A{l}}, l1 7→ λy.A{l}, . . . ].

• l′ = l̃. The initial module in this case is

[l 7→ λx.C{l}, l̃ 7→ A{l1, l}, l1 7→ V, . . . ],

and the claim clearly holds.

• l′ 6= l1, l
′ 6= l̃. All three redexes are independent, and the claim clearly holds.

In all three subcases the resulting γ-development sequence is one-step.

3. R̃ = l is a substitution redex. Note that this occurrence of l is unmarked, since by the condition of the
lemma only the other two redexes are marked. In this case the self-referential redex gets duplicated.

Suppose l′ 6= l̃. The order in which its two residuals are reduced is important. It is easy to see that
reducing them in the other order leads to a different module, i.e. to a module that does not satisfy the
lemma. In this case we show both reduction sequences step-by-step:

[l 7→ λx.C{l}, l̃ 7→ E{l}, l′ 7→ A{l}, . . . ] ◦−−→
γ

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{l}, l′ 7→ A{l}, . . . ] ==⇒

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{λx.C{λx.C{l}}}, l′ 7→ A{l}, . . . ].
[l 7→ λx.C{l}, l̃ 7→ E{l}, l′ 7→ A{l}, . . . ] ==⇒

[l 7→ λx.C{l}, l̃ 7→ E{λx.C{l}}, l′ 7→ A{l}, . . . ] ◦−−→
γ

[l 7→ λx.C{l}, l̃ 7→ E{λx.C{λx.C{l}}}, l′ 7→ A{l}, . . . ] ◦−−→
γ

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{λx.C{λx.C{l}}}, l′ 7→ A{l}, . . . ].

The case when l′ = l̃, i.e. when the marked non-self-referential redex occurs in the component bound
to l̃, is completely analogous to the case when l′ 6= l̃. The resulting −−→∗

γ
also consists of two steps s.t.

the second one reduces the self-referential redex. The initial module in this case is:

[l 7→ λx.C{l}, l̃ 7→ A{l, l}, . . . ].
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Lemma C.36. Suppose (D1, {(D, R), (D′, R′), (G, R̃)}) ◦−(D,R)−−−→
γ

(D2, F2) and (D1, {(D, R), (D′, R′)(G, R̃)})

=
(G,R̃)
===⇒ (D3, F3). Then there exists (D4, F4) s.t. (D2, F2) =

(G,R̃)/(D,R)
=======⇒ (D4, F4) and (D3, F3)

(D,R)/(G,R̃)

−−→∗
γ

(D4, F4). If (D, R) is a self-referential substitution redex, then the sequence
(D,R)/(G,R̃)

−−→∗
γ

consists of two steps

s.t. the second step reduces the self-referential redex. Otherwise the γ-development sequence is either one-
step, or the order of reduction in it does not matter.

Proof. By lemma C.13 we have two cases:

1. All three marked redexes are term redexes. The reduction of a term redex does not depend on the
marking of any other redex in the module. It is also the case that for a term redex (D, R)/(D, R) = ∅.
Therefore the fact that (G, R̃) is marked does not affect the reduction, and the case is analogous to case
1 of lemma C.33. If the resulting γ-development sequence is multi-step, then the order of reduction of
the redexes does not matter.

2. R = R′ = R̃ = l. Let l1, l
′, and l̃ be the labels of components where the redexes R, R′, and R̃ occur,

respectively. l 6= l̃, since (G, R̃) is an evaluation redex. We have the following subcases:

(a) l1 6= l, l′ 6= l, i.e. none of the redexes is self-referential. Suppose that l′ = l1 = l̃, i.e. all
the redexes occur in the same component. Assuming, without loss of generality, that context A
contains them in the order R̃, R,R′, we have the following initial and final modules:

[l̃ 7→ A{l, l, l}, l 7→ V, . . . ],

[l̃ 7→ A{V, V, l}, l 7→ V, . . . ].

We use lemma B.16 to show that after the ◦−−→
γ

step the residual of (G, R̃) is an evaluation redex.

The cases when the three redexes occur in different components are similar.

(b) l′ = l, i.e. the redex (D′, R′) is self-referential. Assuming that the other two redexes occur in the
same component, we have the following reductions:

[l 7→ λx.C{l}, l̃ 7→ A{l, l}, . . . ] ◦−−→
γ

[l 7→ λx.C{l}, l̃ 7→ A{l, λx.C{l}}, . . . ] ==⇒

[l 7→ λx.C{l}, l̃ 7→ A{λx.C{l}, λx.C{l}}, . . . ],
[l 7→ λx.C{l}, l̃ 7→ A{l, l}, . . . ] ==⇒

[l 7→ λx.C{l}, l̃ 7→ A{λx.C{l}, l}, . . . ] →
γ

[l 7→ λx.C{l}, l̃ 7→ A{λx.C{l}, λx.C{l}}, . . . ].

Here the self-referential redex has two marked residuals. The case when the two non-self-referential
redexes occur in different components is analogous.

(c) l1 = l, i.e. (D, R) is self-referential. Again we show the case when the other two redexes occur in
the same component. The following reductions prove the claim of the lemma.

[l 7→ λx.C{l}, l̃ 7→ A{l, l}, . . . ] ◦−−→
γ

[l 7→ λx.C{λx.C{l}}, l̃ 7→ A{l, l}, . . . ] ==⇒

[l 7→ λx.C{λx.C{l}}, l̃ 7→ A{λx.C{λx.C{l}}, l}, . . . ],
[l 7→ λx.C{l}, l̃ 7→ A{l, l}, . . . ] ==⇒

[l 7→ λx.C{l}, l̃ 7→ A{λx.C{l}, l}, . . . ] ◦−−→
γ

[l 7→ λx.C{l}, l̃ 7→ A{λx.C{λx.C{l}}, l}, . . . ] ◦−−→
γ

[l 7→ λx.C{λx.C{l}}, l̃ 7→ A{λx.C{λx.C{l}}, l}, . . . ].
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Here, as in case 3 of lemma C.35, the order in which the two resulting γ-development steps are
performed matters: switching the order will result in a reduction that does not satisfy the lemma.

Note that in cases (a) and (b) the γ-development reduction is one-step, and in (c) the self-referential
redex is reduced last.

Lemma C.37 (Elementary Project Diagram for C). If (D1, F1) ◦−
(D,R)
−−−→
γ

(D2, F2) and (D1, F1) =
(G,R̃)
===⇒

(D3, F3), then there exists (D4, F4) s.t. (D2, F2) =
(G,R̃)/(D,R)
=======⇒ (D4, F4) and (D3, F3)

(D,R)/(G,R̃)

−−→∗
γ

(D4, F4).

Proof. If F1 does not have a self-referential redex, then the lemma follows from lemma C.33 if R̃ is not
marked and from the cases 1 or 2(a) of lemma C.36 if R̃ is marked by induction on the number of redexes
in F1. The proof is analogous to the proof of lemma C.23.

Suppose F1 has a self-referential redex, but (D, R) is not self-referential. Let (D′, R′) be the self-referential
redex in F1. By lemma C.34 or part 2(b) of lemma C.36 the claim of the lemma holds for the initial pair
(D1, {(D, R), (D′, R′)}) or (D1, {(D, R), (D′, R′), (G, R̃)}) in the case when (G, R̃) is marked. The rest of the
redexes in F1 are not self-referential, since (D1, F1) ∈ dom(γ). Let (D′′, R′′) 6= (D, R) be another redex in
F1. Note that it is a substitution redex by lemma C.13. Then by lemma C.33 or by case 2(a) of lemma C.36
the claim of the lemma holds for the initial pair (D1, {(D, R), (D′′, R′′)}) (or (D1, {(D, R), (D′′, R′′), (G, R̃)})
for a marked (G, R̃)). Then by corollary C.26 for the →

γ
steps and by lemma C.24 for the ==⇒ steps we can

combine the diagrams for individual redexes in F1 into a diagram for the initial pair (D1, F1). We use the
fact that, since a self-referential redex is not reduced in any of the reductions, the redexes in the sequence
(D,R)/(G,R̃)

−−→∗
γ

can be reduced in any order, so we can assume that for all individual diagrams they are reduced

in the same fixed order.
Suppose now that (D, R) is a self-referential redex. Then by lemma C.35 or by case 2(c) of lemma C.36

the lemma holds for an initial pair (D1, {(D, R), (D′′, R′′)}) for each (D′′, R′′) ∈ F1 (or for an initial pair
(D1, {(D, R), (D′′, R′′), (G, R̃)}) in the case when (G, R̃) is marked). Then, as in the previous case, we
combine the individual diagrams into the diagram for the initial pair (D1, F1). Note that in this case the

order of reduction of the sequence
(D,R)/(G,R̃)

−−→∗
γ

is fixed (the self-referential redex in this sequence is reduced

last).

Now we show the dual property A.26.
Before we can prove it, let us show some properties of substitution which we are going to use in the proofs.

The essence of these properties is that a non-evaluation substitution step can not create an evaluation redex
(either a term, or a substitution redex) that has not existed in the original term. The property is the converse
of the one stated in lemma B.16: the lemma below explicitly restricts the substitution to be a non-evaluation
step, however one may notice that the only substitution possible into a term of the form E{R} containing a
label is a non-evaluation substitution, since such a label may appear only in a non-evaluation context.

Lemma C.38. 1. If C 6∈ EvalContextT and C{V } is a term redex, then C{l} is a term redex.

2. If A{V,2} ∈ EvalContextT and A{2, R} 6∈ EvalContextT (or, respectively, A{2, V } ∈ EvalContextT
and A{R,2} 6∈ EvalContextT ), then A{l,2} ∈ EvalContextT (respectively, A{2, l} ∈ EvalContextT ).

3. If A{V,2} ∈ EvalContextT and A{2, l1} 6∈ EvalContextT (or, respectively, A{2, V } ∈ EvalContextT
and A{l1,2} 6∈ EvalContextT ), then A{l,2} ∈ EvalContextT (respectively, A{2, l} ∈ EvalContextT ),
where l1 may or may not be the same as l.
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Proof. 1. A term redex R is either c1 op c2, where both constants occur in evaluation context, so R 6=
C{V }, where C 6∈ EvalContextT , or λx.M @ V , where the only non-evaluation contexts occur inside
V or inside M , so the claim clearly holds.

2. By induction on the structure of an evaluation context.

3. Same as the previous case.

Similarly to the proof of the property A.25 (lemma C.37 above), we first show the property for 4 different
cases of kinds, positions, and markings of the redexes. The following 4 lemmas correspond to these cases.

Remark C.39. In the proofs of the auxiliary lemmas for elementary project diagrams (lemmas C.33–C.36)
we have used the notion of independent redexes (definition C.5), in particular some of the cases considered
in the proofs where the cases when the evaluation redex (G, R̃) was independent from the non-evaluation
redex (D, R) (see lemma C.37). This definition is not applicable in the case of lemma C.44 (elementary lift
diagram), since the non-evaluation redex occurs in the initial module D1, but the evaluation redex occurs in
the module D2 obtained fromD1 by reducing the non-evaluation redex. We extend the notion of independent
redexes to this case as follows: we say that (G, R̃) and (D, R) are independent if (G, R̃) is independent from
(D, Q) in D2 (as a subterm, see definition C.5), where RÃ Q if R is a term redex, and Q = V if R = l is a
substitution redex. The notion is well-defined, since (G, R̃) is an evaluation redex, and therefore can not be
contained in the value being substituted.

We also say that (G, R̃) is independent from (D′, R′) if it is independent from its residual(s) in D2.

Lemma C.40. Suppose (D, R) and (D′, R′) are not self-referential, and (D1, {(D, R), (D′, R′)}) ◦−(D,R)−−−→
γ

(D2, F2)

=
(G,R̃)
===⇒ (D4, F4), then there exists (D3, F3) s.t. (D1, {(D, R), (D′, R′)}) =

(G′,R̃′)
====⇒ (D3, F3)

(D,R)/(G′,R̃′)

−−→∗
γ

(D4, F4)

s.t. (G, R̃) = (G′, R̃′)/(D, R). If the sequence
(D,R)/(G′,R̃′)

−−→∗
γ

consists of more than one step, then for any such

reduction (D3, F3)
(D,R)/(G′,R̃′)

−−→∗
γ

(D4, F4).

Proof. Since (D1, {(D, R), (D′, R′)}) ∈ dom(γ), the two marked redexes are of the same kind, and if they
are substitution redexes, then R = R′ = l1. Let l, l′, l̃ be the labels of the components containing (D, R),
(D′, R′), and (G, R̃), respectively. We have the following cases:

1. All three redexes are term redexes. If all three redexes occur in different terms, the claim of the lemma
clearly holds. If the three redexes all occur in the same term, then the claim holds by lemma B.28.
If l = l̃ 6= l′, then the claim holds by lemma B.25 (clearly (D′, R′), which occurs not in the same
component where the other two redexes occur, has a single residual on both reduction paths). If
l = l′ 6= l̃ or l̃ = l′ 6= l, then (D, R) and (G, R̃) are independent (see remark C.39), and clearly the
claim of the lemma holds.

2. The marked redexes are term redexes, and the evaluation redex is a substitution redex. Let R̃ = l1.
Since (G, l1) is an evaluation redex, l1 6= l̃. We have the following subcases:

(a) Among the 4 labels l, l′, l1, and l̃, no two are equal. Then the claim of the lemma clearly holds.

(b) l1 6∈ {l, l′}. Then

D2 = [l̃ 7→ E{l1}, l1 7→ V, . . . ].

By lemma B.24

D1 = [l̃ 7→ E′{l1}, l1 7→ V, . . . ].
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Suppose l = l′ = l̃, i.e. both marked redexes occur in the same component as (G, l1) and the
marked redexes are independent from each other. By lemma C.32 the substitution occurrence of
l1 is not contained in R or R′, i.e. E′{l1} = A{l1, R,R′}. Recall that in the proofs in this section
we write A{l1, R,R′} to mean that the context A contains the three terms in some, not necessarily
the specified, order. Then the following reductions prove the claim of the lemma:

[l̃ 7→ A{l1, R,R′}, l1 7→ V, . . . ] ==⇒ [l̃ 7→ A{V,R,R′}, l1 7→ V, . . . ] →
γ

[l̃ 7→ A{V,Q,R′}, l1 7→ V, . . . ],

[l̃ 7→ A{l1, R,R′}, l1 7→ V, . . . ] ◦−−→
γ

[l̃ 7→ A{l1, Q,R′}, l1 7→ V, . . . ] ==⇒ [l̃ 7→ A{V,Q,R′}, l1 7→ V, . . . ].

The cases when l̃ = l = l′ and R contains R′ or R′ contains R are similar. The cases when
l = l̃, l′ 6= l̃, or l′ = l̃, l 6= l̃, or l = l′ 6= l̃ are also similar, but simpler.

(c) l̃ 6∈ {l, l′}. Note that the case when l = l′ 6= l1 has been considered above. The remaining subcases
are l = l′ = l1, l = l1 6= l′, and l′ = l1 6= l. As above, we consider the case l = l′ = l1 in detail, the
other two cases are similar, but simpler. We have the following possibilities:

I. R,R′ are independent in D1. In this case:

D2 = [l̃ 7→ E{l1}, l1 7→ λy.A{Q,R′},

where RÃT Q. Then

D1 = [l̃ 7→ E{l1}, l1 7→ λy.A{R,R′},

and the reduction in case 2(c)I of the proof of lemma C.33 proves the claim. Note that the
component bound to l1 in D1 is a value, therefore the substitution is possible.

II. R contains R′. Then

D2 = [l̃ 7→ E{l1}, l1 7→ λy.A{Q},

where Q contains R′, possibly several copies if R′ is contained in the operand of R, and therefore
is duplicated. Again the reduction in the respective case (case 2(c)II) of lemma C.33 proves the
claim.

III. R′ contains R. The case is similar to the previous case and to case 2(c)III of lemma C.33.

(d) l = l̃, l′ = l1. As in case (a) of this proof, the substitution redex l1 in D2 is independent from the
result of reduction of R by lemma C.32. Therefore

D1 = [l̃ 7→ A{l1, R}, l1 7→ λx.B{R′}],

and the claim follows by the reduction.

(e) l′ = l̃, l = l1. Then

D1 = [l̃ 7→ A{l1, R′}, l1 7→ λx.B{R}].

Note that since l1 is bound to a value containing the result of reduction of a non-evaluation redex,
this component is a λ-abstraction in D2, and therefore in D1.

3. The marked redexes are substitution redexes, and the evaluation redex is a term redex. Let R = R′ = l1
(since the initial pair is in dom(γ), it must be the case that R and R′ are the same label). By the
condition of the lemma none of the redexes is self-referential, therefore l 6= l1, l

′ 6= l1. It also must
be the case that l1 6= l̃, since l1 is bound to a value in D1, and therefore in D2, and l̃ is bound to an
evaluatable term in D2. As in the previous case, let us assume that l = l′ = l̃. There are the following
possibilities:
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• The evaluation redex is independent from both substitution redexes. Then

D2 = [l̃ 7→ A{R̃, V, l1}, l1 7→ V, . . . ].

By lemma C.38 A{2, l1, l1} ∈ EvalContextT , and it is easy to check that the claim of the lemma
holds. No duplication of redexes occurs in this case.

• Both the marked occurrence of l1 of the redex R′ and the value V which is the result of the
non-evaluation substitution redex occur in the operand of R̃. Then

D2 = [l̃ 7→ E{(λx.A{x, . . . , x}) @ λy.B{V, l1}}, l1 7→ V, . . . ].

The occurrence of V here is under a λ, i.e. in a non-evaluation context, and therefore by
(λx.A{x, . . . , x}) @ λy.B{l1, l1} is a redex by part 1 of lemma C.38. The rest of the claim
follows by the reduction in the proof of the analogous case of lemma C.33.

• The remaining cases (both R and R′ occur in the operator part of R̃, or when one of the two
marked redexes occurs in the operand, and the other in the operator) are similar.

The other cases (l = l′ 6= l̃, l = l̃ 6= l′, l′ = l̃ 6= l, and the case when all the three labels are distinct)
are similar.

4. All three redexes are substitution redexes, where R̃ = l2 6= l1. In this case l̃ 6= l2, since R̃ is an
evaluation redex. As in case 3, l1 6∈ {l, l′, l̃}. As in the proof of lemma C.33, we have the following
subcases:

(a) All 5 labels are distinct, then the lemma trivially holds.

(b) l = l′ = l̃. Then

D2 = [l̃ 7→ A{l2, V1, l1}, l1 7→ V1, l2 7→ V2, . . . ].

The label l2 occurs independently from V1 in the component bound to l̃, since l2 must occur in an
evaluation context, and therefore can not occur inside a value25. By lemma C.38 A{l2, l1, l1} ∈
EvalContextT , and the claim of the lemma holds.

(c) l = l′ = l2. Then

D2 = [l̃ 7→ E{l2}, l2 7→ λx.C{V1, l1}, l1 7→ V1, . . . ].

In this case

D1 = [l̃ 7→ E{l2}, l2 7→ λx.C{l1, l1}, l1 7→ V1, . . . ],

and the claim clearly holds.

(d) l = l′, l 6= l̃, l 6= l2. The two marked redexes are independent from both the evaluation redex and
the value being substituted into it. The claim of the lemma clearly holds.

(e) l = l̃, l′ = l2. Then

D2 = [l̃ 7→ A{l2, V1}, l2 7→ λx.B{l1}, l1 7→ V1, . . . ].

Similarly to the case (b), l2 is independent from V1 in the component bound to l̃. By lemma C.38
A{2, l1} ∈ EvalContextT , and again it is easy to check that the claim holds.

(f) l = l̃, l′ 6= l2, l
′ 6= l̃. Similar to the previous case.

25Note that even if labels were values, V1 still could not have been equal to l2, since the substitution D1 ◦−−→ D2 is a
non-evaluation step, but l2 must occur in an evaluation context in D2.
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(g) l = l2, l
′ = l̃. In this case

D2 = [l̃ 7→ A{l2, l1}, l2 7→ λx.B{V1}, l1 7→ V1, . . . ].

Again, the claim of the lemma clearly holds.

(h) l = l2, l
′ 6= l2, l

′ 6= l̃. Similar to the previous case.

5. All the three redexes are substitution redexes, R = R′ = R̃ = l1. R̃ can not be marked by the condition
of the lemma (only the other two redexes are marked). Similarly to the previous case, l1 6∈ {l, l′, l̃}.
Therefore no redex duplication is possible, and the claim of the lemma holds in this case.

Lemma C.41. Suppose (D′, R′) is a self-referential redex. If (D1, {(D, R), (D′, R′)}) ◦−(D,R)−−−→
γ

(D2, F2) =
(G,R̃)
===⇒

(D4, F4), then there exists (D3, F3) s.t. (D1, {(D, R), (D′, R′)}) =
(G′,R̃′)
====⇒ (D3, F3)

(D,R)/(G′,R̃′)

−−→∗
γ

(D4, F4) s.t.

(G, R̃) = (G′, R̃′)/(D, R). If the sequence
(D,R)/(G′,R̃′)

−−→∗
γ

consists of more than one step, then for any such

reduction (D3, F3)
(D,R)/(G′,R̃′)

−−→∗
γ

(D4, F4).

Proof. Let l, l1, l̃ be the labels of the components where (D′, l), (D, l), and (G′, R̃′) occur, respectively. Note
that l̃ 6= l, since (G′, R̃′) is an evaluation redex, and l1 6= l, since there may be at most one marked
self-referential redex. We have the following subcases:

1. R̃ is a term redex. If l1 6= l̃, then the evaluation redex is independent from both substitution redexes,
and the claim of the lemma clearly holds. If l1 = l̃, then we have one of the following:

• R̃ is independent from the marked occurrence of l. The case is similar to the case when l1 6= l̃.
By lemma C.38 R̃ occurs in an evaluation context in D1.

• The result of the substitution of l occurs in R̃.

The case when R̃ is of the form c1 op c2 is impossible, since then either c1 or c2 must be the
result of the substitution, but the component bound to l is a λ-abstraction, not a constant, since
it contains an occurrence of l.

If R̃ is an application and the result of the substitution occurs in its operator, then we have

D2 = [l 7→ λx.C{l}, l̃ 7→ E{(λy.A{λx.C{l}, y, . . . , y}) @ V }, . . . ],

D1 = [l 7→ λx.C{l}, l̃ 7→ E{(λy.A{l, y, . . . , y}) @ V }, . . . ].

Note that in l occurs unmarked in the component bound to l̃ in D2, since the non-evaluation step
is a γ-development . The claim easily follows, similarly to the respective case of lemma C.34.

If R̃ is an application and the result of the substitution occurs in its operand, then

D2 = [l 7→ λx.C{l}, l̃ 7→ E{(λy.A{y, . . . , y}) @ λz.B{λx.C{l}}}, . . . ],
D1 = [l 7→ λx.C{l}, l̃ 7→ E{(λy.A{y, . . . , y}) @ λz.B{l}}, . . . ].

The claim easily follows.

2. R̃ = l2 6= l is a substitution redex. R̃ is an evaluation redex, therefore l̃ 6= l2. We have the following
possibilities:

• l1 6= l2, l1 6= l̃. In this case the three redexes occur in different components, and the claim of the
lemma clearly holds.
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• l1 = l2, i.e. the non-evaluation redex occurs in the value being substituted by the evaluation step.
In this case

D2 = [l 7→ λx.C{l}, l̃ 7→ E{l1}, l1 7→ A{λx.C{l}}, . . . ].

Then A 6= 2, since the γ-development step is a non-evaluation step. Note that l1 must be bound
to a value for R̃ to be a redex in D2, so A = λy.B, and

D1 = [l 7→ λx.C{l}, l̃ 7→ E{l1}, l1 7→ λy.B{l}, . . . ].

The rest of the claim follows from the reduction in the respective case of lemma C.34.

• l1 = l̃. Then

D2 = [l 7→ λx.C{l}, l̃ 7→ A{l2, λx.C{l}}, . . . ].

Similarly to the case 4(b) of lemma C.40, the label l2 occurs independently from λx.C{l} in the
component bound to l̃, since l2 must occur in an evaluation context, and therefore can not occur
under a λ. By lemma C.38 A{2, l} ∈ EvalContextT . The rest of the claim easily follows.

3. R̃ = l is a substitution redex. This occurrence of l is not marked, since by the condition of the lemma
only the other two redexes are marked.

If l1 = l̃, then

D2 = [l 7→ λx.C{l}, l̃ 7→ A{l, λx.C{l}}, . . . ].

Similarly to the previous case, l is independent from λx.C{l} in the component bound to l̃. The rest
of the proof is similar to the respective case of lemma C.34.

The case when l1 6= l̃ is similar.

Lemma C.42. Suppose (D, R) is a self-referential redex. If (D1, {(D, R), (D′, R′)}) ◦−(D,R)−−−→
γ

(D2, F2) =
(G,R̃)
===⇒

(D4, F4), then there exists (D3, F3) s.t. (D1, {(D, R), (D′, R′)}) =
(G′,R̃′)
====⇒ (D3, F3)

(D,R)/(G′,R̃′)

−−→∗
γ

(D4, F4) s.t.

(G, R̃) = (G′, R̃′)/(D, R). The sequence
(D,R)/(G′,R̃′)

−−→∗
γ

consists either of a single step, or of two steps, where

the self-referential residual of (D, R) is reduced second.

Proof. Let l, l′, and l̃ denotes labels of the components where (D, l), (D′, l), and (G, R̃) occur, respectively.
Similarly to the previous lemma C.41, l 6= l′, l 6= l̃. We have 3 cases:

1. R̃ is a term redex. Suppose l′ = l̃. We have the following possibilities:

(a) R̃ and the marked occurrence of l are independent in the component bound to l̃. Then

D2 = [l 7→ λx.C{λx.C{l}}, l̃ 7→ A{R̃, l}, . . . ].

Then

D1 = [l 7→ λx.C{l}, l̃ 7→ A{R̃, l}, . . . ],

and the rest of the proof is the same as in the respective case of lemma C.35.

(b) The marked l occurs in the operator of R̃. The case is similar to the previous one.
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(c) The marked l occurs in the operand of R̃. The case is similar to the previous one.

If l′ 6= l̃, the case is also similar to the previous ones.

2. R̃ = l1 6= l is a substitution redex. If l′ = l1, then

D2 = [l 7→ λx.C{λx.C{l}}, l̃ 7→ E{l1}, l1 7→ λy.A{l}, . . . ]
D1 = [l 7→ λx.C{l}, l̃ 7→ E{l1}, l1 7→ λy.A{l}, . . . ].

The claim easily follows.

If l′ = l̃, then

D2 = [l 7→ λx.C{λx.C{l}}, l̃ 7→ A{l1, l}, l1 7→ V, . . . ].

The case is similar to the case when l′ = l1, and so is the case when l′ 6∈ {l1, l̃}.

3. R̃ = l. By the condition of the lemma this occurrence of l is unmarked, since only the other two redexes
are marked.

Suppose l′ 6= l̃. Then

D2 = [l 7→ λx.C{λx.C{l}}, l̃ 7→ E{l}, l′ 7→ A{l}, . . . ],

and the reduction given in the case 3 of lemma C.35 proves the claim. Note that the self-referential
redex gets duplicated by the evaluation step D1 ==⇒ D3, and the reduction D3 −−→∗

γ
D4 first reduces

the copy of the redex in the component bound to l̃, and then the original self-referential redex (in the
component bound to l).

The case when l′ = l̃ is analogous.

Lemma C.43. Suppose {(D, R), (D′, R′)} ∩ F̃ = ∅. Let (D1, {(D, R), (D′, R′)} ∪ F̃ ) ◦−(D,R)−−−→
γ

(D2, F ∪ F ′ ∪

{(G, R̃)}) =
(G,R̃)
===⇒ (D4, F4), where F, F

′ are the sets of marked residuals of (D, R), (D′, R′), respectively. Then

F̃ = {(G′, R̃′)} s.t. (G, R̃) = (G′, R̃′)/(D, R), and there exists (D3, F3) s.t. (D1, {(D, R), (D′, R′)}) =
(G′,R̃′)
====⇒

(D3, F3)
(D,R)/(G′,R̃′)

−−→∗
γ

(D4, F4). If (D, R) is a self-referential redex, then its self-referential residual is reduced

last in the two-step sequence
(D,R)/(G′,R̃′)

−−→∗
γ

. Otherwise the order of reductions in the sequence
(D,R)/(G′,R̃′)

−−→∗
γ

does

not matter.

Proof. A marked redex can not be a residual of a non-marked one, therefore F̃ 6= ∅. By lemma C.13 we have
the following two cases:

1. All the marked redexes are term redexes. Let l1, l
′, l̃ be the labels of the components where the redexes

(D, R), (D′, R′), and (G, R̃) occur, respectively.
If l̃ 6= l1, then the reduction of the non-evaluation redex (D, R) does not affect the evaluation redex
(G, R̃). The component bound to l̃ does not change, so F̃ = {(G′, R̃)}, and (G, R̃) = (G′, R̃)/(D, R).
The evaluation redex is marked in D1 since it is marked in D2. The rest of the claim follows similarly
to case 1 of the proof of lemma C.36.

If l̃ = l1, then the claim follows from lemma B.28. In this case when l′ 6= l̃ (D′, R′) has one residual
(itself), and when we apply lemma B.28, we don’t consider (D′, R′) as a marked redex, since it occurs
in a different component. If l′ = l̃, then we consider all three marked redexes in the application of
lemma B.28.
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2. All the marked redexes are substitution redexes with the same label l. Let l1, l
′, l̃ be as in case 1. Note

that l 6= l̃, since (G, R̃) is an evaluation redex. We have the following subcases:

(a) l1 6= l, l′ 6= l, i.e. none of the redexes is self-referential. Suppose that l1 = l′ = l̃, i.e. all redexes
occur in the same component. Then

D2 = [l̃ 7→ A{l, V, l}, l 7→ V, . . . ],

where the first marked occurrence of l corresponds to the redex (G, R̃), and the second to the
redex (D′, R′). Note that the occurrence of l corresponding to the evaluation redex does not occur
in V because it occurs in an evaluation context, and the one corresponding to (D′, R′) does not
occur in V by the assumption that none of the redexes is self-referential. Then

D1 = [l̃ 7→ A{l, l, l}, l 7→ V, . . . ],

by lemma C.38 A{2, l, l} ∈ EvalContextT , and the claim of the lemma easily follows.

The cases when the three redexes occur in at least two different components are similar.

(b) l′ = l, i.e. the redex (D′, R′) is self-referential. Suppose l̃ = l1, then

D2 = [l 7→ λx.C{l}, l̃ 7→ A{l, λx.C{l}}, . . . ],
D1 = [l 7→ λx.C{l}, l̃ 7→ A{l, l}, . . . ].

As in the case 4(b) of the proof of lemma C.40, the marked occurrence of l in the component
bound to l̃ in D2 is independent from λx.C{l}, since it occurs in an evaluation context. The rest
of the proof is by the reduction in the case 2(b) of the proof of lemma C.36. The case when the
two non-self-referential redexes occur in different components is analogous.

(c) l1 = l, i.e. (D, R) is self-referential. If l̃ = l′, we have:

D2 = [l 7→ λx.C{λx.C{l}}, l̃ 7→ A{l, l}, . . . ],
D1 = [l 7→ λx.C{l}, l̃ 7→ A{l, l}, . . . ].

The reduction in the case 2(c) of the proof of lemma C.36. The case when the redex (D′, R′)
occurs not in the same component as the evaluation redex is analogous.

Lemma C.44 (Elementary Lift Diagram for C). If (D1, F1) ◦−
(D,R)−−−→
γ

(D2, F2) =
(G,R̃)
===⇒ (D4, F4), then there

exists (D3, F3) s.t. (D1, F1) =
(G′,R̃′)
====⇒ (D3, F3)

(D,R)/(G′,R̃′)

−−→∗
γ

(D4, F4) s.t. (G, R̃) = (G′, R̃′)/(D, R).

Proof. The proof is by lemmaC.40, C.41, C.42, and C.43 analogous to the proof of lemma C.37.

It remains to show standardization of complete γ-developments . It follows from the lemmas C.35 and C.36
for the elementary project diagram and from lemmas C.42 and C.43 for the elementary lift diagram that
when the self-referential redex is duplicated, the elementary diagrams commute if the self-referential copy of
the redex is reduced after the non-self-referential one. For instance, if the two residuals of the self-referential
redex in case 3 of lemma C.42 are reduced in the other order, the diagram does not commute:

[l 7→ λx.C{l}, l̃ 7→ E{l}, l′ 7→ A{l}, . . . ] ◦−−→
γ

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{l}, l′ 7→ A{l}, . . . ] ==⇒

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{λx.C{λx.C{l}}}, l′ 7→ A{l}, . . . ],
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but the sequence below leads to a module different from the one above:

[l 7→ λx.C{l}, l̃ 7→ E{l}, l′ 7→ A{l}, . . . ] ==⇒

[l 7→ λx.C{l}, l̃ 7→ E{λx.C{l}}, l′ 7→ A{l}, . . . ] ◦−−→
γ

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{λx.C{l}}, l′ 7→ A{l}, . . . ] ◦−−→
γ

[l 7→ λx.C{λx.C{l}}, l̃ 7→ E{λx.C{λx.C{λx.C{l}}}}, l′ 7→ A{l}, . . . ].

Note that it is not only the sets of marked redexes, but the modules themselves are different.

Lemma C.45. If (D1, F1) ◦−
(D,R)−−−→
γ

(D2, F2) =
(G,R̃)
===⇒
γ

(D4, F4), where (D, R) is not self-referential, then there

exists (D3, F3) s.t. (D1, F1) ==⇒
γ

(D3, F3) −−→∗
γ

(D4, F4).

Note that when (D, R) is a self-referential redex, then the claim of the above lemma does not hold. For
instance, consider:

[l 7→ λx.l, l′ 7→ l] ◦−−→
γ

[l 7→ λx.λx.l, l′ 7→ l] ==⇒
γ

[l 7→ λx.λx.l, l′ 7→ λx.λx.l], but
[l 7→ λx.l, l′ 7→ l] ◦−−→

γ

[l 7→ λx.l, l′ 7→ λx.l] ==⇒
γ

[l 7→ λx.λx.l, l′ 7→ λx.l]

Lemma C.46 (Weak Standardization of γ-developments in C). C has property A.31, i.e. if (D1, {(D, R)}) ◦−(D,R)−−−→
γ

(D2, ∅) ==⇒∗ (D4, ∅), (D1, {(D, R)}) ==⇒∗ (D3, F3), and the two evaluation sequences are related by elementary
diagrams (as defined in A.30), then there exists (D′, F ′) s.t. (D3, F3) ==⇒∗

γ
(D′, F ′) ◦−−→∗

γ
(D4, ∅).

Proof. Case 1. If (D, R) is not self-referential, then lemma C.45 is applicable to any two marked redexes (since
by lemma C.13 all marked residuals of (D, R) are also non-self-referential). Since the γ-developments are finite
(by lemma C.14), by lemma A.39 we can show strong standardization of γ-developments (property A.29).

Case 2. If (D, R) is self-referential, then the proof is by induction on the number of steps in the sequence
(D1, {(D, R)}) ==⇒∗ (D3, F3). Let n denote this number. We want to prove that for every such (D3, F3) and
the corresponding (D4, ∅) there exists a standard complete development (D3, F3) ==⇒∗

γ
(D′, F ′) ◦−−→∗

γ
(D4, ∅)

s.t. the self-referential redex is reduced last.
Base case (n = 1). By lemma C.37 there exists a γ-development (D3, F3) −−→∗

γ
(D4, ∅). By lemma C.13 F3

contains a single self-referential redex, and by lemmas C.35, C.36, C.42, and C.43 the self-referential residual
of the redex is reduced last, i.e. (D3, F3) −−→∗

γ
(D′, F ′) ◦−−→

γ
(D4, ∅), where the sequence (D3, F3) −−→∗

γ
(D′, F ′)

does not reduce self-referential redexes. Then by lemma C.45 there exists (D′′, F ′′) s.t. (D3, F3) ==⇒∗
γ

(D′′, F ′′) ◦−−→∗
γ

(D′, F ′), and the claim of the lemma holds.

Induction Step. Suppose (D1, {(D, R)}) ==⇒∗ (D′3, F
′
3) ==⇒ (D3, F3), (D2, ∅) ==⇒∗ (D′4, ∅), the two evalua-

tion sequences are related by the elementary diagrams, and for (D′3, F
′
3) and (D′4, ∅) the claim of the lemma

holds. By the condition of the lemma there exists an evaluation sequence related by elementary diagrams to
the sequence (D1, {(D, R)}) ==⇒∗ (D′3, F

′
3) ==⇒ (D3, F3). This implies that there exist (D̃3, F̃3) and (D̃′3, F̃

′
3)

s.t. (D′3, F
′
3) ==⇒

∗

γ
(D̃′3, F̃

′
3) =

0/1
=⇒ (D̃3, F̃3) and (D3, F3) ==⇒∗

γ
(D̃3, F̃3), and we have one of the two possibilities:
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• (D̃′3, F̃
′
3) =

0/1
=⇒ (D̃3, F̃3) is a 0-step reduction. Since the two evaluation sequences are related by ele-

mentary diagrams, (D̃′3, F̃
′
3) ◦−−→

∗

γ
(D′4, ∅). By the induction hypothesis the last redex reduced in the

non-evaluation γ-development sequence is the self-referential residual of (D, R), therefore the sequence
(D3, F3) ==⇒∗

γ
(D̃3, F̃3) ◦−−→∗

γ
(D′4, ∅) satisfies the claim of the lemma.

• (D̃′3, F̃
′
3) =

0/1
=⇒ (D̃3, F̃3) is a 1-step reduction. The two evaluation sequences are related by elementary

diagrams, therefore there exists (D4, ∅) s.t. (D̃′3, F̃3) ◦−−→∗
γ

(D′4, ∅) ==⇒ (D4, ∅), (D̃3, F̃3) −−→∗
γ

(D4, ∅), and

the reductions are constructed from the elementary diagrams. By the inductive hypothesis the last
redex in the sequence (D̃′3, F̃3) ◦−−→∗

γ
(D′4, ∅) is the self-referential residual of (D, R). Let (D′, R′) denote

this redex. By lemma C.13 the other redexes reduced in this sequence are not self-referential. Since
the sequence (D̃3, F̃3) −−→∗

γ
(D4, ∅) is constructed from (D̃′3, F̃

′
3) ◦−−→

∗

γ
(D′4, ∅) via the elementary dia-

grams, there exist (D′′, F ′′) and (D′′′, F ′′′) s.t. (D̃′3, F̃
′
3) ◦−−→

∗

γ
(D′′, F ′′) ◦−(D

′,R′)−−−−→
γ

(D′4, ∅), (D̃3, F̃3) −−→∗
γ

(D′′′, F ′′′) −−→∗
γ

(D4, ∅), and (D′′, F ′′) ==⇒ (D′′′, F ′′′). Let (D′′, R′′) be the self-referential residual of

(D′, R′). By lemma C.35 (D′′, R′′) is reduced last in the sequence (D′′′, F ′′′) −−→∗
γ

(D̂, F̂ ) ◦−(D
′′,R′′)−−−−−→
γ

(D4, ∅). A self-referential redex is a non-evaluation redex, therefore the step ◦−(D
′′,R′′)−−−−−→
γ

is a non-

evaluation step. Since no other redexes in the sequence (D̃3, F̃3) −−→∗
γ

(D′′′, F ′′′) −−→∗
γ

(D̂, F̂ ) are

self-referential, by lemma C.45 there exists (D̂′, F̂ ′) s.t. (D̃3, F̃3) ==⇒∗
γ

(D̂′, F̂ ′) ◦−−→∗
γ

(D̂, F̂ ), which

proves the claim of the lemma.

Recall that classification of modules is defined in section 2.4 as

ClC(D) =





evaluatableC if there exists D′ s.t. D ==⇒C D′

[vi
n
7→
i=1

ClT (Vi)] if D = [vi
n
7→
i=1

Vi, hj
m
7→
j=1

V ′j ],

errorC otherwise

We omit an obvious proof of the following lemma:

Lemma C.47 (Class Preservation of C). If D1 ◦−−→C D2, then ClC(D1) = ClC(D2).

We can also show class preservation for the classification of the core module calculus defined in [MT00]:

ClC(D) = [li
n
7→
i=1

ClT (Mi)], where D = [li
n
7→
i=1

Mi]. ([MT00] definition)

Theorem C.48 (Computational Soundness of C). If D1 ↔C D2, then OutcomeC(D1) = Outcome(D2).

Proof. By theorems A.32 and A.33 C has lift and project properties, since it satisfies the elementary diagrams
(lemmas C.37 and C.44), has weak γ-confluence of evaluation (lemma C.31), and weak standardization of
γ-developments (lemma C.46). These results are shown for pairs (D,F ), and by lemma A.20 they hold for
modules with no marked redexes. C also has confluence of evaluation (lemma C.17) and class preservation
(lemma C.47), therefore by theorem 3.41 it is computationally sound.
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D Soundness of the Linking Calculus.

This section is under construction.

E Soundness of Calculi Extended with Garbage Collection

This section is under construction.
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