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Abstract. The CIL compiler for core Standard ML compiles whole pro-
grams using a novel typed intermediate language (TIL) with intersec-
tion and union types and flow labels on both terms and types. The CIL
term representation duplicates portions of the program where intersec-
tion types are introduced and union types are eliminated. This dupli-
cation makes it easier to represent type information and to introduce
customized data representations. However, duplication incurs compile-
time space costs that are potentially much greater than are incurred in
TILs employing type-level abstraction or quantification. In this paper,
we present empirical data on the compile-time space costs of using CIL
as an intermediate language. The data shows that these costs can be
made tractable by using sufficiently fine-grained flow analyses together
with standard hash-consing techniques. The data also suggests that non-
duplicating formulations of intersection (and union) types would not
achieve significantly better space complexity.

1 Introduction

1.1 The Compile-Time Space Costs of Typed Intermediate
Languages

Recent research has demonstrated the benefits of compiling with an explic-
itly typed intermediate language (TIL) [Mor95, PJ96, TMC+96, PJM97, JS98,
BKR98, TO98, FKR+99, CJW00, MWCG99, WDMT0X]. One benefit is that
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explicit types can be used in compiler passes to guide program transforma-
tions and select efficient data representations. Another advantage of using a
TIL is that the compiler can invoke its type checker after every transformation,
greatly reducing the possibility of introducing errors. If strongly typed interme-
diate languages are used all the way through the compiler to the assembly level
(something we do not yet do), the resulting object code is certifiably type safe
[Nec97, MWCG99]. Furthermore, types that survive through the back end can
be used to support run-time operations such as garbage collection [Tol94] and
run-time type dispatch [Mor95].

The benefits of using a TIL are not achieved without costs. These costs
include the space needed to represent the types at compile-time, the time to ma-
nipulate the types at compile-time, and the added complications of transforming
types along with terms. This report focuses on the compile-time space cost.

Using a naive type representation can incur huge space costs, even if types
are only used in the compiler front end for initial type checking. In the worst
case, the tree representation of types in Standard ML (SML) programs can have
size doubly exponential in the program size, and the DAG representation can be
exponential in the program size [Mit96]. Although we are mainly concerned with
ordinary programs where the worst case space complexity is not encountered,
these ordinary programs often have types with impractically large tree represen-
tations but acceptable DAG representations. So in practice, DAG representations
of types and other techniques are necessary to engineer types of tractable size.
For example, the SML/NJ compiler’s FLINT intermediate language uses hash-
consing, memoization, explicit substitutions, and de Bruijn indices to achieve
space-efficient implementation of types [SLM98]. The TIL compiler achieves type
sharing by binding all types to type variables, and then performing dead code
elimination, hoisting and common subexpression elimination on the types [Tar96,
pp. 217–219]. The compiler must then preserve type bindings across transforma-
tions, or else repeat the type-sharing transformations. Tarditi reports that the
representation size increase imposed by using types in TIL averages 5.15 times
without this sharing scheme, but only 1.93 times with sharing.

We have constructed a whole-program compiler for core SML based on a
typed intermediate language we call CIL1. Unlike FLINT and TIL, CIL has
three features that make compile-time space issues potentially more challenging
to address than in other typed intermediate languages:

1. Listing-based types: The CIL type system can encode polyvariant flow
analyses using polyvariant flow types where labels on type constructors pro-
vide flow information and intersection and union types provide polyvariant
analysis. Intersection and union types can be viewed as finitary (listing-
based) versions of infinitary (schema-based) universal and existential types.

1 “CIL” is an acronym for “Church Intermediate Language.” The authors are members
of of the Church Project (http://types.bu.edu), which is investigating applications
of sophisticated type systems in the efficient and reliable implementation of higher-
order typed programming languages.
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For example, CIL uses the intersection type

τid ≡ ∧{p1 : int−−→ int, p2 : real−−→ real}

to represent an occurrence of the universal type ∀α.α → α that is instan-
tiated only at types int and real. The intersection type τid is similar in
structure to the CIL product (record) type

τfuns ≡ ×{p1 : int−−→ int, p2 : real−−→ real}.

The difference is that a value of type τfuns is a pair of two possibly distinct
functions having the respective component types while a value of type τid is
a single function having both component types. CIL union types (introduced
via ∨) are the dual of intersection types; they are listing-based versions of
existential types that are similar in structure to CIL sum (variant) types
(introduced via +).
Encoding polyvariant analyses, which analyze a function multiple times rel-
ative to different contexts of use, can introduce components of intersection
and union types that differ only by flow information. For instance, when
encoding polyvariance, an innocuous type like int→ int might expand into

∨{q1 : int−
{1}
−−−
{3,4}
→ int, q2 : ∧{r1 : int−

{2}
−−
{3}
→ int, r2 : int−

{2}
−−
{4}
→ int}}.

In the function type notation σ −φ−
ψ
→ τ , the annotation φ

ψ is a flow bundle in

which φ (resp. ψ) conservatively approximates the sites in a program that
can be sources, or introduction points (resp. sinks, or elimination points)
for the function values having this type. In this paper, we only show flow
bundles annotating function types, but CIL supports such annotations on
almost all types.
Intersection and union types have several advantages over universal and ex-
istential types as a means of expressing polymorphism [WDMT0X]: (1) by
making usage contexts apparent, they support flow-based customizations
in a type-safe way; (2) finitary polymorphism can type some terms not
typable using infinitary polymorphism, thus potentially allowing some pro-
gram transformations to be typable which would not be allowable in a TIL
based on infinitary polymorphism; and (3) the listing-based nature of fini-
tary polymorphic types can avoid some complications of bound variables
in representing and manipulating quantified types (see Sec. 2.2). There is a
space cost for these benefits: the listing-based nature of finitary polymorphic
types, in combination with flow annotations encoding finer grained types, can
lead to CIL types that are much larger than those expressed via infinitary
polymorphic types.
Assuming whole-program compilation, the finitary polymorphism afforded
by flow types is sufficient to compile SML programs. In this respect, the
CIL SML compiler is similar to monomorphizing whole-program compil-
ers [TO98, BKR98, CJW00].
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2. Duplicating term representations: CIL represents the introduction of
intersection types by a virtual record — a term that explicitly lists multi-
ple copies of the same component term that differ only in their flow type
annotations. For example, here is a CIL term that has the type τid defined
above:

∧(p1 = λxint.x, p2 = λxreal.x).

Virtual record components are extracted via virtual projections. Similarly,
values of union type (virtual variants) are introduced via virtual injections
and are eliminated by a virtual case expressions — terms whose branches
explicitly list multiple type-annotated versions of the same untyped branch.
Virtual terms that persist until code generation are eliminated at that time.
Code is generated for only one component of a virtual record and for one
branch of a virtual case expression, and virtual projections and injections
disappear entirely. Thus, these virtual term constructs have a compile-time
space cost but no run-time space (or time) cost.
Because it makes copies of terms that differ only in type annotations, we call
CIL a duplicating representation. An advantage of the duplicating approach
is that type information for guiding customization decisions is locally ac-
cessible in each copy of a duplicated term. An obvious disadvantage of this
representation is the duplicated term structure, which is potentially much
larger than the more compact introduction and elimination forms used for
universal and existential types. Duplication arises in the CIL compiler when-
ever intersection or union types are used. The Type/Flow Inference and Flow
Separation compiler stages discussed in Sec. 2.3 both introduce additional
uses of intersection and union types.

3. Closure types exposing free variable types: CIL does not have universal
or existential types because they hide important information about contexts
of use and encourage uniform data representations rather than customized
ones [WDMT0X]. However, existential types are particularly useful for ab-
stracting over differences in free variables that are exposed in typed closure
representations for functions of the same source type [MMH96, MWCG99,
CWM98]. In the CIL compiler, these differences are reconciled by injecting
the types of closures into a union type and performing a virtual case dispatch
at the application site [DMTW97]. In a type-erasure semantics, these injec-
tions do not give rise to any run-time code. However, they can potentially
cause a blowup in compile-time space when many functions with different
free variables flow together.
Our approach to closure conversion is similar to that used by TIL-based
compilers that remove higher-order functions via defunctionalization [TO98,
CJW00]. As in the CIL compiler, these compilers use flow analysis to cus-
tomize the closure representation for particular application sites. However,
these flow analyses are not integrated into the type system. These defunc-
tionalizing compilers maintain type correctness during closure conversion by
injecting closures with different free variables that flow to the same applica-
tion site into a sum type, and performing a case dispatch on the constructed
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value at the application site. The difference here is that in CIL this can be
done with a mix of virtual and real sum types while in the defunctionaliz-
ing compilers all of the sum types must be real and hence require run-time
analysis. Some defunctionalizing compilers avoid this run-time cost by using
the appropriate code pointer as a “tag” in the generated object code and
replacing the case dispatch by a jump, but their type systems do not sup-
port this as a well typed operation and hence this must be done in the code
generator after types are dropped. In contrast, in CIL the combination of a
virtual sum (i.e., union) type with real closure types makes this approach
well typed.

1.2 Contributions

Taken together, listing-based types, duplicating term representations, and clo-
sure types that expose free variable types raise the specter of compile-time space
explosion at both the term and the type level. However, preliminary experiments
with a small benchmark suite indicate that standard hash-consing techniques are
able to keep the size of CIL types and terms tractable.
The main contributions of this paper are the following two observations:

1. Duplicating term representations are practical: Our experiments show
that, for the flow analyses that we have investigated, the space required
for CIL terms in our benchmarks is always within a factor of 2.1 of (and
usually significantly closer to) our estimate of a minimal size for a non-
duplicating TIL. This result is surprising, since we and many others expected
the duplicating term representation to have a significantly higher space cost.
Before we obtained these results, we expected that it would be essential
to develop a non-duplicating term representation in which a single term
schema somehow contains multiple flow type annotations. For example, us-
ing the notation of [Pie91], τid could be expressed as something like: for α ∈
{int, real}.λxα.x. Although this notation is more compact, it makes type
information less accessible and can be tricky to adapt to more complex situ-
ations [WDMT0X]. We have made preliminary investigations into other rep-
resentations, e.g., one based on the skeletons and substitutions of [KW99].
Based on the empirical results presented here, we believe that developing a
non-duplicating representation of CIL may be not critical (though it may
still be worthwhile). However, only one of the flow analyses we have ex-
perimented with to date expresses a non-trivial form of polyvariance, so it
remains to be seen whether these results hold up in the presence of more
polyvariant flow analyses.

2. Finer-grained flow analyses yield smaller types and terms:
Our experiments indicate that, for some classes of flow analyses, increasing
the precision of flow analysis can significantly reduce the size of program
representations in CIL. Benchmarks require the most compile-time space for
the least precise type-respecting flow analysis (one that assumes that any
function with a given monomorphic type can flow to any call site applying
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a function with this type). This imprecision leads to union types for clo-
sures that are much larger than necessary. More precise flow analyses can
substantially reduce the size of these closure types.
Flow analysis has similarly been used to reduce the size of closure types in
monomorphizing and defunctionalizing TIL compilers [TO98, CJW00]. How-
ever, previous work has neither quantified the benefits of using flow analysis
in this context nor studied the effects of different flow analyses on compile-
time space. We believe that we are the first to present a detailed empirical
study of the effects of a variety of flow analyses on program representation
size.

1.3 Representation Pollution

In addition to our results about the tractability of compile-time space in the CIL
compiler, we have preliminary evidence that the compiler may be able to achieve
one of its main design goals: avoiding representation pollution when choosing
customized data representations. Representation pollution occurs when a source
form is constrained to have an inefficient representation because it shares a sink
with other source forms using the inefficient represention. A complementary
phenomenon occurs with pollution of sink representations.
As an example of representation pollution, as well as some other issues that

arise in a compiler based on CIL, we will consider the compilation of the un-
typed CIL source term in Fig. 1.2 The term contains two abstractions, two
applications (denoted by the @ symbol), and a tuple introduction form (intro-
duced via ×3). The abstraction (λx.x ∗ 2) flows to both application sites while
the abstraction (λy.y + a) flows only to the rightmost application site.

let f = (λx.x ∗ 2)
in let g = (λy.y + a)

in ×(f @ 5, (if b then f else g) @ 7)

Fig. 1. An untyped CIL term.

The diagram in Fig. 2 gives an abstract depiction of a CIL compiler inter-
mediate representation of the code in Fig. 1 that might emerge from the Type
2 We introduce and explain elements of the CIL language on an “as needed” basis
in the context of our examples; readers interested in the details of the language
and its type system should consult the appendix of the companion technical report
[DWM+01b].

3 In CIL, as in ML, a tuple is a record with implicit positional labels. In general, the
term notation P (M1, . . . ,Mn) is a shorthand for P (f1 = M1, . . . , fn = Mn), where
P ranges over × and ∧, and f1, f2, . . . , is some fixed infinite sequence of distinct field
names. Similarly, the type notation Q[τ1, . . . , τn] is shorthand for Q{f1 : τ1, . . . , fn :
τn}, where Q ranges over ×, +, ∧, and ∨.
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Inference/Flow Analysis (TI/FA) stage of the compiler. The TI/FA stage (de-
scribed in more detail in Sec. 2.3) computes an approximation of the flow of
values between sources and sinks in the input term and represents the analysis
in the output typing. In this case, the CIL representation of the source term
(λxint.x ∗ 2) has been split into the virtual tuple

∧

(

λ1
{3}x

int.x ∗ 2, λ1
{4}x

int.x ∗ 2
)

,

which contains one copy of the function for each of the application sites to which
it flows. The notation λ`ψ denotes an abstraction labelled ` that may flow to the

sinks whose labels are in the set ψ, while @φk denotes a sink labelled k to which
abstractions whose labels are in the set φ may flow. Free variables and λ-bound
variables are superscripted with their type. Terms of the form (π∧i 2) are virtual
tuple projections that select the ith component of a virtual tuple.
The typing rules of CIL (not detailed here) guarantee that the flow anno-

tations appearing in CIL types are sound. That is, an abstraction may only be
applied at sites listed in its sink set, and only the abstractions appearing in the
source set of an application site may be applied at that site. In Fig. 2, the type

of the first component of the virtual tuple (int −
{1}
−−
{3}
→ int) is the type required for

the function position of the application site @
{1}
3 to which the function flows.

The type on the second component of the virtual tuple (τ1 = int −
{1}
−−
{4}
→ int) does

not match the type (τ3 = int−
{1,2}
−−−
{4}
→ int) required at its application site @

{1,2}
3 , so

this component value must be coerced to the correct type somewhere along the
flow path to the application site. A subtype coercion from a termM of type σ to
a supertype τ of σ is witnessed by an explicit term of the form coerce (σ, τ)M .

∧
(

λ1
{3}x

int.x ∗ 2, λ1
{4}x

int.x ∗ 2
)

(λ2
{4}y

int.y + aint)

π∧1 2 coerce (τ1, τ3) (π
∧
2 2) coerce (τ2, τ3)2

2 @
{1}
3 5 if bbool then 2 else 2 2 @

{1,2}
4 7

where τ1 = int−{1}−−
{4}
→ int, τ2 = int−{2}−−

{4}
→ int, and τ3 = int−{1,2}−−−

{4}
→ int

Fig. 2. A possible result of Type Inference/Flow Analysis.

The typing rules also require that the type erasures of all the components of a
virtual record and all the branches of a virtual case expression must be the same.
The type erasure of a term is the untyped terms that result from eliminating
all types, labels, and virtual forms (virtual records, virtual projections, virtual
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injections, virtual case expressions, and coercions) from the term. This type
erasure constraint guarantees that virtual record components and virtual case
expression branches are just different typings of the same untyped term and can
therefore share the same run-time representation if the virtual forms survive to
the code generation phase. If the compiler elects to customize the representations
of the components of a virtual record, the virtual record will be reified into a real
record (by changing ∧ to × in terms and types) that is explicitly represented
in the run-time code. Similarly, by changing ∨ to +, the compiler can reify a
virtual case expression to be a real case expression that performs a dispatch on a
real variant at run-time. The compiler is designed so that reifying virtual forms
in this manner is type-safe.
As representation decisions are made during subsequent stages of compila-

tion, further duplication may occur. Fig. 3 depicts a possible output of the Flow
Separation stage. This stage (described in more detail in Sec. 2.3) introduces new
virtual forms to guarantee that the output of the later Representation Trans-
formation stage will be well-typed. In Fig. 3, the Flow Separation stage has

split the application site @
{1,2}
4 into two applications sites @

{1}
4 and @

{2}
4 . These

applications occur within a virtual case expression, which has the form

case∨Mdisc bind x in τ1 ⇒M1 . . . τn ⇒Mn.

A virtual case expression dispatches to the branch τk ⇒Mk based on the posi-
tional tag k of the of the discriminant Mdisc, which must have type ∨[τ1, . . . τn].
Within the chosen branch, the variable x of type τk is bound to the value ofMdisc.

In Fig. 3, the functions formerly flowing to the single application site @
{1,2}
4 are

now injected into virtual variants (values of union type τ) via (ι∨i 2)τ , where
i in {1, 2} is the positional tag of the variant. These virtual variants both flow
to the discriminant position of the virtual case expression, which chooses one
of the two type-annotated versions of the application h @ 7. Splitting h @ 7 in
this manner gives the compiler the option to use different representations for the
closed abstraction λ1

{4} and the open abstraction λ
2
{4}.

As with source splitting, this kind of sink duplication increases the size of
the compile-time representation of the program, but the object code size and
run-time space costs increase only if some of the virtual variants and virtual
case expressions are reified in a subsequent compilation stage. Observe that the
sink duplication introduced by Flow Separation in this example has eliminated
the need for both of the coercions present in Fig. 2 and will usually reduce the
sizes of flow sets. In general, there are many trade-offs between the amount of
virtual duplication and subtype coercion. The trade-offs are very sensitive to the
granularity of the flow analysis and to the representation customization strategy.
We have developed several strategies for reducing (and in some cases com-

pletely eliminating) representation pollution in the case of function representa-
tions (see Sec. 2.3). More work is necessary to evaluate the run-time aspects
of the customization capabilities of the CIL SML compiler. In a future report
we will present a detailed study of the run-time consequences of compiling with
polyvariant flow types.
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∧
(

λ1
{3}x

int.x ∗ 2, λ1
{4}x

int.x ∗ 2
)

λ2
{4}y

int.y + aint

π∧1 2 π∧2 2 if bbool then (ι∨1 2)τ else (ι∨2 2)τ

2 @
{1}
3 5 case∨2 bind h as (int−

{1}
−−
{4}
→ int)⇒ h @

{1}
4 7,

(int−
{2}
−−
{4}
→ int)⇒ h @

{2}
4 7

where τ =
∨

[

int−{1}−−
{4}
→ int, int−{2}−−

{4}
→ int

]

Fig. 3. A possible result of Flow Separation.

1.4 Outline

The remainder of this paper is organized as follows. Sec. 2 provides an overview
of the CIL compiler for SML. Sec. 3 presents space-related measurements for
several standard benchmark programs at various phases of compilation. Sec. 4
summarizes our conclusions and describes future work.

2 An Overview of the CIL Compiler

2.1 The Intermediate Language

To implement the features of core SML, CIL extends the purely functional λCIL-
calculus [WDMT0X] with primitive datatypes, references, arrays, and excep-
tions. For details of the the syntax and typing rules of CIL, see the companion
technical report [DWM+01b]. Although CIL is based on the λCIL-calculus, CIL
itself is not a calculus. We have implemented a semantics for CIL, but we have
not written its formal counterpart. While we have proven formal properties like
standardization, subject reduction, and type soundness for the λCIL-calculus, we
have not yet established any of these properties for CIL.

2.2 Type and Term Representations

To keep the sizes of types tractable, the CIL compiler uses hash-consing to
represent types as compact directed acyclic graphs instead of as trees. This is
similar to the type representation in the SML/NJ compiler’s implementation of
its FLINT intermediate language [SLM98]. One important issue faced in FLINT
is not an issue for CIL. FLINT types have higher-order features such as abstrac-
tions and applications, i.e., a λ-calculus inside the types. Because FLINT types
are identified modulo β-conversion, and because eager β-normalization of types
can lose sharing and do excess work, the hash-consing scheme for FLINT types
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uses explicit substitutions [KR95] and memoization of substitution propagation
steps. Unlike FLINT, the CIL types do not have such higher-order features, so
the CIL hash-consing of types is simpler.

Sets of flow labels are often used by many types and/or terms. A single
copy of each set is shared by all uses. Using the duplicating representation for
terms, two CIL term occurrences are rarely structurally equivalent, so we do
not use hash-consing for terms. However, the types and flow sets annotating
terms are hash-consed, as described above. Strings, used for record field names
and constructor names, are also shared by all uses and lists of strings are hash-
consed.

2.3 Compiler Architecture

The architecture of the CIL compiler [DMTW97] is summarized in Fig. 4. This
section briefly describes the compilation stages depicted in the figure.

MLton
Defunctorizor

SML/NJ
Front End

FLINT
To CIL

Type Inference /
Flow Analysis

(TI/FA)

Representation
Choices
(RC)

Flow Separation
(FS)

Split Reification
(SR)

Representation
Transformation

(RT)

Code Generation
(MLRISC)

SML

Core SML

FLINT

Untyped CIL

CIL

CIL

CIL

CIL

SPARC

ΠR

FS

ΠR

ST

R

Fig. 4. Compiler Architecture.
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Defunctorizing, Parsing, Elaboration. Our compiler implementation takes
advantage of existing tools and other freely available SML compilers. The CIL
compiler uses the MLton source-to-source defunctorizer [CJW00] as a prepass
to convert SML into Core SML. It then uses the front end of the SML/NJ
110.03 compiler (somewhat modified) to produce FLINT code. The FLINT code
is translated to untyped CIL code, keeping datatype information on the side to
avoid reinference of recursive types.

Type Inference/Flow Analysis(TI/FA). This stage accepts an untyped CIL
term (plus some of the FLINT type information) as input and returns a typed
CIL term as output. The typed term encodes a flow analysis that is a conservative
approximation of the run-time flow. The TI/FA module is parameterized over a
choice of flow analysis. We currently support five different flow analyses, which
vary with respect to the precision of the approximation. In this paper, we present
data from two of these:

1. The typed source split analysis is a variant of Banerjee’s [Ban97] modified for
shallow subtyping [WDMT0X]; the use of shallow subtyping makes it slightly
less precise than the combination of monomorphization and 0CFA analysis. It
introduces virtual tuples and virtual projections but neither virtual variants
nor virtual case forms.

2. The min type respecting analysis is the least precise flow analysis that is still
type-correct (cf. [JWW97]). It conflates the flow information on all values
of the same flow erased type. For example, an abstraction of type int→ int
will be assumed to flow to every application site whose rator has this type.
This analysis models a monomorphizing compiler in which types carry no
useful flow information.

We have also implemented a finer analysis that splits some let and letrec
definitions based on variable occurrences. Both typed source split and this limited
let split analysis may be implemented either with shallow subtyping constraints,
or with equality constraints. Unless specifically stated, we will use these terms
to refer to the analysis with shallow subtyping constraints.
The granularity of the flow analysis can greatly affect program size. A coarser

grained flow analysis will generally show more functions flowing to a given call
site than will a finer analysis. This can lead to larger union types and more
branches in virtual case expressions.
The precision of flow analysis also affects which variables are considered to

be free, and thus affects the size of environments. The CIL compiler currently
implements a known function optimization in which an invocation of a function
whose identity is known at compile time (as determined by flow analysis) com-
piles to a direct jump. The name of such a known function is not considered to
be a free variable. A coarser grained analysis will find that fewer functions are
known, leading to larger environment types.4

4 The numbers presented in this paper were taken before the known function opti-
mization was implemented. This optimization further widens the space gap between
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Representation Choices (RC). This module selects representations for a
function that are adequate for each of the application sites to which it flows.
Seven different function representation choice strategies have been implemented.
The uniform strategy represents all functions with closure records having the
type

×{code : {arg : τarg, env : τenv} → τbody, env : τenv},

where the code field contains a closed function and the env field contains a record
of the values of the free variables of the function. A closure data structure is
applied to an argument by projecting both fields from the closure record and
applying the function from the code field to an argument record consisting of (the
closure conversion of) the actual argument packaged together with the projected
environment.

The other three representation strategies generate specialized representations
based on various conditions detected in the term structure. Wand and Steckler
[WS94] coined the term “selective” representation to refer to representations of
functions that do not include an environment component. A selective represen-
tation is adequate for a closed function if the function flows only to call sites
with compatible application protocols. In [WS94], selective representations were
disabled in the presence of representation pollution — i.e., when a closed func-
tion shared a call site with some number of open functions. In contrast, the CIL
compiler can still use selective representations in such situations removing the
pollution via a splitting strategy.

The selective sink splitting strategy implemented in the CIL compiler gen-
erates a selective representation when the function has no free variables. This
representation is called “sink splitting” because if the function shares call sites
with open functions, the transformation framework will inject the function rep-
resentations into a sum type and the application site will be split into multiple
sites governed by a case dispatch. The transformation of the program depicted
in Fig. 2 to the one depicted in Fig. 3 is a sample application of the selective sink
splitting strategy. It is also possible that selective sink splitting will cause vir-
tual records created by TI/FA to be reified into normal records if, e.g. a selective
representation is chosen for a call site in one element of the virtual record, and
a closure representation is chosen for the corresponding call site in a different
element of the virtual record.

The selective source splitting strategy generates a selective representation for
a closed function flowing to call sites that are not shared with open functions.
Under this strategy, if a closed function shares some application sites with other
closed functions but shares other application sites with open functions, then
the framework will “split the source” by generating a record containing several
copies of the function. The appropriate representations are projected from the
record somewhere along the flow path to the respective call sites.

coarse grained analyses like min type respecting and finer grained ones like typed
source split.
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Other strategies implemented in the CIL compiler include an inlining strat-
egy, defunctionalization, and a strategy which disables selective representations
in the presence of representation pollution.
The selective sink splitting generates more duplication than the the other

strategies for selective closure representation, and is thus of more interest in this
paper.

Flow Separation (FS). This stage accepts as input a typed program and a
flow-path partitioning function (ΠR

FS) supplied by RC. It specifies which flow
paths can coexist in the same flow bundles. For flow paths that cannot coexist
in the same bundle, the FS phase will introduce whatever coercions and virtual
forms (i.e., virtual variant injections, virtual case expressions, virtual tuples,
or virtual tuple projections) are required to ensure that the result of the later
Representation Transformation stage will be well-typed.

Split Reification (SR). This stage accepts as input a typed term and a flow-
path-partitioning function (ΠR

ST) supplied by RC. This phase reifies whatever
virtual forms are required to remove representation pollution. We refer to the
reification process as splitting because it causes the code generator to generate
multiple copies of a term in situations where only one copy would have been
generated without reification. In general, the current simple algorithm may split
more than is necessary[DMTW97]. Specifying and implementing a more efficient
splitting algorithm remains for future work.

Representation Transformation (RT). This stage accepts as input a typed
term and a representation map (R) provided by RC. It walks the term and
installs the function representations specified by the map. The FS stage only in-
troduces virtual forms, and the SR stage only reifies virtual forms. The RT stage
performs the actual work of changing the code for specialized representations.
For instance, in the case of selective closure conversion, it is RT which changes
some functions to closures, and some call sites to calls to closures.
An interesting aspect of the transformation is that the result of the transfor-

mation may have a recursive type even though the source of the transformation
has no recursion in either terms or types: recursion through flow labels in the
source term may be enough to cause the transformed term to have a recursive
type.

Code Generation. The CIL compiler back end transforms typed CIL programs
into assembly code for the SPARC processor. It does not currently add any type
annotations, or assertions, to the assembly code, although this is planned for fu-
ture work. The produced assembly code is linked with a runtime library providing
the environment in which CIL programs are executed. The back end is based on
MLRISC, a framework for building portable optimizing code generators [Geo97].
CIL programs are translated into the MLRISC intermediate language, and the
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framework is specialized with CIL conventions for each target architecture.5 ML-
RISC handles language-independent issues such as register allocation and code
emission.
The runtime library is written in C and provides memory management, ex-

ception handling, basis functions and a foreign function interface for CIL pro-
grams at runtime. The runtime library currently manages memory using the
Boehm-Demers-Weiser conservative garbage collector for C [Boe93]. CIL pro-
grams use stack-allocated activation records, which have a layout similar to C
stack frames. Basis functions are called through the foreign function interface,
which provides data and activation record conversions between CIL and foreign
languages. The code generator does not yet optimize tail recursion.
CIL data representations are straightforward. Records, arrays, references,

and strings are heap-allocated and include size headers6. Exception identifiers
and all other constants are immediate. Injections may either be immediate or
heap allocated, depending on the number and type of summands in their type.
Recursive bindings are restricted to CIL values – terms that cannot diverge,

affect the store, or raise exceptions. The CIL notion of value is more liberal than
that of SML; in particular, CIL allows recursive bindings that specify cyclic
data structures, whereas SML does not. Although input programs must adhere
to SML restrictions on recursive definitions (because we use the SML/NJ elabo-
rator), compiler transformations may (and do) create recursive specifications of
cyclic data structures. The CIL value restriction allows the code generator to use
a two phase algorithm for recursive bindings: the first phase allocates memory
for the values, while the second phase fills them in.

3 Representation Measurements

The main purpose of this paper is to determine whether CIL has acceptable
compile-time space costs and to evaluate how flow analysis and representation
strategy combinations affect these costs. This section presents data indicating
that CIL is tractable as a compiler intermediate language when used with a
reasonably fine-grained flow analysis.

3.1 Space Profiles

We have tested the CIL SML compiler for most combinations of flow analy-
ses and function representation strategies on 22 kernels and small benchmarks
taken from the O’Caml, TIL and SML/NJ benchmark suites. Figures 5 and 6
present space profiles for a geometric weighted average of all our benchmarks,
and profiles for five individual benchmarks for two flow analyses and two function

5 Although an advantage of the MLRISC framework is its portability, it still requires
substantial work to port a code generator based on MLRISC. For this reason we
have concentrated only on the SPARC architecture to date.

6 Such headers are currently unnecessary since we use conservative GC. But it is
expected that in the future we will develop customized memory management.
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representation strategies. We show data for the uniform function representation
strategy to indicate the amount of data needed to correctly closure convert func-
tions without customizing representations. We show the selective sink splitting
strategy as an example of a strategy that customizes function representations.
The typed source splitting flow analysis is currently our most accurate analysis
that does not split on variable occurrences. The min type respecting flow analy-
sis is included to show size bloat that can occur when flow analysis provides no
information beyond the type.
Each space profile shows intermediate representation size information at var-

ious CIL compiler stages. The legend in Fig. 5 explains how to interpret the
data. Of particular importance is the position of the horizontal tick mark found
in each bar of a profile. The portion of the entire bar below the tick mark is
our conservative estimate of the space that might be required for a hypothetical
non-duplicating representation of the term (including the space for type and flow
information in such a term). The position of the horizontal tick mark is computed
as the term size ignoring all but the leftmost branches of virtual records and vir-
tual case expressions. Ignoring all but the leftmost branches approximates the
size of a non-duplicating “skeleton” that could be instantiated to the full du-
plicating type representation. Since we do not include any information about
the non-leftmost branches, we assume that our approximation underestimates
the true size of the a non-duplicating representation. Virtual record nodes and
virtual case nodes are included in the count because they serve as markers for in-
tersection type introduction and union type elimination points. We assume that
such markers would be required in any non-duplicating representation. Virtual
projection and virtual injection nodes are included to approximate (resp.) the
markers required for intersection type elimination and union type introduction
forms. Finally, the count also includes coercion nodes.7

The size information was gathered by adding a function to the SML/NJ
runtime system which runs the mark stage of the SML/NJ garbage collector
using a particular object as the root. The function reports the size of all marked
objects that are reachable from the root object. We present all size information
in bytes rather than in type or term constructor nodes. We find that the average
size of our type nodes and of our term nodes for a given benchmark is generally
in the range of 10 to 12 times the size of a machine word.

3.2 Interpretation of the Space Profiles

Interpreting the size of the untyped term. When compiling small pro-
grams, the untyped CIL code, U, is smaller than the typed FLINT code, F. For
benchmark programs of any reasonable size, the untyped CIL code is slightly
larger than the typed FLINT code. This is due in part to the fact that the
CIL representation carries more information about records and datatypes than

7 An even more conservative approximation of the space required for a nonduplicating
representation would be the size of the type-erased term. We believe that this is
unrealistically small.
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Strategy: uniform Strategy: selective sink splitting

Flow Analysis: Flow Analysis: Flow Analysis: Flow Analysis:

min type respecting typed source split min type respecting typed source split

F U I S R T O F U I S R T O F U I S R T O F U I S R T O

Geometric average of 22 kernels and benchmarks.

F U I S R T O F U I S R T O F U I S R T O F U I S R T O

Benchmark: life. Vertical scale: 1,660,592 bytes.

F U I S R T O F U I S R T O F U I S R T O F U I S R T O

Benchmark: quad. Vertical scale: 62,200 bytes.

Legend:
Tick mark − at minimum size for a
non-duplicating representation.

F=size of FLINT code.
U=size of untyped CIL.
I =size of result of Type Inference / FA.
S =size of result of Flow Separation.
R=size of result of Split Reification.
T=size of result of Representation Trans.
O=size of SPARC .o file

=Size of term.
=Size of types.
=Size of strings and string lists.
=Size of label sets.
=Size of term and types for F.

Fig. 5. Sizes of benchmark phases by strategy and flow analysis I

16



Strategy: uniform Strategy: selective sink splitting

Flow Analysis: Flow Analysis: Flow Analysis: Flow Analysis:

min type respecting typed source split min type respecting typed source split

F U I S R T O F U I S R T O F U I S R T O F U I S R T O

Benchmark: frank. Vertical scale: 6,511,976 bytes.

F U I S R T O F U I S R T O F U I S R T O F U I S R T O

Benchmark: fft. Vertical scale: 395,284 bytes.

F U I S R T O F U I S R T O F U I S R T O F U I S R T O

Benchmark: boyer2. Vertical scale: 1,964,636 bytes.

Legend:
Tick mark − at minimum size for a
non-duplicating representation.

F=size of FLINT code.
U=size of untyped CIL.
I =size of result of Type Inference / FA.
S =size of result of Flow Separation.
R=size of result of Split Reification.
T=size of result of Representation Trans.
O=size of SPARC .o file

=Size of term.
=Size of types.
=Size of strings and string lists.
=Size of label sets.
=Size of term and types for F.

Fig. 6. Sizes of benchmark phases by strategy and flow analysis II
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does the FLINT representation. Of the profiles shown in this paper, only quad
shows less space for untyped CIL than for FLINT; in all other cases that we
show, the untyped CIL code is larger than the FLINT code. While other small
benchmarks are smaller in untyped CIL than in FLINT, the weighted average
shows that untyped CIL is usually the bulkier representation.
The F and U columns are not quite comparable for several reasons. The F

column overestimates the size of the FLINT code in the sense that it includes
the size of FLINT type information. FLINT and CIL also differ in terms of which
basis functions are compiled with the program and which are pre-compiled in
the run-time system.
Columns F and U are independent of the flow analysis or the function rep-

resentation strategy, but are repeated in each profile as reference points.

Interpreting the output of the Type Inference/Flow Analysis stage.
Column I shows the size of the typed and flowed term output from the TI/FA
stage. As illustrated by the representative space profiles, the TI/FA pass can
expand the size of the term by introducing virtual nodes. In monomorphic bench-
marks, (e.g., boyer2, fft, and frank), term size is only increased by the addition
of coerce forms that indicate where subtyping is used. In benchmarks with poly-
morphic functions (e.g., life, and quad), the TI/FA stage makes one virtual copy
(using ∧) of each polymorphic function at each flow-erased type at which the
function is used.
In the two flow analyses shown, the distance of the tick mark from the top of

the I bar reflects the amount of type polymorphism in the benchmark. In general,
the tick mark indicates the amount of polyvariance of the analysis, which, for
some analyses, may be substantial even for monomorphic code.

Interpreting the output of the Flow Separation stage. Column S shows
the size of the output from the FS stage. The FS stage introduces whatever new
virtual constructs are required to ensure that the result of the (later) RT stage
will be well-typed. For example, abstractions that share a call site may have
the same type, up to flow information, after the TI/FA stage, but may differ
from each other in the number, name and types of free variables. The FS stage
must create types that differ in structure as well as in flow information for these
different terms.
Under the uniform strategy, the growth in size from I to S is due only to

differences in the environment component of closures – differences that will not
be reflected in the object code. In other strategies, some of the growth may be
due to function representations that require different object code.
The growth in size from I to S depends on the accuracy of the flow analysis.

In the min type respecting flow analysis, the labels for all abstractions of a given
(flow erased) type appear in the source label set for each application site for that
type. This requires the flow separator to introduce larger intersection and union
types, and to perform more virtual term duplication than would be required for
a finer flow analysis. This is seen consistently throughout the data, with frank
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being the most dramatic example, and boyer2 being the least dramatic. The
frank benchmark is a combination of human written code for a Warren Abstract
Machine using some curried and higher-order functions, and machine generated
code to play a solitaire game on the WAM. The machine-generated code contains
many different anonymous functions of the same few types but with different free
variables. Themin type respecting flow analysis causes these calls to be conflated.
The boyer2 benchmark is a tautology checker which has been written in closed,
uncurried, first-order style. In boyer2, all abstractions are closed up to names
of known functions8, so there are few free variables requiring separation.

Interpreting the output of the Split Reification stage. Column R shows
the size of the output from the SR stage, which reifies some virtual constructs —
splitting them to pave the way for different representations that will be installed
by the Representation Transformation stage. The number of term and type nodes
remains the same because the transformation is merely changing virtual entities
to real ones.9 However, reifying type and term nodes causes the the position
of the tick mark on the bar graph to rise, giving an indication of how much
reification is performed.

Under the uniform strategy, the S and R columns show identical tick mark
positions. This is expected because we implement only a single function calling
convention for the uniform strategy, and so splits are never necessary. Under the
selective sink splitting strategy, the position of the tick mark may change upwards
due to reification of virtual constructions: this is what we expect from splittings
introduced to circumvent representation pollution and to insert customized data
representations. This is shown most dramatically in quad (a kernel repeatedly
applying a doubling function), in which all virtual constructs are reified. In
contrast, the fft (Fast Fourier Transform) benchmark shows no pollution of
function representations when compiled with the selective sink splitting strategy.
Most functions in fft are open, but the control flow structure of fft is quite simple:
just nested loops, so open functions and closed functions never flow together.

If we see even a little reification for a strategy, we know that some part
of the transformed program will use a simpler representation. If this change
is in an inner loop, then a single reification may dramatically affect program
performance. To determine the effectiveness of a strategy, we need to show data
about the performance of the transformed programs — something outside the
scope of this paper.

Our current SR stage is quite simple: if it encounters two different repre-
sentations in a single virtual construct, then it converts the virtual construct

8 For this paper, known function names are treated as free variables. Enabling the
known function optimization creates slightly smaller representations. The size de-
crease depends on the accuracy of the flow analysis (circa a 5% decrease when using
the typed source split analysis).

9 The size of the term component decreases slightly in some profiles due to assymetries
between virtual and real injections in the current implementation (e.g., life, with
strategy = selective sink splitting and flow analysis = min type respecting).
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into the equivalent real construct. Our current splitting algorithm can oversplit
because it reifies a virtual form whenever it contains components that require
different representations. But given an n-way virtual form whose components
require m < n different representations, the virtual form could be replaced with
a real form containing m virtual forms. Oversplitting will result in unnecessary
duplicated code in the object file. Oversplitting impacts the performance of the
generated code when the m-way real form could be more efficiently compiled
than the n-way form. We have neither measured the amount of oversplitting
arising from the current algorithm nor have we experimented with other split-
ting algorithms.

Interpreting the output of the Representation Transformation stage.
The type information in a closure-converted term is larger than in the pre-
converted term. This is visible in the profiles for all the benchmarks. Part of this
growth is in the creation of types for the required closure and argument records.
Part of this growth is the creation of types for environments. In our framework,
programs with more open terms will experience more growth in types.

The introduction of closure and argument records and the storage of free
variable values in environments causes an increase in term size. In our imple-
mentation of closure conversion, the major increase in term size is from projec-
tions from the environment: our implementation puts in a projection from the
environment wherever a free variable occurs.10 The creation and destructuring
of closure and argument records will show different percentage effects in differ-
ent benchmarks depending on the relation of the number of abstractions and
applications to other term constructors.
The boyer2 benchmark has the highest ratio of closed to open terms, so its

term size grows, essentially, only by introduction of closure and (mostly empty)
argument records; there are few projections. For this reason, the growth in size is
relatively small. In contrast, fft has a high percentage growth. Transforming the
nested looping functions of fft creates closures having large environment records
and code containing numerous environment projections.

The change in the position of the tick mark relative to the height of the bar
from R to T indicates how much expansion occurs in virtual terms relative to
real terms. The relative position of the tick mark decreases when there is a high
ratio of virtual to real terms, but can increase when the total growth in the size
of real terms is larger than that for virtual terms.

Duplicating vs. nonduplicating intermediate representations. Columns
I, S, R and T have tick marks showing our estimated lower bound on the size of
a typed and flowed term in a non-duplicating TIL. The position of the tick mark
shows that in the benchmark programs presented (and so far in all benchmarks
that we have tried), for the flow analyses presented, the space used in CIL’s

10 In the time since the measurements reported here were taken, we have modified the
compiler to project each environment variable only once per function body.
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duplicating term representation is never more than about twice our estimate
for a non-duplicating representation. This is both surprising and encouraging.
However, it remains to be seen whether these results hold up in the presence of
more polyvariant flow analyses.

Coarse vs. fine flow analysis. We have shown that the choice of flow analysis
can greatly influence the growth in term size needed to produce well-typed func-
tion representations. The most dramatic example occurring in the benchmark
frank, where, for the uniform function representation strategy the min type re-

specting analysis resulted in a size after Flow Separation 5.2 times the size of
that produced using the typed source split analysis. At the other extreme, the
benchmark boyer2 shows a slight decrease in overall size from typed source split

analysis to min type respecting analysis. The min type respecting flow analysis
yields a smaller number of flow types for the number of underlying flow erased
types than the typed source split analysis. In the case of boyer2, the slightly
larger term size using min type respecting analysis is offset by the significantly
smaller size of the flow types.
We have accumulated some data so far for the version of typed source split

using only equality constraints. This analysis can be thought of as performing
Henglein’s “simple” flow analysis [Hen92] over monomorphized code, and is the
flow analysis used in the RML compiler [TO98]. As expected, profiles generated
using this analysis generate somewhat larger code in many cases, than profiles
generated with the usual typed source split, but are much closer to the profiles
for typed source split than they are to the profiles for min type respecting.
We have also implemented an analysis, limited let split, which causes some

let and letrec bound definitions to be duplicated per occurrence of the bound
variable, rather than just once per type. In this analysis, benchmarks life after
the RT stage, and simple after TI/FA stage (but not subsequently), show a ratio
of CIL code size to non-duplicating TIL code size of 2.1. The code size ratios
are less than 2 for all other compiler phases and benchmarks in our benchmark
suite. A study of aggressive nested cloning in a lazy functional language [Fax01]
shows code size increases of a factor of up to 3 for some benchmarks of up to
800 lines of code. That study also shows that, when identical clones are merged
after transformation, the code size increase is only a factor of 1.2.

The cost of accurate closure types. The profiles give us some idea as to the
compile-time space cost of accurately representing closure types. With uniform
function representation and typed source split analysis the growth in size from
the output of Type Inference/Flow Analysis stage to the output of the Repre-
sentation Transformation stage shows the space needed for closure types and for
virtual cases where multiple closures flow together. This growth ranges from the
size of RT output 1.03 times the size of TI/FA output for boyer2 to 2.76 times
for quad. The ratio of the types sizes is 1.02 for boyer2 and 3.11 for quad.
quad is atypical, being a very small program constructed to have relativly large
types.
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4 Conclusions and Future Work

We have shown that the amount of space used in compiling SML with CIL terms
and types is practical on our benchmarks for the more precise flow analyses that
we have investigated. Most importantly, the term sizes in our straightforward
duplicating representation are never more than about twice our underestimate of
term sizes using a non-duplicating representation. Transformations that use type
and flow information on virtual terms to generate customized data representa-
tions would be more difficult to engineer in a non-duplicating representation. A
factor of less than two in space is acceptable to avoid further complicating the
transformations.
This is the kind of result that requires benchmarking to determine, as it

depends on the style in which programs are written. It appears to be the case that
for the human written and machine generated programs which we have been able
to test that (1) the bulk of the program code is not used in a highly polymorphic
manner so that a whole program analysis finding actual polymorphism rather
than potential polymorphism need not perform too much duplication – this limits
the number of virtual records created in type inference; (2) A reasonable flow
analysis will find that a large percentage of calls in most programs are direct
calls – this limits the number of virtual cases created in the Flow Separation
phase for correctness of typed closure conversion, and for pollution removal in
the selective sink splitting strategy.
The typical non-trivial growth in size from the result of TI/FA to the result

of RT is obviously undesirable, and might be smaller in an intermediate repre-
sentation that could hide environment types with an existential quantifier. This
raises the question of whether the more precise type information maintained
in CIL after closure conversion without the ∃ type quantifier is useful in terms
of transforming a program for better run-time performance. If not, we should
extend CIL with existential types.
Although the standard technique for hash-consing types sketched earlier is

the one used to generate the statistics for this paper, we have almost finished
changing to a new type hash-consing scheme, which we expect to give much
better performance. The motivation for the new scheme is due to the combination
of (1) the pervasive use of recursive types in CIL and (2) the fact that the
CIL type system identifies recursive types with the infinite trees that result
from unwinding them infinitely. The new scheme represents types as directed
graphs and implements recursion using cycles. The use of cycles to represent
recursion automatically causes α-equivalent types to be shared — the variable
names are no longer present leaving only the structure of the recursive type
to be stored in this representation. It will also avoid the need to have type
manipulation special-case the type recursion form (which can currently appear
anywhere). The new scheme uses a method of incremental DFA minimization
to maintain the invariant that each possible type is represented by at most
one node in the graph. This will allow constant-time type equality checking,
which our current hash-consing scheme does not support due to the possibility
of differing representations of the same recursive type.
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Our new method of incremental DFA minimization to represent all types in
the same graph is similar to a method suggested by Mauborgne [Mau00], but
was developed completely independently. Our method needs O(n log n) space
to store the types, while Mauborgne’s needs O(n2 logn) space, where n is the
number of distinct types and some upper-bound on the arity of type constructors
is assumed. Also, even in cases where Mauborgne’s method approaches linear
space complexity, ours will typically use half as much space.

Encoding more flow analyses in CIL remains an important area for future
work. Recent work has shown that many standard flow analyses, such as k-CFA
[Shi91, JW95, NN97] and the cartesian product argument-based analysis [Age95]
can be encoded into a type system with intersection and union types and flow
labels [PP01, AT00]. However, unlike CIL, these type systems have deep sub-
typing. We are exploring a translation between deep and shallow subtyping that
will allow us to employ these recent theoretical results in the CIL compiler. We
are eager to see how highly polyvariant flow analyses affect our results regarding
the duplicating term representation.

There are many areas for improvement in the CIL compiler as a whole. The
compiler can benefit from many standard optimizations not yet implemented
(e.g., tuple flattening and loop optimizations) as well as some important non-
standard optimizations (e.g., the complete removal of polymorphic equality).
Several existing algorithms can be more efficiently implemented, such as the
algorithm used in Split Reification. There are also many opportunities for im-
provement in the representation of the intermediate language.

We have designed and implemented a general framework for generating cus-
tomized data representations, but work remains to be done in optimizing those
representations and developing heuristics for choosing between allowable rep-
resentations. In terms of function representations, we are currently investigat-
ing function representations that do not close over variables whose values are
available on the stack (the so-called lightweight closure conversion of [SW97]),
higher-order uncurrying [HH98], removing manipulation of records with known
components (along the lines of the fictitious data elimination in [Sis99]), and
register allocation and calling conventions informed by flow information. We
have yet to explore customized representations for other kinds of data, but CIL
is rich enough to support flow-directed representation transformations for all
types of data.

Finally, we emphasize that this report has focused only on compile-time space
issues. In the future, we will report on compile-time time complexity as well as
run-time space- and time-complexity.
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