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In this document, I summarize my achievements and future plans in teaching, research, and
service at Wellesley College for my tenure case. The document is organized into three sections:

1. Teaching: Describes my teaching philosophy, summarizes my course development work, and
discusses some future plans for teaching.

2. Research: Summarizes my research projects, the student research I have advised, and fu-
ture research plans. Unlike my Aug. 1 Research Summary, which was targeted at external
reviewers who are experts in the programming language field, this section is targeted at a
general audience. In this section, I also discuss the evaluation of computer science research —
in particular, the relative importance of conference papers vs. archival journal publications.

3. Service: Summarizes my service contributions to Wellesley College, the Wellesley College
Computer Science Department, and the computer science community.

In addition to the main document there are several appendices containing auxiliary materials:

• Appendices A–F contain detailed descriptions of my course development efforts and links
to sample teaching materials on-line. Hardcopies of these materials are included in binders
entitled Personal Statement and Supporting Materials. A web page with links to all sample
materials can be found on-line at http://cs.wellesley.edu/~fturbak/tenure/support.html.1

The complete set of teaching materials I have developed since Fall, 1997, are available on-line
at http://cs.wellesley.edu/~fturbak/teaching.html.

• Appendix G contains a copy of the Computing Research Association’s Best Practices Memo:
Evaluating Computer Scientists and Engineers for Promotion and Tenure.

• Appendix H contains a sample copy of the questionnaire I developed for the Committee on
Minority Recruitment, Hiring, and Retention.

1 Various URL links, such as http://cs.wellesley.edu/~fturbak, are sprinkled throughout this docu-
ment. These links are “active” (i.e., you can click on them) when the on-line PDF version of this document is
viewed inside a browser such as Netscape Navigator or Internet Explorer using the Adobe Acrobat plug-in (stan-
dardly available on Wellesley College computers). The on-line PDF version of this document can be found at
http://cs.wellesley.edu/~fturbak/tenure/statement.pdf.
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1 Teaching

1.1 Teaching Philosophy

Becoming A Computer Scientist

I will never forget the week that I became a computer scientist. It was Spring break of 1981,
and I was a freshman taking 6.001: Structure and Interpretation of Computer Programs, MIT’s
introductory computer science course. This course used the Lisp programming language to explore
the fundamentals of programming. We had an assignment on a meta-circular interpreter for Lisp –
a Lisp program that can evaluate other Lisp programs. The notion that a program could execute
other programs — even itself! — was both perplexing and mysterious to me. I spent an entire week
trying to understand what the meta-circular program did and how it worked. Finally, after carefully
tracing through the execution of the program on a concrete example, I had a Eureka experience: I
realized that the meta-circular interpreter was a concise and precise encoding in Lisp of the informal
rules that we had been taught throughout the semester for evaluating Lisp programs. What had
been veiled in a cloud of mystery suddenly became clear, and I was overwhelmed with a sense of
beauty and wonder for this profound and elegant idea.

This was a transformative experience. Although I had come to MIT to study electrical and
mechanical engineering, after this experience I had an unquenchable thirst for knowledge about
computer science and could not imagine a career in any other field. During the twenty years
since that experience, I have found computer science to be a treasure-trove of simple and powerful
ideas, clever techniques, challenging projects, and fun problems. But the meta-circular interpreter
experience did more than just “convert” me to a computer scientist. It caused me to reflect on
the learning process and think about pedagogical approaches that would help to demystify the
beautiful ideas of computer science and make them more accessible to a wider audience. I started
developing computer science teaching materials when I became a teaching assistant for 6.001 in
Spring, 1984, and have continued to actively produce such materials (e.g., course notes, examples,
and assignments) ever since then.

Big Ideas

In my courses, I strive to create an environment where students not only learn the concepts in
computer science that I find so exciting, but they also develop an appreciation for the beauty of
these concepts. While it may be too much to expect that my courses will induce in my students
transformative experiences like the one I experienced (although I am very happy when this does
happen!), I do expect that they will leave my courses with a firm grasp on the “big ideas” of
computer science – i.e., the key concepts at the core of the field. Examples of such big ideas are:

• Procedural Epistemology: The essence of computer science is imperative (“how to”) knowledge,
as opposed to the declarative (“what is”) knowledge of mathematics and other sciences. Not
only can programs be executed by computers, but they are a means of transmitting imperative
knowledge from one person to another.

• Abstraction: To separate the concerns of program clients from program implementers, pat-
terns of computation should be encapsulated in “black boxes” with simple interfaces that
hide unimportant details.

• Modularity: For flexibility and robustness, systems should be composed out of reusable mix-
and-match parts.
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• Divide, Conquer, & Glue: A fundamental technique for solving a big problem is breaking it
into smaller problems and combining the solutions to these. Recursion and iteration are in-
stances of this technique in programming, while induction and loop invariants are applications
of these techniques in proof theory.

• Programs as Data: A program is a data structure that can be executed, analyzed, created,
and transformed by other programs.

• Formal Reasoning: Not only can logical deduction be formalized and in some cases automated,
but there is a deep connection between logic and computation.

• Uncomputability: Because there are an uncountable infinity of mathematical functions but
only a countable infinity of programs to express them, there are many functions (including
some very desirable ones) that can never be expressed as programs.

• Computational Models: In order to predict how a program will execute, it is essential to
understand the model of computation underlying the programming language in which the
program is written.

• Tradeoffs: Problems often have multiple conflicting goals that are mutually unsatisfiable. In
these cases, it is necessary to make tradeoffs that involve relaxing one or more goals.

• Iterative Nature of Problem Solving: Since problems are rarely solved in a single pass, problem
solving usually requires iterating a cycle of specification, design, implementation, testing, and
debugging.

• Real vs. Ideal: Abstractions and models introduce idealizations that may not accurately
reflect real aspects of the problem being solved or the situation being modeled.

The above ideas are so important that they transcend a particular course, and even the par-
ticular discipline of computer science. As would be expected of fundamental concepts, each of
the ideas presented above arises in several courses, so students who take more than one course
encounter them multiple times in different contexts. Moreover, many of the ideas and techniques
are applicable to other domains – a fact that is particularly relevant in a liberal arts setting, which
encourages the exploration of connections between disciplines. For instance:

• Procedures are not only encoded in programs executed on computers, but they are also
encoded in recipes, instructions, musical scores, theatrical scripts, and architectural blueprints
executed by human beings.

• Principles like abstraction and modularity are essential for controlling complexity in any field
involving the creation of artifacts or use of models, including engineering, the physical and
social sciences, and even the arts.

• Problem solving techniques learned in programming can be adapted to solving problems in
almost any domain.

• Understanding the iterative design cycle, the limitations of models, and the notion of tradeoffs
gives insight into many aspects of the modern world, from engineered artifacts to political
processes.
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• Reading, writing, and debugging programs hones reasoning skills that are essential for eval-
uating and/or crafting a logical argument on any topic.

With its emphasis on design and problem solving, computer science can be viewed as a kind
of abstract form of engineering. Indeed, many of the big ideas sketched above are characteristic of
engineering in general, not just computer science. Although there is a long historical precedent of
divorcing engineering from a liberal arts education, I firmly believe that these engineering concepts
have a central place in a liberal arts education. Not only do they give students insight into a world
full of designed artifacts, but they encourage students to become designers and builders themselves
– producers of technology rather than just consumers of it. Robbie Berg and I have written at
length about this issue in our paper Robotic Design Studio: Exploring the Big Ideas of Engineering
in a Liberal Arts Environment.

In addition to transcending disciplines, the big ideas of computer science transcend the partic-
ular technology that is used to teach them. For example, particular hardware, operating systems,
programming languages, and application software are used as vehicles for presenting and exper-
imenting with the big ideas. While it is important for students to be familiar with the current
technology, it is important to impress upon them that the current technology is not the subject
matter. Particular technology is ephemeral, but the big ideas are not! Moreover, while computer
science is a discipline of incredible beauty, much of the popular technology is surprisingly ugly from
the perspective of understandability, usability, reliability, and extensibility. Since I hope that my
students will someday help to improve this sad state of affairs, I consider it imperative to teach
them how to tease apart important concepts and techniques from poorly designed pieces of software
in which they might happen to be embedded.

Presenting Material

When preparing to teach a course, I first determine what big ideas are covered in the course,
and then strive to organize the course to highlight these ideas. This “first principles” approach
to teaching sometimes leads to non-standard topics or an unconventional ordering of topics. For
example, in CS111 (Introduction to Programming and Problem Solving), considerations involving
the divide/conquer/glue problem-solving methodology compel me to teach recursion before itera-
tion (see Section A and my paper Teaching Recursion Before Iteration in CS1 for more details).
Although such an approach is sometimes used in the teaching of so-called functional program-
ming languages, it is highly unusual in the teaching of object-oriented languages such as Java
(the programming language used in CS111). Nevertheless, I believe that organizing CS111 in this
way gives the students a much better view of the “big picture” than traditional approaches for
teaching Java. Other examples of unconventional course organizations I have developed include
the interpreter-based approach I use in Programming Languages (CS251) (see Section E) and the
onion-skin approach I use in my Compiler Design (CS301) class (see Section F). A disadvantage
of my unconventional course organizations is that they make it difficult to use existing textbooks
and problems. For this reason, most of my classes are based on notes and assignments that I have
developed from scratch.

When it comes to presenting particular topics, I expose students to several different explanations
of the same material. Many years of teaching experience has taught me that different students learn
in different ways: some learn best from principles, others from examples; some prefer pictorial
explanations, others prefer text; some like formal derivations while others like intuitive arguments.
For this reason, even in courses where there is a textbook consistent with my course organization
(such as CS231, Fundamental Algorithms), I present alternative approaches to the material in
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course notes.
Wherever possible, I present both an informal and intuitive explanation of concepts (often

involving pictures) as well as a formal symbolic explanation. Both of these are important: in
my experience, intuition is incredibly valuable for planning the solutions to problems, but formal
techniques are necessary to work out the details. As a concrete example of formal vs. informal
explanations, consider calculating the infinite sum

S =
∞∑

k=1

1
4k

=
1
4

+
1
16

+
1
64

+ . . .

For 0 < c < 1, it is not difficult to show that the infinite sum
∑∞

k=0 a0 · ck = a0 +a0 ·c1 +a0 ·c2 + . . .
has the closed form solution a0

1−c . In the case of calculating S, a0 = 1
4 and c = 1

4 , so the formula
gives

S =
1
4

1− 1
4

=
1
4
3
4

=
1
3

The same result can be achieved informally by a pictorial argument. Imagine dividing a unit square
into quarters, labelling three of the quarters A, B, and C, and recursively subdividing the fourth
quarter in the same fashion, as pictured below:

A B
C

A B

C
C

A B

A B

A B
C

C

It is easy to argue that the sum of all squares labelled A (as well as of those labelled B and C) is
the desired sum S, and since, in the infinite limit, the entire area of the unit square is completely
partitioned into squares labelled by one of these three letters, it must be that 3S = 1, so S = 1

3 .

Hands-on Activities

Although I focus significant energy on developing and presenting explanations of the subject matter
of my courses, I recognize that this is only one facet of the learning process. While substantial
amounts of information may be transmitted from teachers to students in the form of lectures, course
notes, etc., such information transfer is just a prerequisite for learning. The real learning takes place
when students actively apply this rather abstract form of knowledge in concrete contexts. Only
then do they begin to develop a sense of personal ownership of the ideas that I believe is essential for
true understanding. This belief has its roots in the constructionist learning theories of Piaget and
Papert, which posit that people learn best when they are engaged in the design and construction
of personally meaningful artifacts.

I have made a conscious effort to infuse my courses with hands-on activities that are inspired by
constructionism. This is most evident in the Wintersession Robotic Design Studio course (CS115)
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that I teach with Robbie Berg. After being introduced to the fundamentals of robotics during the
first half of the course, students spend the second half of the course working in groups to build a
robot of their own design. The ground rules for these projects are intentionally very loose; students
can build anything they imagine, subject to constraints on materials and time. Our experience
in this course is that students are not only incredibly creative in their projects, but they learn a
tremendous amount about robotics and general engineering principles in the process.

Most of my other courses are designed in such a way that students get significant hands-on
experience with the subject matter in the context of programming activities:

• Introduction to Programming and Problem Solving (CS111) is organized around a collection of
“microworlds” (see Section A) that serve as “pedagogical sand boxes” where students experi-
ment with fundamental programming and problem solving techniques. Every week, students
work on numerous challenging programming problems in these microworlds. Additionally, in
the context of various optional contests and extra credit assignments, students are encouraged
to extend programs from class and work on problems of their own design.

• In Data Structures (CS230), students implement numerous data structures and algorithms
by writing programs in Java (see Section C). Some of the assignments (such as the Mancala
game) require students to write large programs from scratch, a significant departure from
CS111, where assignments typically involve modifying existing programs.

• Although Fundamental Algorithms (CS231) is a theoretical course with no formal program-
ming requirement, I have recently begun to encourage students in the class to implement
various of the algorithms we study in a programming language of their choice. Many of our
students want to learn programming languages (e.g., C++ and Perl) not formally taught
elsewhere in our curriculum, and this provides them with an excellent opportunity to do so.

• In my Programming Languages (CS251) course, students modify and extend interpreters
for numerous “mini-languages” that we study in the course (see Section E). The structure
of this course differs from most other such courses at the undergraduate level, which either
have no programming component, or involve programming in languages from several different
paradigms. It is my belief that experimenting with programming language implementations
gives students deeper insight into the dimensions of programming languages. It empowers
them to be programming language designers and implementers, so that they can be producers,
and not just consumers, of programming language technology.

• In Compiler Design (CS301), students work in groups to implement a series of compilers (see
Section F). Each of these is a large and complex program, and except for some provided
tools, the students do their programming “from scratch”.

In the above courses, there is a tension between the desire to cover the litany of standard
concepts and the constructionist ideal of having students explore subject matter in the context of
open-ended projects. Not only do open-ended projects give students more chance to “own” the
material, but they also force them to grapple with real-world issues like refining fuzzy problem
descriptions, exploring blind alleys, and determining when a project is “done”. Thus far, I have
usually resolved this tension by designing programming problems that have a required part with a
constrained specification and an optional part involving more open-ended exploration. I also en-
courage my students to undertake an individual study project or research project while at Wellesley,
so they get at least one substantial open-ended experience in computer science as undergraduates.
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Challenging Assignments

The assignments I give in my courses are typically rather challenging. Indeed, I have a reputation
for giving some of the most difficult and time-consuming assignments in our department, if not the
entire college. Because I believe that most student learning takes place in the context of working on
concrete problems, I carefully design each problem with a clear pedagogical goal of illustrating one
or more concepts. For students who understand the concepts, the problems are relatively straight-
forward, and some students do finish them quickly. However, the problems are more challenging for
students who have not yet mastered the concepts, including many who mistakenly think that they
understand the material just because they have followed what I have presented in lecture. This is
OK; they understand the material much better by the time they finish the problems. Athletes do
not build muscles by lifting feathers.

Student Feedback

One of the most delightful aspects of teaching at Wellesley College is that students rise to the
challenge of my problems and are fair in evaluating them. Based on the feedback I have received on
my SEQs, students generally feel that while the assignments are time-consuming, the time was well
spent in terms of what they learned. I am sensitive to the fact that the time students spend on my
assignments is time they are not spending on other important aspects of a liberal arts education,
such as extracurricular activities and leisure time. I ask students to keep track of and report the
amount of time they spend on each problem, and use this information to revise assignments the
next time I teach the course.

Deadlines and Extensions

Given the hectic nature of students’ schedules (and my own!) I understand that there are times
when it is not possible for them to complete an assignment on time. It really does not matter to
me when students complete their assignments, only that they complete them. However, completing
work late can have a cascading effect and put students so far behind that they cannot catch up.

With these considerations in mind, I have pioneered lateness coupons, which provide students
with a limited amount of flexibility in terms of deadlines. In many of my courses, students receive
ten lateness coupons at the beginning of the semester, which are not transferable between students.
One lateness coupon allows one assignment to be handed in one day late. A student could use
her coupons to turn in each of ten assignments one day late, or turn in a few of these assignments
several days late. Once all lateness coupons have been used, late assignments receive no credit.

Lateness coupons work well in practice. It is possible to abuse them (e.g., use all coupons on
the first few assignments and then be impossibly far behind), but such abuses are extremely rare.
Indeed, many students never use any coupons, but those who do indicate that they provide valuable
flexibility.

Collaboration

Collaboration plays an important role in my classes. Even though I generally require that they
compose any written solutions or programs on their own, I strongly encourage students to work
on problems in groups. Based on my own personal learning experiences, I believe that valuable
learning takes place when students solve problems in a group. It is often the case that the knowledge
of individual students is incomplete, but what is missing or partially formed differs from student to
student. When working in groups, students share what they know and (think they) understand with
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others and at the same time improve areas in which their understanding is weak. In particular,
group work allows every member to play the roles of both student and teacher; the well-known
saying about teaching being the best way to learn a topic is particularly relevant in this context.
Even a group member playing the role of “student” can make valuable progress by expressing in
words what it is that she does not understand. Although students can also do this in the presence
of a faculty member, many students are less shy about asking questions of their peers than of their
instructors. Working in groups also gives students important practice in honing their interactive
skills and preparing them for a world in which much work is group-oriented.

When it comes to programming, having a pair of students work at a single computer console
seems to be particularly beneficial. At the beginning of the summer of 2000, my research colleague
Patty Johann and I asked our six summer research students to work in pairs on various programs
designed to introduce them to concepts and techniques for their summer research. Patty and
I were working in the same computer lab as the students, so we were able to closely observe
the kinds of interactions and conversations that took place between group members. We were
impressed and excited by what we observed. Rather than just jumping in and writing code, which
is what students are tempted to do when working alone, the students first discussed the problems
and various approaches for solving them. There was not always agreement on the best solution
strategy; this meant that each student was put in a position where she had to argue the benefits of
her approach relative to the other one. This explicit planning phase helped the students to avoid
“blind alleys” of exploration. In the coding phase, students swapped between roles as “driver” (the
one writing the code) and “passenger” (the one looking over the driver’s shoulder). Passengers
often noted bugs in the code of the drivers. When it came to debugging, it was clear that two
heads were better than one.

Inspired by this experience, I have been experimenting with pair-based programming in my
Programming Languages course (CS251), where it was optional, and my Compiler Design course
(CS301), where it was required. Although there are sometimes personality clashes and time schedul-
ing problems between pair members, the pair-based approach to programming seems to work well
in practice for the reasons Patty and I observed with our research students. I am considering
experimenting with pair-based programming in earlier courses, such as CS111 and CS230. Interest-
ingly, I recently learned that several software engineering managers are advocating that industry
adopt a programming methodology called Extreme Programming, a cornerstone of which is that
all code should be written by programmers working in pairs at a single computer monitor. This
style of programming is claimed to yield higher quality programs in a shorter amount of time than
traditional programming by two individuals.

Fun

Perhaps because computer science is such a young discipline and involves a fair amount of problem
solving and puzzles, the computer science community is rather playful. I like to instill this spirit
of playfulness into my teaching, because I believe that many students are often more receptive to
learning when they are in a playful mood. Many of my assignments involve some sort of game
or puzzle and/or have a humorous story line. For instance, my CS111 students explore concepts
like abstraction, recursion, and backtracking in the context of a grid-shaped world where creatures
called “buggles” drop and pick up bagels. My CS230 students get experience with object-oriented
programming and graphical user interface design in Java by modifying a blackjack program and
implementing a video Mancala game from scratch. In my robotics class, it is hard not to be in a
playful mood when building with LEGOs. In recent years, I’ve set aside the last day of class in
almost every course to be a final exam review session structured as a Jeopardy game played by
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teams of students vying for snack prizes from Trader Joe’s. Via activities like these, I try to do my
part in realizing the vision of computer science luminary Alan Perlis, who said, “I hope the field of
computer science never loses its sense of fun.”

1.2 Course Development

The dynamic nature of computer science means that computer science courses are always evolving.
Unlike in more stable fields, it is rare to be able to teach a course using lectures, notes, and assign-
ments unchanged from a previous semester. Even in fairly stable courses (like CS231, Fundamental
Algorithms), I enjoy thinking of new ways to present concepts, experimenting with topic order and
new topics, and developing new examples and problems every time I teach a course.

In my twelve semesters of teaching at Wellesley, I have developed extensive course materials
in each of the six courses I have taught. Below, I give an extremely brief summary of my course
development efforts in each course. Appendices A–F present more detailed descriptions of these
efforts and links to sample materials. All course materials that I have created since Fall, 1997 are
on-line at http://cs.wellesley.edu/~fturbak/teaching.html; interested readers are encouraged to
browse this complete set of materials in addition to the samples in the appendices.

• Introduction to Programming and Problem Solving (CS111): In 1997, I led the effort to use
Java in place of Pascal as the programming language in this introductory course for majors.
This was not just a cosmetic change in programming language, but a change in paradigm
that required rebuilding the course from the ground up. I organized many of the lectures and
assignments around a number of microworlds , simple but rich environments I developed for
exploring key programming concepts and techniques. I also developed the Java Execution
Model to explain the execution of Java programs at the level of an abstract machine. A “first
principles” approach to teaching the big ideas of the course led me to adopt a non-standard
ordering of topics, such as teaching recursion before iteration and linked lists before arrays.
The rationale for these choices is discussed in my paper Teaching Recursion Before Iteration
in CS1.

• Robotic Design Studio (CS115): Since Wintersession ’96, Robbie Berg and I have taught this
course, which we developed as a way to engage students in design and hands-on building
activities. The course has no prerequisites, and attracts students with a broad range of
backgrounds and interests. The first half of the course introduces students to the basics of
robotics via a series of challenges in which they study and modify existing robots and build
simple ones of their own. In the second half of the course, students work in teams on an
open-ended project in which they build a robot of their own design. The course culminates in
a public exhibition that has become a signature event at the end of January. The philosophy
behind the course is explained in our paper Robotic Design Studio: Exploring the Big Idea of
Engineering in a Liberal Arts Environment

• Data Structures (CS230): After teaching this course in Pascal for many semesters, I moved it
to Java in Spring ’98. As in CS111, this required significant effort. For both the Pascal and
Java versions of the course, I have developed numerous programs to illustrate data structures
and algorithms in class and on assignments.

• Fundamental Algorithms (CS231): My key innovation in this course is the use of worksheets
that we flesh out in class to present intuitive explanations and concrete examples of the
mathematical techniques used in the textbook. Functional programming techniques I have
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encountered in my research have allowed me to present alternative, and in some cases much
simpler, versions of algorithms in the textbook.

• Theory of Programming Languages (CS251): The organization of this course is based on my
belief that the only way to appreciate the dimensions and design choices of programming
languages is to study and modify their implementations. Since implementations of real pro-
gramming languages are too complex, we study interpreters for simple but representative
mini-languages. I have designed a series of mini-languages in which each successive language
is built by extending its predecessor, and have implemented interpreters for all of these lan-
guages. This allows for an “onion-skin” approach in which students are introduced to the
features and dimensions of programming languages in layers.

• Compiler Design (CS301): As in CS251, here I also use an “onion-skin” approach to introduce
students to the theory, tools, and techniques of program translators. I defined a series of
successively more complex subsets of Appel’s Tiger language. After implementing a complete
compiler for the simplest of these languages, students have acquired a working knowledge of
the components of a compiler and are well-prepared to to explore more sophisticated features
and techniques.

1.3 Teaching Impact

My course development work has had a major impact on the teaching of numerous computer science
subjects at Wellesley. Even when I am not teaching a course, many of the materials I have developed
continue to be used by other professors teaching the same course. This is especially true in CS111,
CS230, and CS231.

My course development work has also had an impact on teaching at other institutions. For
example:

• Introduction to Programming and Problem Solving (CS111): I presented aspects of my CS111
course in a panel discussion at the Consortium for Computing in Small Colleges Third Annual
Northeastern Conference (CCSCNE-98) at Sacred Heart University in April 1998, and also
in a paper and talk at the Fourth Annual version of this conference at Providence College in
April 1999. Furthermore, all course materials for CS111 are freely available on the web, and
others are encouraged to use the materials and adapt them to their needs.

One impact of these dissemination efforts was that they persuaded the Middlebury College
Computer Science Department to switch to Java rather than to C in their introductory pro-
gramming course. Indeed, since Fall, 1998, Middlebury has patterned its CX 121 Fundamen-
tals of Computing Course after Wellesley’s CS111, using many of the same microworlds and
assignments. The CS111 materials have been reviewed and in some cases adopted by several
other professors designing or teaching introductory programming courses in Java. These in-
clude Stephen Bloch (Adelphi University), Kim Bruce (Williams College), Bob Muller (Boston
College), and Adonis Symvonis (University of Ioannina, Greece).

• Robotic Design Studio (CS115): Robbie Berg and I have led two workshops based on our
Robotic Design Studio course: a two-day workshop at Colby College in October, 1997 (spon-
sored by the New England Consortium of Undergraduate Science Education), and a half-day
workshop at CCSCNE-98 at Sacred Heart University in April 1998. We also wrote a paper
for and gave talks at the American Association for Artificial Intelligence Spring Symposium
on Robotics in Education held at Stanford University in March, 2001. Additionally, since the
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early days of our course, we have posted all course materials on the web to encourage their
use elsewhere.

These dissemination efforts have inspired robot courses and robot research modeled after our
course at several other schools. After our Colby robotics workshop, Bates, Bowdoin, Colby,
and Middlebury colleges all instituted either a robotics course or independent projects in
robotics. Our materials have also inspired courses or have been used for projects by Alice
Dean at Skidmore College, Elizabeth Adams at Richard Stockton College, Lonnie Fairchild
at SUNY Plattsburg, and Bill Margolis at the National University of Samoa.

Because of our promotion of robot exhibitions as an alternative to robot competitions, the
organizers of the national Botball robot tournaments2 have invited Robbie and me to be
members of the Boston Botball Committee next year. Our goal is to experiment with extend-
ing Botball tournaments to include non-competitive robot exhibition activities so that they
appeal to a wider audience.

• Compiler Design (CS301): Olin Shivers at Georgia Tech has reviewed my onion-skin approach
for teaching compilers and is considering adapting this approach to his compiler class next
year.

• Graduate Programming Languages (MIT 6.821): Drafts of the notes I co-authored for MIT’s
graduate programming languages course have been used by professors for similar courses at
several other universities. These include Kathy Yelick at Berkeley, Andrew Myers at Cornell,
and Jan Komorowski at the Norwegian University of Science and Technology.

1.4 Future Teaching Plans

I have numerous long-term plans for enhancing existing courses, developing new courses, and dis-
seminating the results of my course development efforts.

• Turning the MIT 6.821 course notes into a graduate programming languages textbook is a
high priority. There are only a few chapters (particularly the one on compilation) that need
work.

• While all CS111 materials are publicly accessible, the lack of a textbook that covers the topics
(many of which are non-standard or presented in a non-standard order) and microworlds used
in the course hinders its adoption elsewhere. I plan to write a textbook that will enhance the
teaching of CS111 at Wellesley and make it easier to teach elsewhere.

• I plan to flesh out the current CS251 notes and extend them with material covering object-
oriented programming and logic programming. My eventual goal is to write an undergraduate
programming languages textbook based on these notes. Along the way, I plan to disseminate
my interpreter-based approach to teaching programming languages via talks and workshops.

• In my algorithms course (CS231), I have recently been experimenting with presenting many
algorithms in a graphical notation using tree rewriting and graph rewriting rules. Since these
experiments have gone well, I am eager to explore how many of the algorithms in the course
can benefit from being presented in this fashion. In this regard, it would be helpful to have
tools for expressing and visualizing the execution of rewriting rules; developing such tools is
on my research agenda (see Section 2.3).

2http://www.botball.org
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• Based on my experience using the ML programming language in my research and teaching it
in CS251 and CS301, I think that it is far superior to Java for introducing many of the big
ideas of computer science. Since ML is particularly well-suited for expressing computations
on tree-shaped data structures, I plan to experiment with using ML to teach CS230. Because
ML is not well-known in the general computer science community, I plan to give tutorials to
help popularize it.

• I am interested in developing several new courses, some of which are sketched below. I am
by no means an expert in these areas, but plan to become fluent in them by developing and
teaching these courses.

– Concurrent and Distributed Systems: Almost all of our programming courses assume a
sequential model of computation in which a program is being executed by single com-
putational agent. But many problems are easier to decompose and/or can be solved
more efficiently in a concurrent model where there are multiple computational agents.
This course will present models of concurrent computation (e.g. process calculi, threads,
message passing) and discuss key issues in concurrency, such as communication, syn-
chronization, fairness, and deadlock. In contrast to CS331 (Parallel Machines and their
Algorithms), which focuses on data-parallel decompositions of problems onto closely
coupled, homogeneous processors, this course will emphasize control-parallel decompo-
sitions onto loosely coupled, perhaps heterogenous, processors. Students will study,
design, and implement concurrent algorithms in several languages. Examples will be
taken from robotics, graphical user interfaces, document processing, operating systems,
and networks.

– Computer Security and Privacy: Hackers, encryption, viruses, digital copyright, public
surveillance software – hardly a day goes by when there are not major news stories involv-
ing the interaction between computers and privacy. This course will explore technical,
ethical, and legal issues involved in protecting information and privacy in the digital age.
Due to the interdisciplinary nature of such a course, I will seek collaborators in other
departments, particularly philosophy and political science, to help develop the course.

– Automated Deduction: The past decade has seen an explosion in work on systems on the
automated manipulation of mathematical proofs. There are systems for automatically
checking proofs, fleshing out skeletons of proofs, and even writing some proofs from
scratch. In this course, we will study systems of logic and their realization in theorem
proving systems like Isabelle, Elf, Coq, and Nuprl. We will explore the deep ties between
programming and proof construction and will “program” proofs from several domains
of mathematics and computer science.

2 Research

2.1 Research Overview

In this section, I present a high-level description of my research area and research projects and
describe how they fit into the “big picture” of computer science. A detailed description of my
research projects, publications, and roles in collaborative research, can be found in my August 1
Research Summary.
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Modern Software

The state of modern software is disgraceful. Although we are often dazzled by the amazing features
of the latest release of our favorite software packages, we spend a disproportionate amount of time
cursing software that is tricky to install, difficult to use, unreliable, insecure, and incompatible with
previous releases and other applications. We have been browbeaten into accepting that applica-
tions will regularly crash our computers, propagate viruses, corrupt our files, and steal our private
information. To use a modern application, we typically have to sign a waiver that effectively says
that there are no guarantees whatsoever that the software will work as advertised. On the side of
software production, companies have to wrestle with large and complex projects that are poorly
designed, behind schedule, over budget, insufficiently tested, and full of bugs.

In almost any other industry, this state of affairs would incite consumer rebellions, cause the
launching of congressional investigations, and lead to a universal cry for improved standards and
guarantees. And yet this does not happen. Why? My explanation is that people have become
accustomed to the status quo and are not aware that the situation can be dramatically improved.
Great strides have been made in the technology for building reliable and secure software systems.
Although it may never be possible to guarantee that every complex program always behaves as
specified, advances in programming languages, program testing and verification, and software en-
gineering methodologies enable the construction of applications that are significantly more robust
and, in some cases, even cheaper to produce than current software packages.

The software industry has been slow to adopt these new technologies for several reasons. First,
there has been little demand from consumers to improve standards, so there is little motivation
to do so. Second, most companies have invested heavily in software production technology that is
decades old. Although there may be a long-term benefit to adopting new technologies, the short-
term costs are high. Finally, there are some disadvantages to the new technologies that stand in the
way of their adoption. A common disadvantage is that the newer technology often yields software
that is somehow less efficient than that produced with existing technology.

Expressiveness vs. Efficiency

My area of research is the design, analysis, and implementation of expressive programming lan-
guages. A programming language is “expressive” to the extent that it enables a programmer to
clearly and concisely encode in the language whatever computational patterns she imagines. There
is often a wide gap between the computational conceptions of a programmer and what she can
write down in code. Bridging this gap requires the programmer to translate between her “mental
language” and the programming language – a difficult step where many errors can be introduced.

Expressive languages support means of abstraction that allow a programmer to effectively ex-
tend the language by capturing and naming arbitrary computational idioms. Such languages also
provide ways to modularize programs into mix-and-match components that can be independently
developed, tested, and debugged and reused in many different programs.

A problem with expressive programming languages is that there is a fundamental tension be-
tween expressiveness and efficiency. The very same abstraction and modularity features that make
a programming language expressive stand in the way of efficient program implementation. Ab-
straction can be viewed as hiding details inside of “boxes”. Naively executing a program that
makes heavy use of abstractions involves creating, manipulating, and throwing away lots of boxes
– operations that would not be necessary in a program that did not use abstractions.

Since boxes require space, and manipulating boxes takes time, programs using abstractions
typically require more time and space resources than those written without such abstractions. The
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difference in resource consumption can be significant – an abstract high-level program can incur
a time or space cost that is orders of magnitude larger than the cost of a carefully written low-
level program. In some cases, costs are incurred by the mere presence of abstraction features in a
language, whether or not they are actually used in a particular program.

Some programmers are willing to accept the efficiency costs associated with expressive lan-
guages. These costs are often offset by the benefits of using expressive languages, such as programs
that takes less time to write and debug and which are more reliable. A fast program that does
not compute the correct answer is not very valuable! In many applications, modern computers are
so fast that the difference in efficiency is not noticeable for many problems. Even in cases where
it is noticeable, programming at a higher level sometimes facilitates the implementation of more
efficient algorithms, which can more than offset the inefficiencies due to expressiveness.

Nevertheless, many programmers and program managers resist using expressive languages. For
applications used by thousands, even millions, of people, efficiency matters. Customers may com-
plain about poor reliability, but they would probably complain even louder about a more reliable
program that was ten times slower. Moreover, expressive languages like Scheme, ML, and Haskell
are not well-known outside the ivory towers of academia and research institutions.

Due to these factors, the most popular programming languages in industry today are C and
C++, relatively low-level languages in which it is notoriously difficult to craft reliable and secure
software. However, because decades of work have been invested in the compilers for these languages,
C and C++ programs are very efficient – a major reason for their popularity. One encouraging
piece of news is that Java, a relatively expressive language, has begun to displace C and C++ in
some areas.

Improving the Efficiency of Expressive Languages

The overarching goal of my research is to reduce the tension between expressiveness and efficiency
in programming languages. That is, I want programmers to be able to have their expressiveness
cake and eat it (efficiently) too! I am not alone in this quest; I am a member of a cadre of
enthusiasts for expressive languages who aim to significantly reduce the efficiency costs associated
with expressive language features. Over the past 25 years, this group has made much progress
toward this goal. Today, using the best ML compilers, it is not uncommon for ML programs to
execute in a time that is within a factor of two of a similar C or C++ program compiled with
standard compilers. For some tasks, ML programs are even faster. Our ultimate goal is to continue
improving the efficiency of expressive languages until there is no compelling technical reason not
to use an expressive programming language.

The key idea for improving the efficiency of a program written in an expressive language is to
translate it into another program that has the same meaning, but in which many of the sources
of inefficiency have been removed. Because many inefficiencies are due to abstractions, one goal
of the translation is to eliminate as many abstractions as possible. After all, the main purpose of
the abstractions is to help the human programmer think about the program; they are (usually) not
necessary in the execution phase of the program.

Tree-Based Programming

An effective way to modularize programs is to decompose them into components that produce and
consume intermediate data structures. As a concrete example of this, consider the following ML
functions:
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down 0 = []
down n = n :: (down (n - 1))

prod [] = 1
prod (x::xs) = x * (prod xs)

fact n = prod (down n)

The down function creates a list of numbers from its argument down to 1. For instance, down 5
denotes the list [5,4,3,2,1]. The prod function returns the product of all numbers in its argument
list. For instance, prod [7,2,3] denotes the number 42. The fact function, when called on a
number n, returns the product of the list of numbers from n down to 1; that is, it computes the
factorial of n.

Note how the fact function is created as the composition of two other functions that can be
useful in many other contexts as well. This is a hallmark of expressive programming. But, like
many expressive programs, this definition of fact is less efficient than it could be. In this case, the
inefficiency is due to the construction and traversal of the intermediate list [n,n− 1,. . .,3,2,1].

It is possible to get rid of this intermediate list by fusing the composition of prod and down into
a single function, as follows:

fact 0 = 1
fact n = n * (fact (n - 1))

The transformed version of fact takes less time and space than the original because the intermediate
list, whose only purpose was to communicate the results of the down function to the prod function,
has been eliminated. However, in the more efficient version, it is less obvious that fact(n) calculates
the product of the numbers between 1 and n. We shall refer to the original definition of fact as
modular and the the transformed version as monolithic.

In the above example, linked lists are used to communicate information between components.
They can be considered virtual data structures in the sense that they are not computationally
necessary but are introduced solely to allow expressing the program in a modular way. More
generally, such virtual structures can have a tree-shaped branching structure. I shall use the
term tree-based programming for the style of programming in which programs are modularized by
decomposing them into components that communicate via trees.

I have undertaken several research projects that improve the expressiveness of and reduce the
inefficiencies of tree-based programming. Below is a brief description of these projects. See my
Research Summary for more details.

• Synchronized Lazy Aggregates: Modular programs can sometimes require space resources that
have higher complexity bounds than the corresponding monolithic programs. For my MIT
doctoral research, I developed a tree-based programming system in which monolithic programs
could be decomposed into modular programs with the same asymptotic space complexity.
The key technical advance of this work was the invention of the synchron, a first-class barrier
synchronization object. I used synchrons to create special trees, known as synchronized lazy
aggregates, that allowed computations to be modularized without increasing spaces bounds.

• Regular Tree Manipulation: Cyclic data structures – structures that contain pointers back to
some part of themselves – are ubiquitous in computer science, but there are not very good
abstractions for manipulating them efficiently. In our Cycle Therapy work, Joe Wells and I
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developed elegant abstractions for creating and manipulating cyclic structures, which can be
viewed as denoting infinite regular trees.

• Deforestation: It is possible to automate the process of eliminating virtual trees from programs
– a process playfully known as deforestation. Several automatic deforestation techniques
have been proposed, but few have been implemented in real programming languages, and
even those that have been implemented have not been carefully tested and evaluated for how
well they perform in practice. In the summer of 2000, I began working with Patty Johann
(then at Bates College, now at Dickinson College) on a project to evaluate, compare, and
improve several state-of-the-art deforestation techniques. The project is still ongoing, but
we have made important progress, much of it with the help of seven undergraduates who
have been involved in the project (see Section 2.2). A description of our summer research
project with six of these students can be found in our paper, Lumberjack Summer Camp: A
Cross-Institutional Summer Research Experience In Computer Science.

Compiling with Flow Types

Deforestation is an example of a so-called source-to-source program transformation, in which the
output of the efficiency-improving translation is a program written in the same language as the
input program. Many of the inefficiencies of expressive languages cannot easily be removed by
source-to-source transformations, but can be removed via translations into so-called intermediate
languages, which are lower-level programming languages used in the compilation process.

During the past decade, there has been a flurry of research on typed intermediate languages,
intermediate languages in which each expression is annotated with information about the type of
value calculated by that expression. Guided by this type information, a compiler for an expressive
language can sometimes choose representations for data that are as efficient as those chosen by a C
compiler. Without the type information, the compiler must usually choose a more abstract – and
therefore less efficient – representation.

Most of the research I have done while at Wellesley has focused on improving the selection of
efficient data representations by using a typed intermediate language based on a novel sophisticated
type system. I have carried out this research in collaboration with members of the Church Project,
a Boston-based research group that I co-founded in 1995. Our work has focused on flow types,
in which the type system is embellished with fine-grained information about which values flow
where in a program. The flow information encoded in the types enables the compiler to make more
efficient data representation choices than with an unembellished type system.

The Church Project spans both theory and practice. In addition to developing the theory of
flow types, we have implemented a compiler for the ML language based on flow types and have
begun evaluating their practical impact.

I have made fundamental contributions to both the theoretical and practical facets of the Church
Project. In terms of theory:

• I helped to show that a broad class of polyvariant flow analyses have the same information
content as a type system with intersection and union types;

• I helped to design and prove formal properties about λ-CIL, a calculus with flow types;

• I showed a theoretical upper bound for the complexity of inferring finite-rank intersection
types; and
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• I helped to develop a new technique for proving the computational soundness of a calculus,
and applied this technique to a module calculus.

In terms of practice, I was the chief architect and one of the four main implementers of an ML
compiler that uses CIL, a flow-typed intermediate language based on the λ-CIL calculus, to select
efficient representations of functions. I have also been active in our recent preliminary experimental
work to evaluate the benefits and costs of flow types. My contributions to the Church Project,
including descriptions of the papers that I have co-authored, are detailed in my Research Summary.

2.2 Student Research

I have advised numerous Wellesley students in research projects and independent study projects.
Although the independent study projects have not always involved “true research” in the sense
of discovering new results, they have been “research-like” in their engagement of students in the
self-directed inquiry of problems that are more challenging and (at least initially) less well-specified
than those encountered on class assignments.

Below is a brief description of the student projects that I have advised. Unless otherwise stated,
the projects during the regular semester were CS350 independent study projects.

• Ramona Filipi ’96 worked on a senior project, Cooperative Query Answering on Musical Data,
in which she developed a system for querying a musical database for songs containing certain
patterns of notes. (I co-advised Ramona with Matthew Merzbacher.)

• In her senior project LEGO Robot Projects: An Innovative Way of Learning Science and
Technology, Ruth Chuang ’96 developed materials for Robotic Design Studio and used similar
materials to engage grade school students in science projects. (I co-advised this project with
Robbie Berg.)

• In Spring ’97, Crystal Ellsworth ’96 implemented a simple database system in Scheme.

• In Summer ’96, Laura Diao ’98 undertook a summer research project, Visual Robot Pro-
gramming, in which she developed some graphical programming tools in Java and designed a
visual rule-based language for programming robots. Laura presented posters of her work at
the Science Center summer poster session and at the CCSCNE-97 conference at Northeastern.
After working as a consultant for several years, Laura has returned to Wellesley as a member
of Information Services.

• For her Honors Thesis, entitled Visual Graph Abstraction, Anna Mitelman ’97 built on Laura
Diao’s work by designing and implementing a Java program for viewing a graph of nodes and
edges in terms of supernodes (each of which is a collection of nodes) connected by superedges
(each of which is a collection of edges). Anna presented posters of her work at the Science
Center summer poster session and at the CCSCNE-97 conference at Northeastern.

• In Spring ’98, Cynthia Jones ’97 experimented with a Scheme database system.

• In Spring ’97, Elena Konstantinova ’98 implemented a term rewriting system.

• In Summer ’97, Yan Zhang ’99 built a system for animating the sequence of trees produced
by Elena Konstantinova’s term rewriting system. I still use this system to illustrate the
“shapes” of computational processes in CS111. Yan presented a poster of her work at the
Science Center summer poster session.
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• In Spring ’99, Ann Hintzman ’99 finished building a robot (started in Wintersession ’99)
that extinguished candles by positioning a balloon over the flame. She participated in the
Trinity College Fire-Fighting Robot competition, and summarized her experiences in a report,
Popeye: The Design and Implementation of a Fire-Seeking Robot.

• For her senior Honors Thesis, Yan Zhang ’99 implemented and experimented with the “short-
cut fusion” technique in a mini-language written in Scheme. She presented her work, Exper-
iments with Shortcut Deforestation, at a Science Center spring poster session. Yan continues
to explore her interest in programming languages as a graduate student in MIT’s Laboratory
for Computer Science.

• In Spring ’00, Emily Horton ’00 debugged and extended LogoBlocks, a visual language for
robot programming created at the MIT Media Laboratory. She presented her work in a poster
at a Science Center spring poster session. Emily was hired as a summer intern at the MIT
Media Laboratory to continue her work.

• In Spring ’00, Lisa Hazel ’01 and Meredith Shotwell ’01 finished building a robot (started in
Wintersession ’00) that extinguished candles with shaving cream. They presented their work
in the Science Center spring poster session and on a web site. (I co-advised this project with
Robbie Berg.)

• In Spring ’00, for a CS250H project, Erika Symmonds ’02, implemented the candle-finding
navigation system for a robot she built in Wintersession ’00 with her partner, Brian Kelly
(a Wellesley Middle School teacher). Erika participated in the Trinity College Fire-Fighting
Robot competition, and summarized her experiences in a report, Bandebot: A Fire-Fighting
Robot. (I co-advised this project with Robbie Berg.)

• In Summer ’00, four Wellesley students joined two Bates students in Lumberjack Summer
Camp, a summer research project on deforestation supervised by Patty Johann (Bates Col-
lege) and me. Here are brief descriptions of the four Wellesley student projects:

– Kirsten Chevalier ’01 explored the importance of inlining techniques in deforestation and
experimented with Olaf Chitil’s prototype implementation of his type-based deforesta-
tion technique.

– Kate Golder ’02 worked on a demodulizer for the Haskell programming language – a
module combination tool that is necessary to prepare standard benchmarks for processing
by many deforestation engines.

– Holly Muenchow ’02 investigated warm fusion, a deforestation technique, and experi-
mented with László Németh’s implementation of this technique.

– Nausheen Eusuf ’02 implemented tree-based programs in Haskell that will serve as good
benchmarks for deforestation.

All students wrote reports of their work and presented posters at the Science Center summer
poster session. Kirsten and Kate also presented posters of their work at the CCSCNE-01
conference.

• For her Honors Thesis, Kirsten Chevalier ’01 extended the prototype of Chitil’s type-based
deforestation engine to work on simple Haskell programs. Kirsten presented this work, Ex-
ploring the Type Inference Approach to Deforestation, at the Science Center spring poster
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session, the Ruhlman Conference, and the Mid-Atlantic Student Workshop on Programming
Languages and Systems (MASPLAS-01). Kirsten continues to work on the deforestation
project as a computer science graduate student at Berkeley.

• In Spring ’01, Yukari Wada compared implementations of data structures in Java and C++,
and summarized her experience in a web-based report.

• In Spring ’01, Laura Hwang implemented solutions to the 2000 Boston area ACM program-
ming contest problems in Java and C, and developed a set of web pages presenting her
solutions.

• In Spring ’01, Larissa Ranbom ’02, Kirsten Chevalier ’01, Emily Braunstein ’01, and several
students from other departments banded together to construct Versailles, an impressive in-
teractive light sculpture made out of hundreds of discarded CDs that graced the mini-focus
of the Science Center for several weeks.

• Building on her Summer ’00 work, Nausheen Eusuf ’02 is currently working on an Honor
Thesis project in which she is investigating the expression of algorithms from automata theory
in Haskell, a lazy functional programming language.

• Julie Weber ’03 is currently continuing work on the Haskell demodulizer begun by Kate Golder
’02.

2.3 Future Research Plans

In each of the programming language research projects that I have undertaken, numerous avenues
of future research have suggested themselves. Additionally, there are a number of new research
areas that I would like to explore. In the subsections below, I discuss a number of possible future
research projects that I am considering.

The Church Project

Having invested thousands of hours in the construction of a working flow-typed compiler, my Church
Project colleagues and I are planning a number of extensions and experiments that should require
relatively little additional work:

• Thus far we have focused on a relatively small collection of representations for functions. We
plan to implement and evaluate a broader range of function representations and to explore
representation customizations for other data structures.

• There is much debate in our community as to whether flow-based inlining of functions is a good
idea or whether more traditional syntax-based inlining techniques suffice. We believe that
our compiler is an excellent workbench for investigating this question, and plan to undertake
such a project in the near future.

• We plan to generalize the known function optimization used within our compiler to a flow-
based known value optimization that works on any type of value. As with function inlining,
we plan to compare flow-based and syntax-based algorithms to see whether the flow-based
algorithms are sufficiently beneficial to justify the extra work of maintaining flow information.

There are also a number of longer-range projects that will require significantly more work:
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• My work with Amtoft on the correspondence between polyvariant flow analysis and poly-
morphic type systems suggests that the Church compiler can be extended to encode a much
broader range of flow analyses than it currently does. However, there is a key technical hur-
dle (the so-called deep vs. shallow subtype distinction) that separates the work I did with
Amtoft and its practical application to the Church compiler. I plan to investigate a formal
characterization of the relationship between deep and shallow subtyping, and to explore if
such a characterization can be used in practice as the basis for applying our theoretical results
on flow/type correspondences to the Church compiler.

• Our current compiler does not implement many standard optimizations, which makes it dif-
ficult to compare the code generate by our compiler to the code generated by compilers
implementing these optimizations. We plan to address this in two ways. First, if we modify
our compiler to produce C code as output rather than assembly code, we can leverage the
back-end optimizations performed by good C compilers. Second, we plan to implement a
number of important optimizations on our intermediate code. This is non-trivial, since the
non-standard structure of our intermediate language makes it impossible to straightforwardly
implement standard optimizations in our framework.

• One of our goals is to develop a flow-typed assembly language and investigate opportunities for
flow-based optimizations at this level. However, this goal conflicts with the idea of generating
C code rather than assembly code. We may have to implement two back-ends for our compiler
to resolve this conflict.

• Our current compiler, as with many other research compilers in our community, is based
on a the assumption that the whole program is being compiled at once. But in practice,
many programs are constructed by combining several modules that are separately compiled.
It is imperative to investigate whether flow types can be used as the basis for a system
that supports separate compilation rather than just whole program compilation. One idea
is to perform optimizations not only when modules are compiled, but also when they are
linked together. My module calculus work with Machkasova is a first step in the study of
modular program analyses. The fact that finite-rank intersection types (which I studied with
Kfoury, Mairson, and Wells) have a so-called principal typing property, and therefore provide
a modular analysis of a program fragment, makes them a promising candidate for the basis
of a module type system that supports link-time optimization—an avenue I plan to explore.

Tree-Based Programming

I plan to continue my research in the area of tree-based programming via several projects:

• My highest priority in this area is to complete the study I have started with Johann and
our students on the empirical evaluation of state-of-the art deforestation techniques. This
will require finishing the implementation of Chitil’s type-based deforestation technique, and
developing a methodology for testing it and comparing it with two existing deforestation
engines. This study will be valuable for reporting to the community which deforestation
techniques work well in practice.

• Inspired by my work with flow analyses in the context of the Church Project, I plan to
investigate flow-based approaches to deforestation – an area which, to my knowledge, has not
yet been explored by anyone. It is my intuition that flow-based methods may be able to solve
some known problems with current techniques.
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• I am continuing work with Wells on cyclic representations of infinite regular trees and the effi-
cient manipulation of such representations. Our goal is to develop a libraries of operations for
manipulating regular trees that are efficiently implementable in a wide range of programming
languages. Our Cycle Therapy work is a first step in this direction, but significant practical
engineering work remains to be done.

• In teaching data structures, algorithms, and programming languages, I have found that much
material can be simplified if it is presented in terms of rules for rewriting trees and graphs.
Building on some previous work on the animation of tree rewriting done in conjunction with
my students (see Section 2.2), I plan to develop tools for expressing algorithms via rewriting
rules, animating the execution of such rules, and translating the rules into algorithms in a
wide range of programming languages. Such tools would be useful in both teaching and
research.

Robotics

In the process of teaching Robotic Design Studio, I have encountered several research problems that
I would like to explore. For example, students are often frustrated by the difficulty of debugging
their robots. The sorts of debugging and tracing tools with which some students are familiar from
other programming languages are not available in the systems used to program the HandyBoard and
Cricket robot controllers used in our class. How to specify and collect trace information on these
controllers is far from obvious, as is how to transmit the collected information from the controller
to a host computer, where it can be viewed and manipulated. Some of the bugs encountered by
students involve resource limitations of the controllers; these could potentially be discovered by
the compiler rather than waiting for the robot to misbehave when it runs. I would like to develop
better compilers and debugging facilities for these kinds of robots, so that programming them is
less frustrating.

Security

Computer security is an area in which I have become increasingly interested. I am not a computer
security expert, but I would like to learn more about it by undertaking research projects in the
area. In particular, I am interested in working on systems in which programs are guaranteed to
satisfy certain security properties – e.g., they do not access private information, surreptitiously send
email (a means by which viruses proliferate), or exceed certain resource bounds when executing.
A number of systems with this flavor have been developed in the past decade, but research in this
area is still embryonic and much remains to be done. I am also interesting in learning more about
computer viruses in an effort to develop better ways to detect and eliminate them.

Document Preparation

The document you are reading is prepare using Latex, a powerful document preparation program
that is used by large numbers of computer scientists, mathematicians, and others to write documents
with sophisticated formatting. In contrast to more popular document preparation systems (e.g.,
Microsoft Word), Latex allows the document writer to define arbitrary formatting abstractions that
greatly facilitate writing and modifying documents. Unfortunately, the language for expressing
these abstractions is difficult to use – indeed, it is almost universally agreed to be one of the
worst programming languages ever designed. Nevertheless, people use it anyway (cursing all the
way) because it gives such beautiful output. I would like to improve this situation by helping to

21



develop an elegant programming language for document formatting in which the specifications of
the formatting abstractions themselves are as beautiful as the formatted output they describe.

2.4 Evaluating Computer Science Research

It is my understanding that the number of archival journal papers authored by a tenure candidate
is often a major factor in tenure decisions in the sciences. Given this state of affairs, I feel it
is necessary to discuss my publication record, which is weighted heavily toward conference and
workshop papers, in the context of accepted standards of evaluation in the field of computer science.

In computer science, especially in the area of programming languages, the preferred means
of publication for one’s current research is one of a number of selective annual conferences or
workshops. Not only are these publications carefully reviewed (typically by three to five referees),
but the competition for acceptance is often fierce; acceptance rates are typically in the 25%-40%
range, but in some conferences are even smaller. The fact that a paper appears in the proceedings
of a selective conference attests to its novelty, relevance, and quality. Indeed, it is folklore in our
community that it is more difficult to publish a paper in a good conference than in an archival
journal. Other advantages of conferences are that (1) the turnover time to publication is typically
far shorter than that for a journal and (2) conference papers are presented in a public forum whereas
journal papers are not.

Journal publications still have a place in computer science. Since it is often impossible to give a
full account of one’s research within the small page limits of a conference proceedings, authors will
often publish an expanded (and more polished) version of a conference paper as a journal paper
or a technical report. However, the pressure to publish new work in conferences often means that
expanded versions of older papers often do not appear for many years, if at all.

As evidence for the above claims, I call attention to the Computing Research Association’s
“Best Practices Memo” entitled Evaluating Computer Scientists and Engineers for Promotion and
Tenure, which appeared in the September 1999 issue of Computing Research News. Below is a
relevant quote from the introduction of the memo. (The full memo appears in Appendix G of this
document.)

The evaluation of computer science and engineering faculty for promotion and tenure
has generally followed the dictate of “publish or perish”, where “publish” has had its
standard academic meaning of “publish in archival journals” . . . Relying on journal pub-
lications as the sole demonstration of scholarly achievement, especially counting such
publications to determine whether they exceed a prescribed threshold, ignores signif-
icant evidence of accomplishment in computer science and engineering. For example,
conference publication is preferred in the field, and computational artifacts – software,
chips, etc. – are a tangible means of conveying ideas and insight. Obligating faculty to
be evaluated by this traditional standard handicaps their careers, and indirectly harms
the field.

It is worth emphasizing that the authors who prepared this memo (David Patterson, Lawrence
Snyder, and Jeffrey Ullman), are leaders in the field with outstanding publication records. For
example, in the automatically generated author ranking of the NEC ResearchIndex engine3, Jeffrey
Ullman is ranked as the most cited computer scientist of all time, and David Patterson is ranked
as the 29th most cited.

3http://citeseer.nj.nec.com/mostcited.html.
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Further confirmation of the importance of conference publications relative to journal publica-
tions in computer science comes from the estimated “impact rating” reported by the NEC Re-
searchIndex engine4. The engine automatically ranks conferences, workshops, and journals accord-
ing to the average number of citations per article5. In the top 25 publication venues ranked by
impact, only 4 are journals (the rest are conferences and workshops), and only 27 of the top 100
items are journals.

In my Activities Sheets, I have listed the acceptance rates (where known) for all papers that I
have published in refereed conferences and workshops. In all cases except one, the acceptance rates
are in the 28%-37% range, indicating that these conferences and workshops are highly selective.
The one exception is the “Cycle Therapy” paper that appears in this year’s Third International
Conference on Principles and Practice of Declarative Programming (PPDP), where the acceptance
rate was 48% (19 papers accepted out of 40 submitted). For reasons that are not well understood,
the number of papers submitted to PPDP this year (40) was significantly smaller than the num-
ber submitted last year (65). It is also worth reporting the ResearchIndex impact rating of the
conferences and journals in which my papers appear6:

Venue
ResearchIndex
Impact Rating

Journal of Functional Programming (JFP) top 9.20%
International Conference on Functional Programming (ICFP)7 top 10.02%
Conference on Human Factors in Computing Systems (CHI) top 11.88%
European Symposium on Programming (ESOP) top 13.40%
Communications of the ACM (CACM) top 27.38%
Principles and Practice of Declarative Programming (PPDP)8 top 66.89%

I would also like to comment on the fact that all my publications (except for one) were col-
laborative ventures with one or more co-authors. As computer science has matured as a field,
single-author papers have become more rare. Especially in experimental subdisciplines of com-
puter science, it is nearly impossible for a single person to design, build, and evaluate complex
software and hardware systems. This has certainly been my experience in the construction of the
Church Project compiler, which required the investment of thousands of man-hours from the four
main implementors (Allyn Dimock, Ian Westmacott, Bob Muller, and me) and significant work from
other individuals. A similar story is unfolding in my on-going work in the empirical evaluation of
deforestation techniques with Patty Johann and our students. Even in purely theoretical work,
there are many advantages to the collaboration of authors with different backgrounds and different
strengths. Such collaboration allows investigation of more complex topics than would otherwise be
possible and that the work is often of higher quality because it has to pass the “criticism filters” of
multiple authors.

4http://citeseer.nj.nec.com/impact.html.
5Citations from articles with an author in common with the cited article are excluded from the count.
6Several publication venues for my papers are not ranked by ResearchIndex and so do not appear in the list.
7Although ICFP has a good impact rating, it is worth noting that it is a relatively new conference, formed in 1996,

that resulted from merging two older conferences with higher impact ratings: Lisp and Functional Programming (top
1.74%) and Functional Programming and Computer Architecture (top 2.56%).

8The poor impact rating of PPDP is at least partially explained by the fact that it is a new conference, formed in
1999, as the result of merging two older conferences with higher impact ratings: Programming Language Implemen-
tation and Logic Programming (top 26.45%) and Algebraic and Logic Programming (top 39.16%).
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3 Service

In this section, I expand on some of the service items listed in my Activities Sheets.

3.1 College Service

I have served on two college committees:

1. For two academic years (Fall ’96 – Spring ’98), I was was the Group C representative on
the Committee on Minority Recruitment, Hiring, and Retention (CMRHR). One of the main
goals of CMRHR during these years was to to determine whether data showed any salient
differences between minority and non-minority faculty members in terms of the trajectories
of their careers at Wellesley. For instance, were there noticeable differences in hiring and
retention between minority and non-minority faculty members along dimensions like part-
time vs. full-time, tenure-track vs. non-tenure-track, and, for faculty members who had left
the college, when they left the college in their career path? We also wanted to explore to
what extent factors other than ethnicity – such as place of birth and citizenship (when hired)
– were correlated with points on these dimensions.

Since the information we wanted was not readily available, we decided to request that each
department provide us with this information for every faculty member hired in the department
since 1985. Asking for detailed information about so many individuals would be burdensome
for departments (especially large ones), so it was important to streamline the information
gathering process. I took the lead on designing and implementing the questionnaires given
to departments. I wrote a program that produced a personalized one-page questionnaire
for every faculty member being studied and automatically filled in as much information as
possible given information already in Banner. (See Appendix H for a sample questionnaire.)
This way, departments could focus on filling in the missing information rather than spending
time on what was already known. The feedback from pilot tests with a few departments was
positive, so we distributed the questionnaires to all departments. I continued to help out with
the questionnaire and tabulating the results from it even after officially leaving the committee
for my junior leave (Fall ’98 – Spring ’99).

2. I am entering my third academic year (starting in Fall ’99) as the Group C representative
of the Committee on Educational Research and Development (ERD). In my first term (Fall
’99 – Spring ’00) I, working with Wilbur Rich, was responsible for processing the Curriculum
Development Grants. In my second term, (Fall ’00 – Spring ’01) I was responsible for reviewing
the travel-related Pedagogy Improvement Grants. Since Fall ’99, I have also served as the
ERD liaison to the Hughes Curriculum Development Award Committee at the Science Center.

In addition to committee service, I have been active as a first-year advisor. I served as a first-
year advisor for the Cazenove dormitory team in the academic year starting 1995, and advised
first-year students in the 1997 and 1999 academic years. It is gratifying to watch first-year students
grow and mature during their years at Wellesley.

I have also been a tenure-track interviewee for the Mellon Interviews on the Faculty Life Cycle,
a panelist for an LTC panel on deadlines and extensions, and a “reflexive photographer” for the
planning of the new campus center.
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3.2 Departmental Service

In addition to course development (especially leading the Java charge) and student mentorship , I
have contributed to the computer science department in other significant ways:

• Since 1995, I have been the coach for the Wellesley programming team, which participates
in the annual ACM programming contest. I formed a Programming and Problem Solving
Club that served as an informal venue for practicing problem solving skills and programming
contest questions. This club eventually evolved into the student-run Wellesley Association
for Computing, which sponsors other computer science activities as well (e.g. attending CS
seminars).

• Every year, I spend significant time helping to administer the department’s Unix/Linux ma-
chines, for which there is no dedicated system administrator.

• From Summer ’00 – January ’01, I volunteered to supervise the initial stages of switching
program development environments for CS111, even though I was not officially teaching the
course.

• I have taught unofficial “lunchtime courses” on Java and C programming.

• I have organized social events like student dinner parties and a department hike.

• As the department’s “information czar”, I post CS-related news articles, distribute informa-
tion on CS internships and jobs, etc. I am currently in charge of revamping the department’s
web pages. In addition to updating the pages and reorganizing the information to be more
accessible, I plan to add pages on student and faculty research, information on finding intern-
ships and jobs, advice columns from CS alums, and pages marketing the department to high
school students.

3.3 Professional Service

In addition to standard service activities, such as reviewing papers for conferences and journals,
I have also helped to organize some conferences. Most recently, I served as a program committee
member for the Types in Compilation Workshop held in Montreal in September, 2000. In this
capacity, I carefully read and wrote detailed referee reports for ten of the submitted papers, and
helped to choose the papers accepted at the workshop. I also served as the vendors chair for
the Consortium for Computing in Small Colleges Second Annual Northeastern Conference held
at Northeastern University in April, 1997, and the local coordinator for the Forum on Parallel
Computing Curricula held at Wellesley in spring 1995.
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A CS111: Introduction to Programming and Problem Solving

CS111 is the first course in the computer science major. It introduces students to fundamental
programming and problem solving techniques. Soon after I came to Wellesley in Spring ’95, the
department began to discuss revamping CS111 and the follow-on course, CS230 (Data Structures),
including changing the programming language (Pascal) used in these courses. The sense was that
the limitations and quirks of Pascal made it less than ideal for teaching the subject matter of CS111
and CS230.

I volunteered to lead the effort to switch to Java and revamp the introductory programming
curriculum. I redesigned CS111 to use Java for Fall ’97, which necessitated rebuilding the course
from scratch. Inspired by my belief in constructionism (see Section 1.1), I developed a collection of
Java microworlds – simple but rich environments in which students can “play with” fundamental
programming techniques.

One example of such a microworld is BuggleWorld. In this world (inspired by Seymour Pa-
pert’s turtle microworld and Richard Pattis’s Karel the Robot), simple robot-like creatures called
“buggles” can be programmed to explore a two-dimensional grid of cells. Buggles can turn, move
forward and backward, paint their current cell with a color, pick up and drop bagels (their favorite
food), and sense when they are facing a wall or over a bagel. These simple actions are enough
to support a surprisingly wide range of activities. Buggles can be programmed to draw letters,
jump hurdles, find and eat bagels, explore mazes, and make complex rug patterns with colors and
bagels. Through these playful exercises, students learn fundamental concepts like method-based
abstraction, conditionals, recursion, iteration, and state variables. The graphical nature of the
environment makes it visually compelling and provides important debugging clues when programs
are not working correctly.

BuggleWorld is only one of many microworlds I developed for CS111. Other microworlds allow
the creation of Escher-like pictures, fractal line drawings, screen savers, and playing card games.
These microworlds enable posing simple, motivating, and challenging programming problems that
would be significantly harder to specify without the scaffolding provided by the microworlds. In
addition to implementing the above microworlds in Java, I (in conjunction with Stanzi Royden,
Elaine Yang, LeeAnn Tzeng, Jennifer Stephan, and Jean Herbst) developed a wealth of examples,
assignments, lectures, and notes based on these microworlds. Visit the following URL for examples
of these:

http://cs.wellesley.edu/~fturbak/tenure/cs111.html

In order to understand how a Java program runs, a programmer must have a model of Java
execution. I invented a visual model called the Java Execution Model (JEM) that accurately
explains at an abstract level what happens when a Java program is executed. In CS111, I teach the
JEM as a means of understanding the dynamic nature of computation and as a tool for debugging
programs that do not work. It is worth noting that of the dozens of introductory and advanced
Java textbooks I have consulted, not a single one presents a general execution model of Java.

In addition to developing Java microworlds and associated materials, I also changed the con-
tent and structure of the course to emphasize “big ideas” and “first principles”. This led to some
non-standard topics and topic ordering. For example, an important theme of CS111 is the di-
vide/conquer/glue problem solving methodology, which is presented early in the course. It turns
out that the key concept of recursion is a special case of divide/conquer/glue in which each of the
subproblems has the same structure as the original problem. Furthermore, the key concept of iter-
ation can be viewed as a special case of recursion where (1) there is exactly one subproblem and (2)
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there is no “glue” step. Based on these observations, I explicitly teach recursion as a special case of
divide/conquer/glue and then teach iteration as a special case of recursion. (See my paper Teaching
Recursion Before Iteration in CS1 for more details.) Similar reasoning compels me to teach lists
before arrays. Although these choices are sometimes made in the teaching of so-called functional
programming languages, they are highly unusual in the teaching of object-oriented languages such
as Java. Nevertheless, I believe that organizing CS111 in this way gives the students a much better
view of the “big picture” than traditional approaches for teaching Java.
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B CS115: Robotic Design Studio

Ever since the year I arrived at Wellesley, I have been collaborating with Robbie Berg in the Physics
department on Robotic Design Studio, an introductory robotics course held during Wintersession.
The course arose out of our passion for constructionism and our observation that activities involving
designing and building are relatively rare on the Wellesley campus, especially in the sciences.
Our goal was to create a course where all students, regardless of background, could get hands-on
experience building complex artifacts of their own design.

Robotics is an ideal domain for engaging students in such activities. With the advent of palm-
sized robot-controlling computers developed at the MIT Media Lab, small independent robots with
interesting behaviors can be built from LEGO parts, motors, and simple sensors, making robotics
accessible to people of all ages and backgrounds. The interdisciplinary nature of robots – combining
mechanical know-how, programming skills, simple electronics, a sense of aesthetics, and, in some
cases, understanding of animal-like behavior – makes them appealing to students with a wide range
of backgrounds, especially those seeking the sort of interdisciplinary experiences that are hallmarks
of liberal arts education. The fact that almost any sort of dynamic behavior can be realized in
robots means that robotics serves as a kind of blank canvas encouraging creative design experiences
and personally meaningful projects.

During Wintersession ’96 and ’97, we held non-credit pilot courses in which we experimented
with various kinds of robotics technology and pedagogy. These pilot courses were supported by
grants from the National Science Foundation, the Howard Hughes Medical Institute, and Wellesley’s
Educational Research and Development Committee. The most important aspect of these courses
was that they culminated in an open-ended final group project that students exhibited in a public
forum. This exhibition format – effectively a kind of robotics “talent show” – stands in stark
contrast to the competitive events that characterize most robotics courses elsewhere.

Inspired by the success of the pilot course, in Wintersession ’98 we started offering the robotics
course for one half-unit of credit, and have taught the for-credit course every Wintersession since.
The course is extremely popular – it is overbooked every Wintersession, and the final exhibition
draws crowds of about 200 people from the Wellesley community. Every year, we are amazed by the
ingenuity and creativity of the student projects. Other than attending the exhibitions in person,
the best way to get a sense for these projects is to look at the on-line museum of past student
projects at http://cs.wellesley.edu/rds/museum.html.

Together, Robbie and I have developed a wide range of materials for this class, from sample
robots to handouts. We introduce students to the basics of robotics via a series of design challenges
in which they either modify an existing model robot (known as “SciBorg”) or build one of their
own. Visit the following URL for examples of materials from this course:

http://cs.wellesley.edu/~fturbak/tenure/cs115.html

After six years of teaching the robotics course, we have come to the conclusion that the essence
of the course is introducing students to the big ideas of engineering. Although teaching engineering
in a liberal arts college is often considered heresy, we believe that every liberal arts student should
be exposed to the key ideas of engineering. For a detailed exposition of our argument, see our
journal paper, Robotic Design Studio: Exploring the Big Idea of Engineering in a Liberal Arts
Environment. (This paper has recently been accepted for publication in the Journal of Science
Education and Technology.)
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C CS230: Data Structures

Although I have not taught this course since Fall ’99, it is the regular semester course I have taught
most frequently at Wellesley (six times). In the first four incarnations of this course, I developed
an extensive set of notes, assignments, and programs that used Pascal to illustrate basic data
structures and algorithms. Among the programs I developed for examples and assignments were
cellular automata, maze drawing and solving programs, fractal drawing programs, a simple version
of Weizenbaum’s celebrated Eliza program (a software psychiatrist), and a simple hypertext system.
These programs, many of which had a graphical or interactive component, provided compelling
examples of how the ideas in the course could be used in practice. For example, on one assignment
involving the hypertext system, students used graph traversal techniques to implement a very
simple version of a web-crawling text-indexing search engine like Google.

A novel aspect of my teaching in this course was an emphasis on passing functions as arguments
to other functions. Because of my background in functional programming, I recognized the impor-
tance of this often-neglected feature of Pascal, which is essential for abstracting over common data
structure traversal patterns.

In Spring ’98, I overhauled CS230 to complete the move from Pascal to Java in our introduc-
tory curriculum. This required major changes to the material covered in the course. As part of
redesigning CS111, I moved much material that was previously a focus of CS230 (such as recursion,
linked lists, and many microworlds illustrating these concepts) into CS111. It was necessary to
move some topics formerly emphasized in CS111 (such as an in-depth coverage of arrays) to CS230,
and to cover significant new material specific to Java (e.g., details of object-oriented programming
and graphical user interfaces). I adapted many programs from the Pascal version of the course to
Java, and wrote several new ones as well (such as a bitmap editor and a Mancala game).

Samples of materials from both the Pascal and Java versions of the course can be found by
visiting the following URL:

http://cs.wellesley.edu/~fturbak/tenure/cs230.html
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D CS231: Fundamental Algorithms

This is one of the few courses in which I rely on a textbook (Introduction to Algorithms, by Cormen,
Leiserson, and Rivest) for good explanations of most material and for many of its excellent problems.
Nevertheless, students in the course often do not have (or at least think they do not have) the
level of mathematical sophistication assumed in many chapters of the book. My approach in the
course is two-pronged: (1) to raise their level of mathematical sophistication, so that they can
better understand the textbook reading and do the textbook problems; and (2) to present intuitive
explanations of results that are presented formally in the book.

Towards this end, I have prepared numerous “worksheets” that highlight key concepts, present
intuitive explanations, and give many concrete examples. The worksheets contain numerous blank
spots where students are expected to fill in answers, draw pictures, derive formulae, etc. In many of
my lectures, we walk through the material on a worksheet and interactively flesh out the parts that
are blank. I find that these worksheets strike a nice balance between not giving out any notes (in
which case students must take copious notes, making it difficult to focus on the high-level points of
the lecture) and giving the students completely fleshed out lecture notes (in which case they may
not be as actively engaged with the material).

Inspired by my research in the area of functional programming languages, I have recently been
experimenting with presenting functional versions of algorithms rather than the traditional imper-
ative versions. In many cases, the functional versions are more elegant and easier to understand
and analyze than their imperative counterparts, though they may not be as efficient in practice.
For example, in Spring ’01 I presented a functional approach to red-black trees based on the version
in Chris Okasaki’s book, Purely Functional Data Structures; this was much more understandable
than the complex description in the textbook. This semester, I am covering the sorting of lists in
the functional style in addition to array sorting because it is easier to teach induction proofs in the
context of lists rather than arrays.

Visit the following URL for examples of materials from this course:

http://cs.wellesley.edu/~fturbak/tenure/cs231.html
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E CS251: Theory of Programming Languages

Typically, courses on programming languages are either organized around the historical develop-
ment of programming languages or around different programming paradigms, such as imperative,
functional, object-oriented, and logic programming. Students in such courses often get a feel for
different paradigms by writing simple programs in a representative language from each paradigm.

In contrast, I organize my programming languages course around dimensions of programming
language design and the choices that are available in each dimension. For example, some important
questions in various dimensions are:

• Are functions in the language first-order or higher-order?

• Is the language block structured?

• What is the parameter-passing mechanism of functions?

• Are free variables statically scoped or dynamically scoped?

• Are values untyped, dynamically typed, or statically typed?

• Does the language support parametric and/or ad hoc polymorphism?

• Is type equality structural or by name?

• Is there no inheritance, single inheritance, or multiple inheritance?

The best way I know to get a sense for what the dimensions are and what the choices are in
each dimension is to study interpreters. An interpreter is a program written in an implementation
language that executes programs written in a source language. Choices along a source language
dimension often clearly show up as a programming choice in an interpreter for that language. For
instance, in the implementation of variable scoping, there are two so-called “environments” that are
available for determining the meaning of a variable name; one corresponds to static scoping while
the other corresponds to dynamic scoping. The person implementing the interpreter has to make a
choice between these two environments, and is thus forced to step into the realm of programming
language design.

A practical problem is that interpreters for real programming languages are too complex to
study in an undergraduate course. To circumvent this problem, I have designed a hierarchy of
“mini-languages” that are very simple, but capture the essential features of real programming
languages:

• INTEX is an simple language of integer expressions.

• BINDEX = INTEX + a name-binding construct.

• IBEX = BINDEX + conditionals and lists.

• FOFL = IBEX + first-order functions.

• FOBS = FOFL + block structure.

• HOFL = FOBS + higher-order functions.

• HOIL = HOFL + imperative features.
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We spend most of the course studying interpreters that I developed for each of these languages.
Students get experience in changing the meaning of a mini-language feature or adding a new mini-
language feature by modifying the interpreter for the mini-language. Visit the following URL for
sample materials from the course:

http://cs.wellesley.edu/~fturbak/tenure/cs251.html

The fact that each mini-language and interpreter builds upon a previous one allows for an
“onion-skin” approach in which students get hands-on experience with one level of complexity
before moving on to the next. Along the way, we relate what we have learned to real programming
languages, such as Scheme, ML, Haskell, Java, C, and C++. The interpreters we study are written
in Scheme and ML, so students get significant programming experience in these real languages.
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F CS301: Compiler Design

Because my research work involves the implementation of an experimental compiler, CS301 is a
course close to my heart. It is a “capstone” course, in the sense that it requires students to
use knowledge they have acquired from a broad range of other CS courses, both theoretical and
practical. They put this knowledge to work in the context of implementing compilers – large and
complex program translators that they write mostly from scratch in groups. Our department does
not offer a software engineering course, so it is important for students to have the opportunity to
wrestle with big group software projects in the context of upper-level courses like CS301.

I have taught CS301 twice: once in Fall ’96, when I used Java for the programming projects,
and in Fall ’00, when I used the ML programming language (also taught in CS251) for this purpose.
In Fall ’00, I loosely followed Andrew Appel’s recent textbook, Modern Compiler Implementation
in ML. The textbook is organized around a project for building a compiler from Tiger (a mini-
language designed by Appel for his book) to MIPS assembly code. As in many other compiler
courses, students are expected to complete a stage of the compiler every week or two and then
assemble them at the end of the course into a complete compiler.

There are two problems with this approach:

1. Several design choices in the early stages of Appel’s compiler are influenced by factors that
do not become apparent until students study later stages of the compiler. This is problematic
from a pedagogical standpoint; I am uncomfortable with saying “ignore these details now;
we’ll understand them later in the course”.

2. In a compiler course, it is not uncommon to fall into the “front-end rut”, where it takes more
time than planned to cover the wealth of theory and techniques for the early stages of a
compiler, like scanning and parsing. If this happens, then it is necessary to shorten or omit
the coverage of many “back-end” stages of the compiler. In this case, there is the danger
that the student projects may not reach “a point of closure” where all of the stages can be
assembled into a working compiler.

To address these concerns, I developed an onion-skin approach to teaching the compiler course
that was inspired by a similar approach I use for teaching interpreters in CS251. I organized the
course as a sequence of passes through both front-end and back-end material. On each pass, we
explored details and aspects not covered in the previous pass. I also decomposed Appel’s Tiger
language into four subsets, each one more powerful than the previous one:

1. Kitty: a simple language supporting integers, loops, and input/output.

2. Bocat = Kitty + primitive datatypes (booleans, characters) + explicit types + functions.

3. Cougar = Bobcat + compound data (structures, arrays) + recursive datatypes.

4. Tiger = Cougar + block structure.

During the first six weeks of the course, we covered sufficient front-end and back-end material that
students were able to complete a working compiler translating Kitty to MIPS assembly code. With
this experience under their belts, they had a good working knowledge of the different phases of a
compiler, and were ready to explore some of those phases in more detail. During the rest of the
semester, they explored more advanced techniques in the context of a Bobcat compiler. Although
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time did not permit implementation of the Cougar and Tiger compilers, the onion-skin approach
allowed the students to get hands-on experience with all stages of two working compilers.

Some of the materials I developed for CS301 can be found at the following URL:

http://cs.wellesley.edu/~fturbak/tenure/cs301.html
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G Evaluating Computer Scientists

Attached is a copy of the following memo:

Computing Research Association (represented by David Patterson, Lawrence Snyder,
and Jeffrey Ullman). Evaluating Computer Scientists and Engineers for Promotion and
Tenure. Computing Research News, September 1999.

This can be found on-line at http://www.cra.org/reports/tenure review.html.
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H Sample CMRHR Questionnaire

Attached is a sample of the CMRHR questionnaire I designed. This can be found on-line at
http://cs.wellesley.edu/~fturbak/tenure/cmrhr-questionnaire.pdf.
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