
First-Class Synchronization Barriers

Franklyn Turbak
Wellesley College

Overview

• What is a Synchronization Barrier?

• Dimensions of Barriers

• Synchrons: First-Class Barriers with a
Variable Number of Participants

• Motivating Example:
Space-Efficient Aggregate Data Programs

• Discussion

Synchronization Barriers

Threads Barrier

Participants

Barrier Rendezvous

Rendezvous Post-RendezvousPre-Rendezvous

Non-Barrier Synchronization

Producer Consumer

Producer/Consumer Mutual Exclusion

What Are Barriers Good For?

• CSP-Style Handshake
• Coordinating Side Effects

– Mutable Variables
– I/O

• Managing Resources
– Number of Threads
– Space

(define (average seed next done)
 (define (loop n sum count)
 (if (done n)
 (/ sum count)
 (loop (next n)
 (+ sum n)
 (+ count 1))))
 (loop seed 0 0))

Strict average program (Scheme)

average (strict)

+ +1

done

seed 00

next

+ +1

done

next

+ +1

done

next

/
if

if

/

if

/

def average seed next done =
 {def loop n sum count =
 if (done n) then
 sum/count
 else
 { new_n = (next n);
 new_sum = sum + n;
 new_count = count + 1;

 in loop new_n new_sum new_count };

 in loop seed 0 0};

Eager average program (Id)

concurrent

average (eager)

+ +1

done

seed 00

next

+ +1

done

next

+ +1

done

next

/
if

if

/

if

/

average (eager with barriers)

+ +1

done

seed 00

next

+ +1

done

next

+ +1

done

next

/
if

if

/

if

/

def average seed next done =
 {def loop n sum count =
 if (done n) then
 sum/count
 else
 { new_n = (next n);
 new_sum = sum + n;
 new_count = count + 1;

 in loop new_n new_sum new_count };

 in loop seed 0 0};

Eager average program (Id)
with barriers

concurrent

Overview

• What is a Synchronization Barrier?

• Dimensions of Barriers

• Synchrons: First-Class Barriers with a
Variable Number of Participants

• Motivating Example:
Space-Efficient Aggregate Data Programs

• Discussion

Barrier Dimensions

 First
Class?

yes

no

Dynamically varying number of participants?

no yes

Barrier Dimensions

 First
Class?

yes

no

Dynamically varying number of participants?

no yes

data parallel
 barriers

+1

*2

+1

*2

+1

*2

+1

*2

+1

*2

+1

*2

+1

*2

+1

*2

Barrier Dimensions

 First
Class?

yes

no

Dynamically varying number of participants?

no yes

data parallel
 barriers

Id barriers

Barrier Dimensions

 First
Class?

yes

no

Dynamically varying number of participants?

no yes

data parallel
 barriers

Id barriers

fixed size barriers

barrier : int -> barrier
 Return a first-class barrier for a rendezvous of int threads.

pause : barrier -> unit
 Suspend the current thread until the rendezvous at
 barrier, after which pause resumes by returning unit.

Barrier Dimensions

 First
Class?

yes

no

Dynamically varying number of participants?

no yes

data parallel
 barriers

Id barriers

fixed size barriers synchrons

Overview

• What is a Synchronization Barrier?

• Dimensions of Barriers

• Synchrons: First-Class Barriers with a
Variable Number of Participants

• Motivating Example:
Space-Efficient Aggregate Data Programs

• Discussion

Synchron Interface

synchron : unit -> synchron
 Return a first-class barrier for a rendezvous of
 an as yet undetermined number of threads.

wait : synchron -> unit
 Suspend the current thread until the rendezvous
 at the synchron, after which wait resumes
 by returning unit.

simul : synchron * synchron -> unit
 Constrain the two synchrons to be the same barrier.

Synchron Rendezvous Condition

A rendezvous occurs at a synchron when all
threads that could ever wait at the synchron
are waiting at the synchron.

In practice, approximate rendezvous condition
by tracking pointers to a synchron via
automatic storage manager.

Rendezvous Semantics

 wait

• Classify pointers to a synchron as waiting
or non-waiting.

synchron

 wait

• Rendezvous occurs at a synchron when all
pointers to it are waiting.

• Non-waiting pointers block rendezvous.

• No pointers left after rendezvous.

Synchrons are Equivalent
to Object Finalization

 wait

• Can implement synchrons in terms of
object finalization:

synchron set of threads

Synchrons are Equivalent
to Object Finalization

 wait

• Can implement object finalization
in terms of synchrons:

Finalization code

object

synchron

rest of object

Synchron Examples
(define (f s)
 (begin (display ‘a) (wait s) (display ‘b)))
(define (g s)
 (begin (display ‘c) (wait s) (display ‘d)))

(par (f (synchron))
 (g (synchron))

(let ((s (synchron)))
 (par (f s) (g s)))

(let ((s1 (synchron))
 (s2 (synchron)))
 (par (f s1) (g s2) (simul s1 s2)))

a

b

c

d

1

2

3

a

b

c

d

a

b

c

d

Synchron Subtleties

(let ((p (cons (synchron) 17)))
 (begin (wait (car p))
 (cdr p)))

1
deadlock!

(let ((s (synchron)))
 (begin (wait s)
 (wait s)))

2

(let ((p (cons (synchron) 17)))
 (let ((s (car p))
 (n (cdr p)))
 (begin (wait s) n)))

3

17

Need detailed model to reason about liveness.
We use Appel’s Safe for Space Complexity model.

deadlock!

Overview

• What is a Synchronization Barrier?

• Dimensions of Barriers

• Synchrons: First-Class Barriers with a
Variable Number of Participants

• Motivating Example:
Space-Efficient Aggregate Data Programs

• Discussion

A Modular average

 MAKE-SEQUENCE
generate: seed, next, done

 SUM
 foldl: +, 0

 COUNT
foldl: inc, 0

DIV

 How to represent sequence
to guarantee constant space?
 (Fan-out is a problem!)

(define (average seed next done)
 (let ((nums (generate seed
 next
 done)))
 (/ (foldl + 0 nums)
 (foldl (lambda (x y) (+ 1 y))
 0
 nums))))

Modular average program (Scheme)

(define (generate seed next done)
 (if (done? seed)
 ‘()
 (pack init
 (generate (next seed)
 next
 done))))

(define (foldl op acc seq)
 (if (null? seq)
 acc
 (unpack seq
 (lambda (hd tl)
 (foldl op (op hd acc) tl)))))

generate and foldl

(pack E1 E2) desugars to (cons E1 E2)

(define (unpack seq f)
 (f (car seq) (cdr seq))

Strict list strategy

(pack E1 E2)
 desugars to (cons E1 (delay E2))

(define (unpack seq f)
 (f (car seq) (force (cdr seq)))

Lazy list strategy

(pack E1 E2)
 desugars to (list (synchron)
 E1
 (delay E2))

(define (unpack seq f)
 (let ((sync (first seq))
 (hd (second seq))
 (tl (third seq)))
 (begin (wait sync)
 (f hd (force tl)))))

Synchronized lazy list strategy

Strategies for modular average

• Strict Lists: Θ(n) space

• Lazy Lists: Θ(n) space

• Hughes (1984): Any sequential
implementation will take Θ(n) space

• Concurrency alone is not enough --
Eager Lists: Θ(n) space

• Synchronized Lazy Lists: Θ(1) space

Modular average (strict lists)

+ +1

done

seed 00

next

+ +1

done

next

+ +1

done

next

/
if

if

/

if

/

MAKE-SEQUENCE SUM COUNT

Modular average (lazy lists)

+ +1

done

seed 00

next

+ +1

done

next

+ +1

done

next

/
if

if

/

if

/

MAKE-SEQUENCE SUM COUNT

Modular average cannot be
space-efficient in a sequential language

• Hughes: “Parallel Functional Languages Use
Less Space” (1984)

• Need some form of concurrency and
synchronization for modular space-efficient
aggregate data programs.

Modular average (eager lists)

+ +1

done

seed 00

next

+ +1

done

next

+ +1

done

next

/
if

if

/

if

/

MAKE-SEQUENCE SUM COUNT

Modular average (synchronized lazy lists)

+ +1

done

seed 00

next

+ +1

done

next

+ +1

done

next

/
if

if

/

if

/

MAKE-SEQUENCE SUM COUNT

Synchronized Lazy Lists

1

delayed

2

delayed

3

delayed

1

delayed

4

delayed

9

delayed

GENERATE MAP FOLDL

simul needed for fan-in

GENERATE1

MAP2 FOLDL

GENERATE2

Synchronized Lazy Aggregates

• We have developed a suite of routines for
modularizing list and tree algorithms.

• Can modularize recursive as well as iterative
list algorithms by using two synchrons per
node (one down, one up).

• Can handle tail-recursion in a modular way by
extending synchrons.

• Can modularize recursive tree algorithms in
same fashion.

• Can handle some forms of filtering.

Overview

• What is a Synchronization Barrier?

• Dimensions of Barriers

• Synchrons: First-Class Barriers with a
Variable Number of Participants

• Motivating Example:
Space-Efficient Aggregate Data Programs

• Discussion

Implementation Strategies

• Can implement terms of object finalization,
but then every rendezvous requires full GC.

• Our prototype implementation uses reference
counts to reduce rendezvous costs.

• Ripe area for static analysis:
– Use types to reduce reference count costs

– Completely remove some synchrons

– Convert some synchrons to barrier/pause.

Related Work
• Hughes’s par/synch non-modular

• Wadler’s Listlessness iterative lists only

• Wadler’s Deforestation fan-out, fan-in problems

• Waters’s Series iterative lists only

• Other Transformations no guarantees, ad hoc

• Wadler’s Fixing a Space Leak with GC.

• Other GC-dependent language mechanisms:
– object finalization

– weak pointers

– reference counting cells (Espinosa)

Future Directions

• Goal: Express space-efficient algorithms in
modular way.

• Synchron semantics.

• More efficient synchron implementations.

• Static analysis to remove synchrons.

• Static deadlock detection.

• More idioms to encapsulate synchrons.

• Other mechanisms for space-efficient
modular program decompositions.

Conclusion

• Synchrons (+ concurrency) are first
mechanism to support space-efficient
aggregate data programs in modular fashion.

• Need better idioms for GC-dependent
language mechanisms.

• Need better techniques for reasoning about
space.

• Need better techniques for modularizing
space-efficient algorithms.

