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Abstract

Optimizing compilers for function-oriented and object-oriented languages exploit type and flow infor-
mation for efficient implementation. Although type and flow information (both control and data flow)
are inseparably intertwined, compilers usually compute and represent them separately. Partially, this
has been a result of the usual polymorphic type systems using ∀ and ∃ quantifiers, which are difficult to
use in combination with flow annotations.
In the Church Project, we are experimenting with intermediate languages that integrate type and

flow information into a single flow type framework. This integration facilitates the preservation of flow
and type information through program transformations. In this paper we describe λCIL, an intermediate
language supporting polymorphic types and polyvariant flow information and describe its application
in program optimiziation. We are experimenting with this intermediate language in a flow and type-
directed compiler for a functional language. The types of λCIL encode flow information (1) via labels
that approximate sources and sinks of values and (2) via intersection and union types, finitary versions
of universal and existential types that support type polymorphism and (in combination with the labels)
polyvariant flow analysis. Accurate flow types expose opportunities for a wide range of optimizing
program transformations.

This paper is organized as follows. In section 1, we explain the background of the use of types and flow
information in compilation and the motivation for our approach to combining types and flow information.
In section 2, we present the language λCIL as an example of a language with polymorphic and polyvariant
flow types and give simple examples of how it can be used. Section 3 concludes with a discussion of research
directions.

1 Background and Motivation

Modern function-oriented programming languages (e.g., ML, Haskell, Scheme) are perceived to be more
expressive but less efficient than traditional imperative languages (e.g., Fortran, C, Pascal, Ada). The
perceived inefficiencies of function-oriented languages are due to a combination of direct and indirect costs
incurred by straightforward implementations of features that make these languages expressive.

The direct cost of a feature is the overhead of the particular method of implementing it. Here are three
key features of modern function-oriented languages and their associated direct costs:1

• First-class lexically-scoped functions: Lexically scoped functions can be created in any naming scope
and “remember” the name bindings in the scoped where they were created, even if they escape that
scope. Like other first-class values, such functions can be named, passed as arguments to functions,
returned as results from functions, and stored in data structures. The combination of lexical scoping
and first-classness imply that functions cannot be implemented as mere code pointers; in general, they

∗This is a revised version of a paper that appears in [TIC97].
†This author’s work was done at Boston University and was partially supported by NSF grants CCR–9113196 and CCR–

9417382 and EPSRC grant GR/L 36963.
1In addition to the listed features, many function-oriented languages support additional features that are challenging to

implement efficiently: lazy evaluation (Haskell), dynamic type checking (Scheme), generic arithmetic (Scheme), exception
handling (ML and Scheme), and first-class continuations (ML and Scheme).
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must be implemented as closures that pair a code pointer to a function with the values of that function’s
free variables. The time and space overheads of packaging, unpackaging, and managing the storage of
these closures are direct costs of functional programming.

• Parametric polymorphism: Many functional languages support parametric polymporphism, in which
a single generic function definition can be instantiated at many different argument and result types.
Parametric polymorphism is traditionally modeled with universal types [Rey74, Gir72]. A universally
polymorphic function must work when used at any of an infinite set of substitution instances of the
universal type. It is challenging to implement such polymorphic functions efficiently. In the absence of
information about the types at which it is instantiated, a universal type is almost a promise of a general
implementation. In a straightforward implementation, a single copy of the polymorphic function is
compiled under the assumption that all arguments and results are boxed, i.e., are uniformly represented
as pointers to values. In this approach, the overhead of allocating, dereferencing, and deallocating boxed
values can make polymorphic functions much less efficient than monomorphic functions.

• Abstract data types: Some functional languages support abstract data types, in which a single data
type interface specification to be implemented in multiple ways without exposing the details of any
implementation to the clients of an abstract data type. Abstract data types are dual to parametrically
polymorphic functions in the sense that a single client works for many different implementation types.
They are usually modeled with existential types [Mit96], which suffer problems similar to universal
types. In particular, values of an abstract data type are typically boxed, and client code cannot take
advantage of any representation-specific optimizations since the data type representations are generally
not apparent.

The direct costs described above are particularly expensive in the presence of a uniform representation
assumption that requires the most general representation to be used for each value, regardless of how it is
used. Under this assumption, the direct costs are incurred in all programs, whether or not they make use
of a feature. For instance, although a function without free variables is conceptually just a code pointer, it
may be represented as a code/environment closure pair to be consistent with a uniform calling convention.
Similarly, since it is not always apparent when a value is destined to be an argument of a polymorphic
function, many implementations uniformly box all values. This strategy has the undesirable property that
even purely monomorphic code must pay the cost of the possibility for polymorphism in the language.

The indirect cost of a feature is the inability to perform traditional optimizations that are obscured by
the presence of the feature. For example, classical code motion and loop optimizations [ASU85] depend
on local control and data flow information that is not readily apparent when a program is expressed as a
collection of recursive functions or methods, many of which may be higher-order. Similarly, boxing integer
and floating point values may interfere with storing them directly in machine registers.

It is worth noting that the efficiency problems enumerated for functional languages are shared by many
object-oriented languages (e.g., Java, Smalltalk, Eiffel). Message-passing objects have a structure similar to
that of closures. Small method size and dynamic method dispatch thwart traditional optimizations. The
exact class of a method argument is often unknown (polymorphism). Even if the exact class of an argument
is known, its representation may be hidden by data encapsulation (abstract data types).

Optimizing compilers for modern languages exploit type and/or flow information to reduce the direct and
indirect costs of expressive language features. Types can be used by compilers to guide data-representation
decisions and program transformations for improved program performance. For example, in type-directed
specialization, different copies of a polymorphic function or method are compiled for each type at which the
polymorphic routine is used [CU89, Ble93, Jon94, PC95]. The cost of polymorphism can be isolated to
uses of polymorphic functions by wrapping them in boxing coercions that are determined by the instantiated
types [PJL91, Ler92, HJ94]. But boxing coercions introduce new problems — they imply copying and
coercions that are expensive for compound data and recursive functions and that are semantically incorrect
for mutable data structures[Mor95]. An alternative is to use dynamic type dispatch to coerce a function to
a specialized version based on an explicit type argument[Mor95, TMC+96].

Compilers also use flow information to ameliorate the costs of expressive language features. A flow
analysis provides a conservative approximation of which program points (sources) can produce the values
that are consumed at other program points (sinks). Traditionally, flow analyses merely pair program points
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(a, b) where the value of a might become the value of b. In languages making heavy used of higher-order
functions or object methods, flow information can show global patterns that are not apparent from local
structure. For example, flow analysis is used to guide function and method inlining [PC95, JW96], efficient
function representations [WS94, Ash96], the detection of loops hidden in function calls [Ash96], and type
recovery and type check elimination in dynamically typed languages [Shi91b, JW95].

As an example of type and flow based optimizations, consider the following ML functions:

fun pfoldr p f i [] = (i,i)

| pfoldr p f i (x::xs) =

let val (l,r) = pfoldr p f i xs

in if (p x)

then (f(x,l),r)

else (l,f(x,r))

end

fun test (b, L1, L2, L3) =

let val even_odd =

pfoldr (fn x => x mod 2 = 0)

(fn (n,len) => 1 + len)

0

val sums =

pfoldr (if b

then (fn y => y > 0.0)

else (fn z => z < 0.0))

op+

0.0

in (even_odd L1,

let val (_,r) = even_odd L2 in r end,

sums L3)

end

Using binary operator f and initial value i, pfoldr accumulates two results from a list — one for elements
satisfying predicate p and one for the other elements. The test function uses pfoldr to count the number
of evens and odds in the integer list L1, to count the number of odds in the integer list L2, and to collect the
sums of floating point numbers in L3 according to a predicate determined by a boolean b.

Ideally2, a compiler would be able to use type and flow information to choose from all of the following
optimizations:

• Since pfoldr is instantiated at two types, it is possible to specialize pfoldr into two copies, one for lists
of integers and one for for lists of floats. This would permit unboxed representations for the elements
of the lists L1, L2, and L3, as well as for the elements of the tuples manipulated by pfoldr.

• It is possible for even odd to be a specialized copy of pfoldr that results from in-lining the arguments
to pfoldr. This sort of in-lining can be performed without any fancy flow analysis [App92, TMC+96,
Tar96]. However, in the presence of non-trivial flow patterns, such as the conditional argument to
pfoldr in the definition of the function sums that chooses between two predicates, in-lining can require
more sophisticated flow analyses and transformations. In this case, two options are (1) to in-line the
two predicates at (p x) within a single copy of pfoldr and discriminate between them via b, and (2)
to in-line each of the two predicates in a separate copy of pfoldr and discriminate between the copies
via b.

• Flow information can be used to to determine that only the second component of the tuple returned by
even odd L2 is referenced. It should be possible to replace this call by a call to a specialized function
that computes and returns only the second tuple component, thus avoiding the overheads of computing
the first component and constructing and unpacking tuples.

2We are not aware of a current compiler that actually performs all of listed optimizations.
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• Flow information can show that the tuple returned by the recursive calls to pfoldr is used linearly.
This should allow the compiler to use in-place updates to construct the new return value rather than
building a new tuple.

Because of the benefits of type and flow information, increasingly sophisticated type and flow anal-
yses are being employed in compilers. Much recent work has focused on transmitting type information
through the stages of a compiler via typed intermediate languages and well-typedness-preserving transforma-
tions [PJHH+93, TMC+96]. Not only is the preserved type information important for guiding representa-
tion decisions and enabling optimizations, but it also serves as a helpful tool for proving the correctness of
transformations and debugging compiler implementations [TMC+96, PJM97].

While type information has been tightly integrated into modern intermediate languages, flow information
has not. The only implemented or partially implemented languages of which we are aware which merge type
and flow information are those based on constrained types [Cur90, AW93, AWL94, EST95]. It is not clear
whether any work with constrained types has used a typed intermediate language. Also, support in
constrained type systems for type polymorphism has been via let-style polymorphism, which is difficult to
use in a typed intermediate language without losing the ability to express a polyvariant flow analysis. Formal
connections have been established between monovariant flow analyses and monomorphic type system [PO95,
Hei95], but typed intermediate languages need type polymorphism. In those languages which have used flow
analysis with a typed intermediate language, the results of flow analysis have been maintained separately
from the typed intermediate representation [JWW97]. Any formalism connecting the flow information to
the typed program is outside the type system. Because the flow analysis is separate from the type system,
the type system itself does not help in proving that program transformations preserve the correctness of the
flow analysis.

Historically, most flow analysis work for higher-order languages has been done in the context of dynam-
ically typed languages rather than statically typed ones. We hypothesize that the absence of static types
in dynamically typed languages has forced researchers working with these language to explore flow-based
techniques more aggressively as a means of determining the sort of type information naturally available in
statically typed languages. But since flow analysis provides more than just type information, it has benefits
for statically typed languages as well. Moreover, recent work on flow analysis in higher-order typed languages
suggests that there are some important synergies between flows and types in typed languages. For example,
types can provide a basis for polyvariant flow analysis [Ban97, JWW97] that is more natural than the call
string contours of the n-CFA approach (see [Shi91a] for n-CFA).

To address these issues, we propose that the type and flow information in a compiler should be integrated
into a single flow type system, and that flow types should be the basis for compiler intermediate languages.
Flow types offer the following advantages for an intermediate language:

• Since flow types provide more information than types alone, they can support a wider range of trans-
formations and optimizations.

• Because transformations must preserve well-typedness, they will automatically preserve the correctness
of the flow analysis embedded in the types, i.e., the flow analysis must continue to be a conservative
approximation of the actual flow. It is unnecessary to recompute the flow analysis on the result of the
transformation unless greater precision is desired.

• The additional flow information can aid in correctness proofs and in the debugging of compiler im-
plementations. The value of typed intermediate languages for verifying and debugging compiler
implementation has been emphasized by other researchers [TMC+96, PJ96].

2 A Calculus of Polymorphic and Polyvariant Flow Types

We have designed a calculus, λCIL, for experimenting with polymorphic and polyvariant flow types.3 In λCIL,
flow information is encoded in two ways: (1) via flow label annotations that approximate the flow of values

3CIL stands for Church Intermediate Language. The goal of the Church Project is to explore the use of advanced type
systems in the design and implementation of modern programming languages. For more information about the Church Project,
see http://www.cs.bu.edu/groups/church.
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from source expressions to sink expressions; and (2) via terms of intersection and union type. Intuitively,
intersection and union types are finitary versions of infinitary universal and existential types. Intersection
and union types are capable of expressing polymorphism and abstract data types. In conjunction with flow
labels, they can express forms of polyvariant flow analyses.

We are using λCIL as the intermediate language for a framework that supports multiple closure rep-
resentations for functions [DMTW97]. Some practical difficulties with λCIL include controlling the size of
representations in λCIL and the dependence of λCIL on the closed program assumption (which is at odds
with modular programming and separate compilation). Nevertheless, we feel that λCIL serves as a proof-
of-concept for the notion of flow types. We expect that further research will continue to improve flow type
systems.

In this section, we give an informal overview of λCIL by discussing its syntax and semantics in the
context of some simple examples. Along the way, we also explain some of the design decisions underlying the
language. For a more formal presentation, see [WDMT97]; a summary of the formal presentation appears
in the appendix of [DMTW97].

We present three distinct versions of λCIL, which differ in terms of whether they include types and/or
flow label annotations.

1. the untyped language λCIL
ut has neither types nor flow labels.

2. the unlabelled language λCIL
ul has types but no flow labels.

3. the fully typed language λCIL has both types and flow labels.

We consider these three languages in turn.

2.1 The Untyped Language λCILut

The untyped language λCIL
ut is a call-by-value lambda calculus extended with constants, recursion, and

positional products and sums. Here is a sample λCIL
ut term that returns a tuple containing the results of

three applications of the identity function: M̂a ≡ let f = λx.x in ×(f @ 17, f @ 23, f @ true)

M̂a ≡ let f = λx.x in ×(f @ 17, f @ 23, f @ true)

Application is indicated by an explicit @ symbol, which serves as a place to hang flow labels in the typed
versions of the language. ×(M1, . . . ,Mn) creates a tuple with n components; The ith component of the tuple
denoted by M can be selected via π×i M . In the untyped language, let is syntactic sugar for a λ application.
For presentational purpose, we use standard infix primitives in our examples even though they do not appear
in the formal calculus. The call-by-value reduction rules for λCIL (not shown here) are straightforward. Via
these rules, M̂a reduces to the normal form ×(17, 23, true).

Here is second sample expression, which illustrates variants:

M̂b ≡ let g = λs. case+ s bind w in

×(λx.x+ 1, w),
×(λy.y ∗ 2, w + 1),
×(λz.if z then 1 else 0, w)

in let h = λa. let p = g @ a

in(π×1 p) @ (π×2 p)
in ×

(

h @
(

in+
1 3

)

, h @
(

in+
2 5

)

, h @
(

in+
3 true

))

Both g and h are functions that take a variant value as their argument. Variant values are constructed via
(

in
+
i M

)

, which injects the value of M into a variant with tag i. Variants are deconstructed via a case+

expression. A term of the form case+ M0 bind x in M1, . . . ,Mn discriminates on the variant value denoted
by M0, which should be of the form

(

in+
i V

)

, where 1 ≤ i ≤ n, and V is a value (i.e., constant, abstraction,
tuple of values, or injection of a value). The value of the case+ expression is the value of the clause Mi in
a context where x is bound to V (the same bound variable is used in all clauses). The case+ term within
g evaluates one of three tuple terms depending on the tag of s. Each of these terms pairs an abstraction
with an argument value to which it will be applied (in h). Thus, the tuples have the form of thunks (nullary
functions) that have been closure-converted [DMTW97]. M̂b reduces to the normal form ×(4, 12, 1).
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2.2 The Unlabelled Language λCILul

The typed but unlabelled language λCIL
ul is an extension to λCIL

ut in which all variables (except those introduced
by case expressions) and injections are annotated with a type. In addition to the more familiar types —
base types, function types, tuple types, variant types, and recursive types — λCIL

ul provides intersection and
union types.

Intersection types model the types of polymorphic functions in terms of the types at which they are
used. For example, the identity function λx.x that appears in the untyped term M̂a can be assigned the
type ∧[int→ int, bool→ bool] because it is applied only to integers and booleans. In type systems based on
System F [Gir72, Rey74], the identity function is normally assigned the universal type ∀τ.τ → τ . Universal
types do not provide any information about the types at which polymorphic functions are instantiated.
In effect, they strongly suggest a uniform representation, which implies overheads like boxing. In contrast,
intersection types are finitary versions of universal types that expose the types at which polymorphic functions
are used. This information can be used to guide representation decisions in a compiler (e.g., type-directed
specialization for different instantiations of a polymorphic function).

Union types model the types of data abstractions in terms of the types that implement the abstractions.
Union types allow otherwise incompatible types to be merged as long as they are only manipulated in a
way that does not expose their incompatibilities. This is the essence of data abstraction, in which clients
of an abstraction use a single protocol that is compatible with all implementations of the abstraction. For
example, in the untyped term M̂b, the thunks ×(λx.x + 1, w) and ×(λy.y ∗ 2, w + 1) can be assigned the type
×[int→ int, int], while the thunk ×(λz.if z then 1 else 0, w) can be assigned the type ×[bool→ int, bool].
Even though these types are distinct, the values with these types are used only in a way that does not expose
the differences (i.e., applying the function in the first tuple component to the second component to yield an
integer). Traditionally, this situation is modelled with existential types [Mit96], which hide the unobservable
types. For example, both of the above types are instances of the existential type ∃τ.×[τ → int, τ ]. As with
universal types, existential types hide usage information and imply unnecessary overheads. Union types are
finitary versions of existentials that expose the implementation types of a data abstraction. For example,
the union type for the thunks would be ∨[×[int→ int, int],×[bool→ int, bool]].

Here is a λCIL
ul term corresponding to the untyped term M̂a:

4

M̃a ≡ let f∧[int→int,bool→bool] =
∧
(

λxint.x, λxbool.x
)

in ×((π∧1 f) @ 17, (π∧1 f) @ 23, (π∧2 f) @ true)

The notation
∧
(

λxint.x, λxbool.x
)

designates a term of intersection type, which is known as a a virtual tuple.
Intuitively, a virtual tuple is an entity that represents a polymorphic value as multiple copies of a term
that differ only in their type annotations. The virtual projection π∧i M selects one of the type-annotated
copies from the virtual tuple. Virtual tuples and projections are entirely compile-time constructions whose
purpose is to facilitate type-checking by tracking the different types at which a polymorphic value is used.
All components of a virtual tuple denote the same run-time value; no code will be generated to construct or
access the slots of a virtual tuple at run-time. Because λCIL

ul uses virtual copies of terms as a kind of type
annotation, we refer to it as a duplicating calculus.

Although the virtual tuple and virtual projection notations are somewhat cumbersome, they have two
key benefits:

• They solve an important technical problem: how to annotate the bound variables of terms of inter-
section type in an explicitly typed language. Previous approaches that allow bound variables to range
over instantiation types [Rey96, Pie91] cannot express some of the typings expressible in our system.
In essence, our term syntax is isomorphic to typing derivations, so every typing derivation can be
expressed as a term.

• The notational similarity between products and intersections is specifically designed to suggest splitting
transformations in which a virtual tuple and its corresponding projections are transformed into real

4To aid readability, the types of most variable references have been elided; they can be determined from the type annotation
on the corresponding variable declaration.
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tuples and projections — the formalization of type-based specialization in our system. For example,
suppose that a function that swaps the components of a 2-tuple has the type

∧[×[int, bool]→×[bool, int],×[real, real]→×[real, real]]

Although it mentions two usage types, this intersection type specifies a single polymorphic function.
But if unboxed tuple component representations are desired, there must be two distinct functions,
since different code will need to be executed for swapping integers and booleans than for swapping
reals (assuming that reals have a different size from integers and booleans). This specialization is
expressed by converting the ∧ in the type and corresponding term to a × and by converting the
associated occurrences of π∧i to π×i . (Finding the corresponding occurrences is facilitated by the flow
labels in the typed and labelled language.) Splitting is an important technique in the representation
transformation framework based on λCIL [DMTW97].

A positional intersection type encodes flow information in the sense that it approximates how a value at
one point of a program (the intersection term) fans out to other parts of the program (the projection terms).
In λCIL

ul , there must be at least one flow path for each usage type of a polymorphic value, but the flow paths

may be even more fine-grained. For example, this is an alternative typing of the untyped term M̂a:

M̃ ′
a ≡ let f∧[int→int,int→int,bool→bool] =

∧
(

λxint.x, λxint.x, λxbool.x
)

in ×((π∧1 f) @ 17, (π∧2 f) @ 23, (π∧3 f) @ true)

Here there are two virtual copies of the (int→ int) identity: one destined to be applied at 17, the other
destined to be applied at 23. Intersections can be used in this way to track different flows of any value, even
a monomorphic one. The ability to distinguish the flows of different values generated by a single source term
is a hallmark of polyvariant flow analysis [Ban97, JWW97]. The above example illustrates how intersections
can encode polyvariance in λCIL

ul .
Although our intersection examples happens to exhibit Hindley-Milner (“let-style”) polymorphism, we

stress that intersection types can handle complex flows not expressible in let-style polymorphism. For
instance, here is a term illustrating how a polymorphic function can be returned as a result and passed as
an argument — first-class features not supported by let-style polymorphism:

Mc ≡ (λf∧[int→int,bool→bool].×((π∧1 f) @ 17, (π∧1 f) @ 23, (π∧2 f) @ true))
@ ((λzint→∧[int→int,bool→bool].

∧
(

λxint.x, λxbool.x
)

) @ 42)

Here is an example that illustrates a more complex use of polymorphic functions as arguments:

Md ≡ let p∧[∧[int→int,bool→bool]→×[int,int,bool],∧[int→real,bool→real]→×[real,real,real]] =
∧

( λf∧[int→int,bool→bool].×((π∧1 f) @ 17, (π∧1 f) @ 23, (π∧2 f) @ true),

λf∧[int→real,bool→real].×((π∧1 f) @ 17, (π∧1 f) @ 23, (π∧2 f) @ true))
in

×( (π∧1 p) @
∧
(

λxint.x, λxbool.x
)

,

(π∧2 p) @
∧
(

λyint.3.141, λybool.3.141
)

)

There are two levels of polymorphism here: one for the identity and constant functions, and one for the
function p that is applied to these functions.

Whereas intersection types represent fan-out in flow paths (i.e. a value that flows to multiple destina-
tions), union types represent fan-in of flow paths (i.e. multiple values flowing to a single destination). Union
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types are necessary for expressing the untyped sample term M̂b in λCIL
ul :5

Assume ρ1 ≡ ×[int→ int, int], ρ2 ≡ ×[bool→ int, bool],

M̃b ≡ let g+[int,int,bool]→∨[ρ1,ρ2] = λs+[int,int,bool].

case+ s bind w in

int⇒
(

in∨1 ×
(

λxint.x+ 1
)

, wint
)∨[ρ1,ρ2]

,

int⇒
(

in∨1 ×
(

λyint.y ∗ 2
)

, wint + 1
)∨[ρ1,ρ2]

,

bool⇒
(

in∨2 ×
(

λzbool.if z then 1 else 0, wbool
))∨[ρ1,ρ2]

in let h+[int,int,bool]→int = λa+[int,int,bool]. let p∨[ρ1,ρ2] = g @ a

in case∨ p bind r in

ρ1 ⇒ (π×1 rρ1 ) @ (π×2 rρ1 )
ρ2 ⇒ (π×1 rρ2 ) @ (π×2 rρ2 )

in ×
(

h @
(

in+
1 3

)

, h @
(

in+
2 5

)

, h @
(

in+
3 true

))

The two incompatible types returned by the body of g are merged into the union type ∨[ρ1, ρ2]. Terms of
union type are constructed by injecting a term into a virtual variant. Virtual variants are analyzed by virtual
cases (i.e., case∨ terms), which are the duals of virtual tuples.6 A virtual case contains multiple copies of
clauses that differ only in their type annotations. As with intersection components, the case analysis of a
case∨ is a compile-time operation that implies no run-time computation. All the clauses of a case∨ represent
the same computation.

Sometimes it is desirable to specialize the clauses of a case∨ to take advantage of type or flow differences
between virtual variants that can reach the case∨. This type-based specialization can be expressed by a
taggging transformation that changes the case∨ to a case+ and the corresponding occurrences of in∨i to in+

i .
The real variants resulting from the tagging transformations carry run-time tags that are used to choose the
appropriate clause code to execute.

Our framework requires that differently typed values flowing to a polymorphic context must be injected
into virtual variants of the same union type with different virtual tags. However, more fine grained flow can
be encoded by injecting values of the same type into values of the same union type with different virtual
tags. For instance, in the above example, ×

(

λxint.x+ 1, wint
)

and ×
(

λyint.y ∗ 2, wint + 1
)

could be injected
with different virtual tags, which would allow specializations on the corresponding case∨ clauses to be made
based on flow information more fine-grained than the type information.

By combining the fan-out flow of intersection types with the fan-in flow of union types, it is possible
to construct networks flow paths connecting the sources of values with the sinks of values. For instance,
[DMTW97] uses a simple network connecting two functions with two application sites to illustrate various
approaches to closure conversion.

2.3 The Flow Typed Language λCIL

The flow typed language λCIL extends λCIL
ul with flow label annotations on terms and types. Terms are

characterized as sources (value producers) or sinks (value consumers); some may be both (e.g., arithmetic
operators), while others (virtual tuples, projections, injections, cases, and coercions) are neither. Each source
term is annotated with a single source label and a set of sink labels that approximates the sink terms to
which values produced at the source may flow. Each sink term is annotated with a single sink label and a
set of source labels that approximates the source terms from which the values consumed by the sink may
flow. Types are annotated with a set of source labels and a set of sink labels that approximate the sources
and sinks of the values that they specify.7

5In λCIL
ul

and λCIL, each clause a of case
+ term and a case

∨ term is introduced with the notation τ ⇒. This notation
indicates that the bound variable declared by the case term has type τ within the clause.

6One way to phrase the duality between intersections and unions is to note that virtual tuples are polymorphic values while
virtual cases are polymorphic continuations.

7In the calculus of this paper, the only labelled sources are abstractions, the only labelled sinks are applications, and the only
labelled types are arrow types. The calculus could be extended to support other labelled value (e.g., tuples, variants, numbers),
but for simplicity of presentation we label only function values. The fact that we don’t label tuples and other values does not
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Here is a sample flow-annotated term:

Me ≡ let f
int−{1}−−−{3,4}→int = λ1

{3,4}x
int.x ∗ 2

in let g
int−{2}−−{4}→int = λ2

{4}y
int.y + aint

in ×
(

coerce
(

int−
{1}
−−−{3,4}→ int, int−

{1}
−−{3}→ int

)

f @
{1}
3 5,

(

if bbool

then coerce
(

int−
{1}
−−−
{3,4}
→ int, int−

{1,2}
−−−
{4}
→ int

)

f

else coerce
(

int−
{2}
−−
{4}
→ int, int−

{1,2}
−−−
{4}
→ int

)

g
)

@
{1,2}
4 7

)

For readabilty, only abstractions, applications, and arrow types have been annotated with explicit labels;
other terms and types can be considered to be trivially labelled with a “don’t care” label. The coerce

terms are explicit subtyping coercions that are consistent with our strategy of encoding all aspects of a type
derivation within the term structure. Coercions add source labels to and/or remove sink labels from a type.

Flow annotations summarize the results of a transitive closure flow analysis on a term. The flow labels
are sound with respect to the reduction rules of the calculus in the sense that in reductions that annihilate
a source/sink pair, the source and sink labels on these terms must match exactly. Soundness follows from a
subject reduction property on the calculus [WDMT97].

Of course, flow annotations are necessarily only conservative compile-time approximations of actual run-
time flow. For example, it may be the case that no value produced by a particular source term can flow to a
particular sink term whose label is in the sink set of the source. The trivial flow annotation, in which every
term and type is labelled with the same “don’t care” label is isomorphic to the unlabelled calculus. Often
it is helpful to assume a type/label consistency (TLC) property in which the flow annotations are at least as
refined as the types [DMTW97]; this corresponds to the notion of type respecting flow analysis in [JWW97].

The flow information in λCIL flow types can guide the sorts of flow-directed optimizations mentioned
in Section 1. For example, if the flow annotations indicate that only one function flows to a call site, the
function may be in-lined at that site (though special care needs to be taken to handle open functions, i.e,
functions with free variables) [JW96]. When several functions flow to a call site, it is possible to dispatch to
one of several in-lined functions. Flow information may also be helpful for detecting values that are used in a
linear fashion. We have used flow information in conjunction with the splitting and tagging transformations
discussed above to manage the plumbing details associated with transformations that introduce multiple
representations for a type [DMTW97]. An important stage of this framework is flow separation, which
introduces intersections and unions to refines flow types and express finer-grained flow distinctions. Flow
separation highlights the correspondence between flows and intersection and union types.

The notion of integrating flow and type information into a single flow type system is not new. Tang and
Jouvelot track function flows via control flow effects annotating arrow types [Tan94, TJ94]. Heintze uses
labelled types to show the equivalences between type systems and flow systems [Hei95]. Banerjee uses flow
labels and intersection types in his combined approach to type inference and flow analysis [Ban97].

What is new about the flow type system of λCIL is that the fine-grained flow distinctions afforded by
intersection and union types make it possible to express a wide range of polyvariant flow analyses. A
polyvariant flow analysis is one in which a single occurrence of a term can be analyzed in multiple contexts.
The flow type systems proposed thus far are either monovariant or only support polyvariance in limited ways.
In our flow type framework, intersections and unions can encode the results of a wide range of polyvariant
flow analyses. Intersection components model distinct value contexts and union components model distinct
continuation contexts. Our framework naturally encodes the type-based polyvariance of [JWW97], but can
also encode other polyvariant contexts, such as the call-string contours of [Shi91a]. We are investigating a
formal characterization of the flow analyses that can be expressed in λCIL.

.

limit the range of function flow analyses of functions that can be expressed. It just limits the ease with which transformations
can be performed on unlabelled values.

9



3 Research Directions

Our investigation of compiling with flow types is still in a preliminary stage and many important steps
remain to be taken. Here we outline future research directions.

• Prototype implementation: We are implementing a prototype flow type compiler for a purely functional
subset of ML without modules. We hypothesize that the combination of flow and type information
supports more transformations that either kind of information alone. An important aspect of the
implementation will be developing heuristics that make use of the type and flow information to guide
representation decisions. We expect that a naive representation of terms and types in the duplicating
calculus will incur high overheads, so we are investigating more efficient representation schemes. One
of us (Wells) is exploring a non-duplicating version of the calculus.

• Flow analysis experimentation: λCIL does not prescribe a particular type inference or flow analysis
strategy. In our current implementation, type inference is performed on ML-like terms using the type
inference system for rank-2 intersection types developed by Jim [Jim96]. Although the result of type
inference satisfies the rank-2 restriction, there is no restriction on the types of terms that are produced
by subsequent program transformations. The type inference system attaches only trivial flow labels
to terms and types. These are replaced by more precise labels in a subsequent flow analysis pass. Our
current flow analysis algorithm is patterned after the flow analysis component of Banerjee’s combined
type and flow inference system [Ban97]. The analysis in the current prototype is polyvariant, in that
it analyzes each element of a virtual tuple separately. The analysis in the prototype is constrained by
a naive implementation of λCIL’s shallow subtyping restriction, which only allows coercions phrased in
terms of the top-level labels of a type.

We are interested in analyses that use additional elements in virtual tuples to circumvent the limitations
of shallow subtyping, and in implementing (and extending) polymorphic splitting [JW95]. There is
also evidence that even crude flow analysis can be useful for program optimization [Ash96]. One of
us (Dimock) is developing a control flow analysis kit that will allow us to experiment with tradeoffs
the between benefits and costs of analyses as the precision is varied.

• Modularity: Our current flow type system assumes that flow analysis and transformations are performed
on entire programs, i.e., closed terms. In practice, it is necessary to support the analysis of modular
program fragments. A simple approach is to extend flow labels with a distinguished “unknown”
label; only uniform (and potentially expensive) representations could be used on values annoted with
this label. A more aggressive approach is to perform additional analysis and transformations when
modules are linked together. Recent techniques for performing flow analysis across module boundaries
[TJ94, Ban97, FF97] indicate that flow types are not inherently incompatible with modular program
organization. However, link time optimizations remain a rich area for exploration.

• Imperative features: It is important to show that our techniques are still applicable in the context of
imperative features like references and exceptions.

• Connections with constrained types: We are currently exploring connections between flow types and
constrained types [Cur90, EST95, AW93, AWL94]. Our goal is to incorporate the polyvariant power
of intersections and unions into the constrained type framework.
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