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Abstract

Dithering, or halftoning, is a technique that is used to
represent a grayscale image on a printer, a computer
monitor or other bi-level displays. A particular dithering
technique that has been used extensively in the past, is the
so-called error diffusion technique. For a number of years
it was believed that this technique could not be
parallelized. We have invented a simple error-diffusion
parallel algorithm and we present in this paper several
parallel implementations of it. In particular, we describe
implementations on parallel computers that contain linear
arrays and two-dimensional meshes of processing
elements. We expect that this research could lead to the
development of faster printers and large high-resolution
monitors.
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1 Introduction

Dithering, or halftoning, is a technique that is used to
represent a grayscale image on a printer, a computer
monitor or other displays that are capable of producing
only binary elements. It works by rendering on such bi-
level displays the illusion of continuous-tone pictures.

Significant effort has been invested in the past to
dithering, both in industry [1] and academia [2]. Fig. 1
shows a continuous-tone image and the same image
dithered. Seeing from a distance, the dithered image gives
the illusion of continuous-tone. It should be noted that the
file containing the first image is significantly larger than
the second file, and so, dithering has also been used as a
compression and low bandwidth transmission technique.

Despite the numerous dithering techniques developed
in the last twenty years, the one that has emerged as a
standard because of its simplicity and quality of output is
the so-called error-diffusion algorithm. This algorithm,
first proposed by Floyd and Steinberg [3], is
schematically shown in Fig. 2.

Pixels Jfn] of the continuous-tone digital image are
processes in a linear fashion, left-to-right and top-to-
bottom. At every step, the algorithm compares the
grayscale value of the current pixel, represented by an
integer between 0 and 255, to some threshold value
(typically 128). If the grayscale value is greater than the
threshold, the pixel is considered black and its output

value I[n] is set to 1, else it is considered white and I/n/
is set to 0.

Fig. 1. A 256 by 256 grayscale image (top) and its dithered version
(bottom).
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Fig. 2. The Floyd-Steinberg dithering process.
The difference between the pixel's original grayscale
value and the threshold is considered as error. To achieve



the effect of continuous-tone illusion, this error is
distributed to four neighboring pixels that have not been
processed yet, according to the matrix shown graphically
in Fig. 3, proposed by Floyd and Steinberg [3].
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Fig. 3 Diffusion matrix of distributing error fractions to four
neighboring pixels [3] (top) and the modified diffusion matrix of [4]
(bottom).

A small modification of the above error diffusion
matrix was proposed by Fan [4] (Fig. 3). The new matrix,
is believed to improve the quality of the dithered image
without increasing the total work (i.e., the total number of
operations) done by the algorithm.

Dithering is a very time consuming process, as anyone
who has tried to print grayscale or color images on a
printer has noticed. In fact, the straightforward
implementation requires at least four floating-point
multiplication operations and five memory access
operations to process each pixel of the image. For an
image with dimensions n by m it takes 9nm such
operations, and is therefore computationally quite
expensive.

Parallelizing the error-diffusion method of [3] and [4]
could lead to manufacturing faster printers and larger
monitors. For a number of years it was believed that error
diffusion algorithms, in the spirit of [3], could not be
parallelized. In fact, [5] states that "[the Floyd-Steinberg
algorithm] is an inherently serial method; the value of [the
pixel in the right lower corner of the image] depends on
all mn entries of [the input]". Similar statements, but
without justification appear also in [6,7,8].

However, the above argument is not valid, because
some partial sums could be overlapped. Let us explain our
point with a counterexample. Consider the operation
prefix sum. The prefix sum of an array A/1..n] produces
another array B/Il..nJ, such that, for each i, B[i] =
Afl]+..+A[i]. Even though the last element of A/n/
depends on all the previous ones, the prefix sum of the
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whole array can be calculated very fast in parallel — in
fact, in Jogarithmic parallel time [9]. The observed
dependency simply means that the calculation of the last
element cannot be completed before the calculation of the
elements it depends upon. However, this does not imply
an inherently serial method, because calculations of
partial results can overlap. Indeed, our parallelization is
based on the following

Scheduling Invariant I: Schedule the pixels of the image
for dithering so that a pixel is processed only after all the
pixels it is dependent upon have been processed.

Apparently, maintaining this scheduling invariant
guarantees correctly computed dithering. There are
several implementations of this scheduling invariant. In
the next section we describe some of the simpler ones.
We mention here that the naive way of processing a
diagonal d of pixels simultaneously does not maintain the
invariant 7. The reason is that the value of the lower left
pixel of d depends on all of the pixels on the diagonal.
Therefore, it is not be possible to process the whole
diagonal simultaneously. For similar reasons, processing
simultaneously the pixels of a row or a column of the
image does not maintain the invariant 7.

In this paper we give a parallel algorithm that can
achieve the same effects and visual quality, but much
faster than [3]. Our algorithm, parallel error-diffusion
dithering is described in a next section. We show how to
implement the algorithm on parallel computers that
contain linear arrays or 2-D arrays (meshes) of processing
elements (PE’s). Using a systolic linear array of p
processors we show how to dither an image about
p/2=0(p) times faster than the sequential error-diffusion
dithering techniques. In that respect, our algorithm is
asymptotically optimal. Results of our (unoptimised)
implementation show that the predicted theoretical
performance can be achieved. Moreover, its simplicity
guarantees that increased performance can be achieved if
the algorithm is implemented in hardware.

We should point out that, one of the advantages of
using simple processor structures like linear arrays and
meshes is their scalability. One can add easily PE’s in the
interconnecting bus that increase the dithering power of
the machine without redesigning or replacing the
remaining circuitry or the software. Moreover, one can
remove and replace defective PE’s from the processor
array at a minimum cost. Finally, our algorithm enables
Sfault-tolerance, in the sense that allows the machine to
work in the presence of faulty processors by employing
standard techniques that will ignore and skip over the
faulty processors.

The remaining of this paper is organized as follows:
The next section describes the parallel computer and the
models we use for our implementations, while Section 3
explains the algorithm. Section 4 describes two possible
implementations and Section 5 has the conclusions.



2 Description of the MasPar Machine and Parallel
Models

In our parallel implementations we used a linear array
embedded in a two-dimensional array of processing
elements (PE’s). In the linear array configuration, each
PE is has input/output capability and can communicate
directly with its left and right neighbors. A generalization
of the linear array architecture is the two-dimensional
array (mesh). In this model, each processing element is
connected to and communicates with four neighboring
PE’s (typically called N, E, S, and W). PE’s at the
extreme points of the architecture may not be connected
to all their neighbors. A linear array, can be found
embedded on every existing general-purpose parallel
machine. It can also be constructed easily by connecting
processor/memory chips. Leighton's classic book [10] has
an excellent coverage on embedding linear arrays on a
variety of interconnection architectures, including
multidimensional arrays, hypercubes, trees, mesh-of-trees,
ete.

The machine we used in our implementation was a
MasPar MP-1101 parallel computer. Even though today it
is an outdated machine, the purpose of our experiments
was to verify the validity of the theoretical results, not to
achieve the highest possible absolute performance. Our
MP-1101 has a theoretical top speed of just 75 Mflops
compared to, say, 2 Gflops of an 8-node IBM SP2.

A MasPar system consists of four sections (Fig. 4):
The Processor Element (PE) Array, the Array Control
Unit (ACU), the UNIX front-end subsystem and a high-
speed [/O subsystem. The PE array forms the
computational core of the MP-1101 system and includes
1K PE’s operating in parallel. Fach PE is a custom
designed register-based RISC Processor with 64KB of
dedicated data-memory and forty 32-bit registers. Data is
transferred to and from the processors via the router at up
to 1 GByte/sec to an external memory buffer. Our
machine is not equipped with an I/O subsystem.

ACU PE Array

Global Router

Front

system bus
End

Fig 4. Simplified diagram of the MasPar architecture. The high-speed
I/O subsystem (not shown) would be connected to the global router.

The native language of a MasPar is MPL, a data-
parallel extension of C. The main data-type difference of
MPL with C is the addition plural variables. A plural
variable has many copies, one on each PE. All copies can
be accessed in a single parallel step. Singular variables are
residing onto the ACU.
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Each PE communicates with other PEs in two ways: With
their 8 direct neighbors (N, NE, E, SE, S, SW, W, NW)
via a direct data link called the X-Net (Fig 5), and with a
random PE via a 2-stage butterfly router. The first type of
communication is about 16 times faster than the second,
and is the one we have used in this paper. The X-Net is
defined for every PE, so MasPar’s Architecture is
effectively a torus.

NW N
W=—-WVPE——=E

/N

SW § SE
Fig 5. The 8 direct X-Net communications.

NE

The X-Net makes it possible to use a MasPar with p?
PE’s in several ways, two of which are of special interest
in this paper: as a linear array of up to p? PEs, and as a 2-
D array of p by p PE’s.

3 Description of the Parallel Dithering Technique
We now show how to dither using error-diffusion in
parallel an image composed of n rows by m columns of
pixels on a linear array of N processors. We consider
first the parallelization of [3]. In a later section we show
how to deal with the parallelization of the [4] matrix.

Pixels are scheduled for dithering at processing times
that follow the pattern in Fig. 6, which obeys the invariant
I:
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Fig. 6. Image slices processed by each processor and processing times
for each pixel.

To achieve this scheduling, slices of image pixels are
being "fed" into the processor array in a slanted fashion,
as shown in the Fig. 7.



~0

/

Fig. 7. Direction of pixel movement through the processor array at a
63.4° angle (top). Snapshot of the algorithm at the 8th step (bottom)
Note that the currently dithered pixels depend on pixels dithered at the
5th, 6th and 7th steps.

The algorithm operates as follows: Let k = [ n-1)/3 I
where 7 is the number of rows of the image. The three
upper leftmost pixels are processed and their dithering
errors are calculated by the k-th processor in the linear
array, called the starting processor. After these three
steps, the k-th processor sends the appropriate fractions of
the errors to its two neighbors, p;_; and pj ;. It then

continues processing the 2nd, 3rd and 4th pixel of the
second row of the image. In the meantime, py,_; and py 4
can proceed with the calculations of their own image
slices. Fig. 8 depicts the sample image of Fig. 1 after the
first third of the dithering process.

When reading pixels directly from memory, the main
implementation difficulty is to have each processor p; in
the linear array know which pixel to process at every step
and where to send the resulting error fractions. It turns out
that processor py., to the right of the starting processor

pj at time t>=2a+1 is ready and processes pixels

(1, 30+1), (1, 3a+1+1) and (7, 3a+1+2), while processor
Dj_q to the left of p. at time 7 >=2a—1 processes pixels
Qo+, —a+1), Qo+t, —o+7+1) and Qo+t, —o+1+2) . In

[11] we give details on how these scheduling times are
calculated.
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Fig. 8. A snapshot of our algorithm dithering the image of Fig. 1. The
upper left comer of the image has been dithered, while the remaining
image continues to being fed into the processor array.

3.1 Performance

In parallelizing [3], we require the width w of the slanted
area to be at least 3 for efficiency. For widths of 1 or 2
pixels, each processor communicates with both of its
neighbors at every step. Since communication in parallel
processing systems is in general several times more
expensive than computation, we save time by having each
processor communicate with only one of its neighbors at
each step. In fact, depending on the communication-to-
computation ratio of the particular linear array used, it is
worth assigning a wider slanted area to each processor to
compensate for the discrepancy. For p >/ (n+m)/3 [ each
processor evaluates a total of at most 3n pixels, where n
is the number of rows in the image. In the more realistic
case that p <[ (n+m)/3 | the image is divided in p wider
slanted areas, each of width w = (n+m)/p

Given a large enough p, the running time of the
algorithm is T(n, m) = 2n+m-2 = 2(n-1)+m which is
asymptotically smaller than 9nm that the sequential
algorithm requires. For smaller p, the running time is 7¢n,
m) = (w-1)(n-1)+m In the latter case, not every step
required communication. In fact, there are m(w-3) fewer
communication steps than calculation steps.

Different error-diffusion matrices may require a
different minimal width w. For example, the elaborate
error-diffusion matrices of Jarvis, Judice and Ninke [12]
and of Stucki [13] (Fig. 9) require that the width of the
image slice be at least 4. To see that, observe that, since a
pixel sends part of the dithering error to a pixel at distance
2 to the lower left, this pixel is not ready for dithering
until after the current processing step. Therefore, the
scheduling steps have to be modified as in Fig 10.




Fig. 9 Error diffusion matrices of [12] (top) and [13] (bottom).

The [12] and [13] dithering matrices produces are even
more computationally expensive than [3] and [4],
requiring 24-nm floating point multiplications and
memory accesses for an » by m image. By comparison,
our technique has parallel running time of T(n, m) =
3n+m-3 when w=4.
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Fig. 10. Dithering scheduling times for [12] and [13], where a
decreased dithering slope is needed to maintain scheduling invariant 1.

4 Implementations

4.1 Sliding the Processor Array

The communication mechanisms of the MasPar vary
considerably in performance. Given that the calculations
performed at every pixel are short compared to the 1/O
communication time, we decided to use the whole
machine as a buffer for holding the image. After pre-
loading the image, however, we only activate for
processing a small subset of no more than 32 PE’s as a

linear array. This way, we only pay for the X-net
interprocessor communication during execution. Assume
for simplicity that the image size matches the processor
array size. We first load the image onto the processor
array in bulk, so that processor p; 7 holds pixel (ij). In

practice, each processor will hold a larger chunk of the
image slice. Parallel computers often have direct parallel
1/O subsystems equipped with disk arrays that facilitate
this step.

The implementation proceeds as follows: For I <= r
<= n+m a slanted diagonal of the processor array is
activated, according to scheduling of Fig. 6. For example,
Fig. 11 shows the processors of an 8-by-8 processor array
being activated at the seventh step.

Fig. 11. Dithering an image that has already been loaded onto the
processor array: highlighted are the four processors activated during the
seventh step of the algorithm.

At every step », processor p; 7 for which j = r-2(¢i-1)
activates itself, processes its local pixel and sends the
error fractions to the appropriate four neighboring
processors; then, it deactivates itself. The relation
between i, j and r guarantees that the right subset of
processors is activated at every step. In the next step,
another subset of processors will be activated and
continue the dithering.

FS runtimes: varying image size
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Fig. 12. Running times for the parallel (Tpar) and sequential (Tseq)
implementation of dithering using the [3] matrix.
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Fig. 12 shows the timing results of the Floyd-Steinberg
[3] error-diffusion matrix for the sequential and parallel
implementations, when we vary the image size up to 1KB
by 1KB. Observe that the sequential algorithm exhibits a
quadratic behavior (line fitting reveals the quadratic
0.0003n°+o(n)) while the parallel algorithm shows the
behavior of a power sub-quadratic function (a line fitting
of 0.0001n'"+o(n)). This was expected, since for constant
p each processor is dithering an area of size wm. Thus, the
theoretical prediction is verified.

FS Speedup

o 200 400 800 800 1000

Fig. 13. Speedup increases logarithmically and is expected to flatten out
at 16, which is the achievable speedup.

The observed maximum speedup for square images of
up to IMB, is 10.67 (Fig. 13). Forward projections
indicate that the speedup reaching 16 with images of
about 25MB. We note that the expected maximum actual
speedup when using 32 processors is 16. To see this
notice that not all processors are expected to be active all
the time while dithering an image »n by m. In fact, if all
processors were to be doing useful work during the run of
the algorithm, they would dither an image of size n by
m+n-1. Thus, approximately p/2 is the maximum actual
efficiency. The observed efficiency (Fig. 13) is 66% of
the actual. The loss of efficiency can be explained by the
cost of the MasPar’s X-net communication. The trend of
Fig. 13 indicated that higher speedup is possible for larger
size array, but we run out of local PE memory before we
were able to verify it.

Our timing results for the error-diffusion matrices of
Jarvis et. al. [12] and Stucki [13] follow a similar pattern
as with Floyd-Steinberg [3]. However, Fan’s modified
matrix [4] performs slightly better than [3], which is
rather surprising. The explanation for this behavior comes
from the following fact: Fan’s matrix does not require an
error to be sent to the SW neighbor of a pixel, thus
allowing for a simpler scheduling of processor slices
composed of vertical (rather than slanted) slices. This
simplifies slightly the coding that selects the active subset
of processors allowing for a marginal improvement.

4.2 Manipulating the Image

In this section we present another implementation idea
that was enabled by the machine at hand. The MasPar
machine comes with programming primitives that allow
them to activate lines or rows or processors at a time and
to use pipelining to speed up such communication. These
primitives can only be applied to rows and columns of
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PEs, not to slanted diagonals of processors. This
observation gives rise to the following technique. The
image is read inside the processor array in a slanted
fashion that facilitates inter processor communication. For
example, a 9 by 7 image is read into a 5 by 7 processor
array as in Fig. 14:

3| 1]2]3
516|4|5]|6|4]5]|6
gl 7| 8)9f7]|8|9ff7]18]97]|8]¢9
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Fig. 14. Image preloaded slanted into the processor array.

In this example, each processor is holding three pixels.
If fewer processors are available, each processor can hold
a larger block of pixels. Observe that the image is slanted
in space in a way that is closely related to the processing
time delays of the algorithm in the previous section. This
is not surprising, since the same algorithm is being used
in both cases, but the implementation differs to take
advantage of the machine architecture.

The slanted image requires that the errors from the
leftmost, middle and rightmost pixels be propagated to
their neighbors, as in Fig. 15:
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Fig. 15. Error propagation of the manipulated image.

To see that Fig. 15 represents the correct error
propagation, we show the steps that lead to the slanted
image. Assume that the image was imported in the upper-
right corner of the processor array, and the errors were
propagates as in Fig. 3. We follow the slanting movement
of three pixels that appear, one on the left hand side of a



stripe, a second on the right hand side of a stripe and a
third on the middle of a stripe.

Step 1: Move row i of the matrix 7 positions to the left
(The 0-th row does not move) aligning pixel stripes
processed by the same processor:

Step 2: Assign the starting processor 1D k. Stripe of
processor with ID j > k moves south by ; locations; Stripe
of processor with ID j < k moves north by j locations:

We have now achieved our objective of slanting the
image and we see that the errors are propagated as in Fig.
14. Note that in every case each processor communicates
with nearest neighbors. At the time of this manuscript, no
performance results of this implementation were available
but it was expected to do slightly better than the
implementation of section 4.1.

5 Conclusion

In this paper we have presented implementations of a
technique for parallelizing error-diffusion algorithms. In
particular, we have described and tested implementations
on parallel computers that contain linear arrays and two-
dimensional meshes of processing elements. We have
found that the implementation supports the theory. As a
further step, we plan to implement the parallel algorithms
on other, state-of-the-art architectures. We expect that this
research could lead to the development of faster printers
and large high-resolution monitors.
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