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Abstract

In this paper we describe methods for mitigating the
degradation in performance caused by high latencies in
parallel and distributed networks. Our approach is sim-
ilar in spirit to the “complementary slackness” method
of latency hiding, but has the advantage that the slack-
ness does not need to be provided by the programmer,
and that large slowdowns are not needed in order to hide
the latency. Our approach is also similar in spirit to the
latency hiding methods of [2], but is not restricted to
memoryless dataflow types of programs.

Most of our analysis is centered on the simulation of
unit-delay rings on networks of workstations (NOWs)
with arbitrary delays on the links. For example, given
any collection of operations (including updates of large
local memories or databases) that runs in ¢ steps on a
ring of n workstations with unit link delays, we show
how to perform the same collection of operations in
O(t log® n) steps on any connected, bounded-degree net-
work of n/log” n workstations for which the averagelink
delay is constant. (Here we assume that the bandwidth
available on the NOW links is O(log n) times the band-
width available on the ring links. An extra factor of
log n appears in the slowdown without this assumption.)
The result makes non-trivial use of redundant compu-
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tation, which is required to avoid a slowdown that is
proportional to the mazimum link delay. The increase
in memory and computational load on each workstation
needed for the redundant computation is at most O(1).
In the case where the average latency in the network of
workstations (dave) is not constant, then the slowdown
needed for the simulation degrades by an additional fac-
tor of O(+/dave). This is still far superior to a slowdown
of ©(dmax) which can occur without redundant compu-
tation.

As a consequence of our work on rings, we can also
derive emulations of a wide variety of other unit-delay
network architectures on a NOW with high-latency links.
For example, we show how to emulate an N-node 2-
dimensional array with unit delays, using slowdown s =
O(\/Nlogg’ N + N/ log® N+/dave) on any connected
bounded-degree network of O(N/s) workstations with
averagelink delay dave. The emulation is work-preserving
and the slowdown is close to optimal for many configu-
rations of the network of workstations.

We also prove lower bounds that establish limits on
the degree to which the high latency links can be mit-
igated. These bounds demonstrate that it is easier to
overcome latencies in dataflow types of computations
than in computations that require access to large local
databases.

1 Introduction

Most papers describing algorithms for parallel or dis-
tributed computation assume a model of computation
in which all the edges have unit delay. Such a model
is nice to work with and it is realistic for some parallel
machines, but not for most. In reality, there are of-
ten substantial delays associated with some or all of the
links. These delays can be caused by long wires, links
that are realized by paths that go through one or more
intermediate switches, wires that are required to go off-
chip or off-board, communication overheads, and/or by
the method which is used to prepare a packet for en-
try into the network. Link delays are an even greater
concern for distributed machines and networks of work-
stations (NOWs). This is because some latencies can
be very high (due to the fact that some processors can
be far apart physically) and also because the variation
among latencies can be high (since some processors may
be very close or even part of the same tightly-coupled
parallel machine).



Since communication latency is an important fac-
tor in the performance of a parallel or distributed al-
gorithm, several methods have been devised in an at-
tempt to compensate for latency. The simplest of these
methods is to slow down the computation to the point
where the latency is accommodated. This approach is
most commonly used at the circuit level, where the clock
speed is set to be slow enough so that all of the data
has time to reach its destination before the next step
begins. This means that the circuit needs to be slowed
down to accommodate the highest latency. Such an ap-
proach is clearly less than desirable in the context of a
NOW with high-latency links.

An alternative approach is to organize the network
in a hierarchical fashion so that the latencies are con-
sistent with the hierarchy. For example, in the CM-5
[10, 1] the highest latency links are segregated into the
top levels of the network hierarchy. This type of archi-
tecture works well for applications in which most of the
computation is local since local computation can pro-
ceed using the low-level low-latency links. Only rarely,
it is hoped, would the high latency links be needed.
Thus, only certain steps of the computation would be
slow. Unfortunately, this approach is not suitable for
scenarios where the network is unstructured (which is
often the case for a NOW) or when the underlying ap-
plication requires frequent communications through the
high-level links.

Redundant computation is another approach that
has been used in the past [9, 5, 7] to hide the effects of
latency. Here the idea is to avoid latency by recomput-
ing data locally instead of waiting to receive it through
a high-latency link.

Probably the most generally applicable method of
hiding latency is the approach known as complementary
slackness. The idea behind this approach is to load each
processor with enough work so that it stays productive
while waiting for data to be supplied by the network.
There are many implementations and incarnations of
this method. For example, each processor in the CRAY
YMP C-90 keeps busy by operating on a pipeline of
128 64-bit words. Processors on the HEP machine [13]
swapped between unrelated threads while waiting for
the data. The CM-1 and CM-2 were designed to emu-
late much larger virtual machines so that a single pro-
cessor would perform the computation of many virtual
processors [14, 4]. The technique also forms a critical
component of Valiant’s bulk synchronous model of par-
allel computing [15, 16] and it has been employed in
several algorithms papers [11, 7, 3, 12, 6].

Unfortunately, in all of the preceding examples, it
is incumbent on the programmer to provide the slack-
ness or pipelining needed or to determine what part of
the computation must be redundantly duplicated and
by which processors to overcome the latencies in the
network. FEven in the scenario where a large virtual
network is being simulated on a small parallel machine,
it is incumbent on the programmer to find the paral-
lelism necessary to efficiently implement the algorithm
on a (potentially very large) virtual network.

Our goal in this paper is to devise automatic meth-
ods for hiding latency. Our approach falls within the
broad class of methods based on complementary slack-
ness, but does not require the programmer to provide
slackness, pipelines, or greater parallelism in order to
hide the latency. Rather, our methods attempt to find

the slackness automatically. By automatically finding
the slackness, we hope to allow the programmer to as-
sume that there are uniform delays on each link of the
communication network, thereby easing the task of writ-
ing code. Moreover, our methods will enable us to au-
tomatically convert a program that was written for a
well-structured unit-delay machine into a program that
will run with minimal degradation in performance on a
network with potentially large and variable latencies, at
least for certain classes of networks.

In a previous paper [2], we devised automatic meth-
ods for hiding latency in a dataflow model of computa-
tion. In the dataflow model, the computation performed
by a processor p at step t depends only on the results of
the computations performed by p and its neighbors at
the preceding step. This model is sufficiently general so
as to be applicable for many algorithms (such as matrix
operations, Fourier transforms, etc.) but it does not in-
clude applications where the computation performed by
a processor depends on the state of a potentially large
local memory or database. Nor does it contemplate a
situation where part of the computation performed by
a processor is to update its local memory. These limi-
tations could be critical in some applications involving
a network of workstations.

In this paper we devise automatic methods for hid-
ing latency for a more general model of computation
in which each processor p has a potentially large local
memory that may be accessed and updated by p dur-
ing each step. We refer to the local memory of each
processor as the database for the processor, and to the
model of computation as the database model. We as-
sume that the initial contents of each database can be
copied before the computation begins (thereby allow-
ing replicated computations), but that the large size of
a database makes it impractical to transmit a copy of
a database through the network during the computa-
tion. It is possible to pass copies of updates performed
on a database through the network, however. In gen-
eral, we assume that a wire with delay d can transmit
Plog n “packets” of data, each containing an update, in
d+ P -1 steps.1

Simulation in a database model is more difficult than
in a dataflow model. Intuitively, this is because compu-
tation in a dataflow model is processor independent, and
hence can be done by any processor with the informa-
tion of the previous computation. The database model
is more restricted, where computation can only be done
by the processors with the right databases. One cannot
afford to pass large databases across the links with lim-
ited bandwidth, because this will cause high slowdown.
One also cannot afford to have each processor copy all
the databases. This is because memory is expensive
and it is difficult to keep every copy of the databases
updated.

We begin by devising methods for hiding latency
in a ring architecture. In particular, we show how to
simulate a guest ring G with unit-delay links on an n-
processor host ring H with arbitrary delays on the links.
(Actually, our results are described in terms of linear ar-
rays, but since a linear array can simulate a ring with
slowdown 2 [8], the distinction is not important.) A

Tour algorithm assumes that the bandwidth available on the
host links is logn times larger than the bandwidth on the guest
links. This assumption can be removed if we pay an extra factor
of logn in the slowdown.



priore, it would seem that any such simulation would
require slowdown dmax, where dmax 1s the largest delay
in H. (Indeed, this is the delay that would be incurred
by most prior approaches, although it should be pointed
out that the prior approaches could preserve efficiency
by using only n/dmax of the processors of H to carry
out the simulation.) The result in this paper not only
preserves efficiency but also accomplishes a slowdown
of O(\/dave log3 n), where H is an n-processor host ring
with an average delay of dave and G is a (v/daven log® n)-
processor guest ring. The slowdown is particularly im-
pressive when dmax > Vdave log3 n, which is often the
case in NOWs. More generally, a similar result holds
whenever H is an arbitrary connected bounded-degree
fixed-connection network. Our simulation also achieves
a minimum load (up to a constant factor), i.e. each host
processor only has copies of O(\/dave log3 n) databases.

Our method makes substantial use of redundant com-
putation. In fact, we prove that redundant computation
is necessary to hide latency for generic computations in
the database model. This represents a substantial dif-
ference from the work in [2] for the dataflow model, for
which redundant computation is apparently not useful
in hiding latency.

As a consequence of our work on rings, we can also
derive efficient emulations of a wide variety of other
unit-delay network architectures on a NOW with high-
latency links. For example, we show how to emulate
an N-node 2-dimensional array with unit delays, using
slowdown s = O(\/Nlogg’ N4 N/* log® N+/dave) on any
connected bounded-degree network of O(N/s) worksta-
tions with average link delay dave. The emulation is
work-preserving and the slowdown is close to optimal
for many configurations of the NOW.

We also prove lower bounds that establish limits on
the degree to which the high latency links can be miti-
gated. When each database has only one copy, we show
that the slowdown can be as much as dmax even if dave
is a constant. When each database has at most two
copies and the host processors have a constant load, we
give an example of a host whose average delay is a con-
stant, but for which the slowdown has a lower bound
of Q(log n). These bounds demonstrate that it is easier
to overcome latencies in dataflow types of computations
than in computations that require access to large local
databases.

The remainder of the paper is divided into sections
as follows. In section 2 we give a detailed description of
the database model. In section 3, we describe latency
hiding methods for ring computations. These results are
generalized to other kinds of computations and NOWs
in sections 4 and 5. In section 6 we discuss the lower
bounds on slowdown when each database is allowed to
have at most two copies. We conclude with several open
questions in section 7.

2 The Model

We consider the problem of simulating an m-processor
linear array GG with unit-delay links on an n-processor
linear array H with arbitrary delays on its links. We re-
fer to G as the guestand H as the host. Let g1,..., gm be
the processors of G. Each processor g; owns a database
b;. Databases are consulted before each computation
and updated after each computation. Pebble (i,t) repre-

sents the computation by processor g; at time step ¢. In
particular, at time ¢, processor g; consults its database
b; and performs a computation based on b; and pebbles
(1—1,t—1), (¢, —1) and (1 +1,t—1). (See Figure 1.)
The computation is done in one time step and the result
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Figure 1: The computation of pebbles.

is recorded in pebble (i,t). Processor g; then updates
b;.

In a stmulation of G, H performs the same step-by-
step computations as G when G is used in a general pur-
pose way, i.e. H computes every pebble created by G.
In the simulation, a pebble not only records the result
of a computation but also the changes to the database
incurred by this computation. Notice that a pebble does
not contain a snapshot of the whole database but only
the changes incurred by one computation. A pebble
therefore has small size. We assume that the band-
width available on the links of the host network H is
log n times larger than the bandwidth on the links of
the guest network G. (This assumption can be removed
by paying an extra factor of logn in the slowdown of
our simulations.) Hence, P pebbles can be passed along
a d-delay link in d + [logn] — 1 steps. Databases can
be arbitrarily big and thus cannot be passed along the
links.

Before the simulation starts, processors pi, ..., pn of
H decide which databases to copy. Suppose processor
p of H copies databases b; and b;. Since databases are
too big to be passed along the links, p only has access
to databases b; and b; and hence p can only compute
pebbles in columns ¢ and j (i.e. pebbles of the form (i, t)
and (y,t) for ¢t > 1) during the simulation. Moreover, if
both processors p and ¢ decide to copy b;, then p and ¢
each has a copy of b;, and p and ¢ can only look up and
update its own copy. We say that processor p knows
a pebble if p either computes this pebble or receives it
from some other processor. If p is to compute pebble
(¢,t) then p must know pebbles (i — 1,¢t — 1), (¢, — 1)
and (¢4 1,¢—1) and have an updated copy of b;. Since
databases cannot be passed along the links, p must also
know all the pebbles (i,t'), for 1 < ¢’ < ¢, in order to
update the changes in b; incurred by these operations.

The load is defined to be the maximum number of
databases that a processor of H copies. An algorithm
achieves minimum load if the load is O(m/n).




3 Hiding Latency in a Linear Array

In this section we present algorithm OVERLAP which
simulates guest array G by host array H. Section 3.1
describes a process of killing “useless” processors of H.
A processor of H is killed if it is surrounded by too much
delay or if most of its neighbors are killed. Only live pro-
cessors are used to carry out the simulation. Section 3.1
also considers the “computing power” of subarrays of
H. In particular, labels are given to subarrays in order
to indicate the number of columns of pebbles a subar-
ray can simulate. Section 3.2 deals with the details of
OVERLAP. Algorithm OVERLAP first assigns databases
to live processors of H according to the labels and then
carries out a simulation using redundant computation.
The slowdown achieved is O(dave log® n), where dave is
the average delay of H and n is the size of H. The algo-
rithm is made efficient in section 3.3, and the slowdown
is improved to O(v/dave log® n) in section 3.4.

3.1 Killing Processors and Labeling the Tree

We create a binary tree, T, to represent the host array
H. The root of T represents the entire array. The left
and right children of the root represent the left and right
halves of the array respectively. In general, a node at
depth £ in the tree corresponds to a subarray of H which
contains i processors. We refer to this subarray as a
depth k interval. (See Figure 2.) Tree T has height
logn. The leaves of T' correspond to single processors
of H.

We now describe a procedure which kills “useless”
processors of H. Processor p is killed if it is surrounded
by too high delays or too few live processors. This is
because the benefit to be gained by using p’s computing
power 1s nullified by the amount of time that it takes
to communicate with p. For every depth k, we define
Dy = (%da\,e)(clog n) to be the “killing delay” and
my = ——— to be the “overlap size”. The constant c
c2®logn
is specified later.

Stage 1: Killing processors that are surrounded
by high delays. It can easily be seen that each proces-
sor p in H is contained in exactly one depth k interval.
Call this interval 7. We kill processor p if for any &,
the total delay in interval sz is more than Dj.

Lemma 1 At most n/c processors are killed.

Proof: The total delay in the array H is ndave.
Hence the number of depth k intervals with delay more
than Dy is at most ndave/Dx. Each depth k interval
contains = processors and so the total number of pro-
cessors killed at depth k is at most Hence the

total number of processors killed is at most n/c. |

clogn

Stage 2: Labeling the tree and killing processors
that are surrounded by few live processors. We
carry out a labeling of tree T' to determine if an interval
has too few live processors. We first remove from T any
node whose corresponding interval has no live proces-
sors. A label is attached to each of the remaining nodes
as described below.

From now on we assume that v is a depth & node
which has label  and corresponds to interval I. If v has
two children, then we assume that they are v; and wva,
which have labels z1 and z2 and correspond to intervals

I and I> respectively. If v has one child, then we assume
that it is o1, which has label z; and corresponds to
interval I;. (See Figure 2.)

e Each leaf of T', which corresponds to a live proces-
sor, is given the label 1.

e The remaining nodes of 7" are labeled inductively.
Consider a depth & node, v, which has not been
removed. If v has two children in T, we give v the
label 1 4+ 2 — my. If v has one child we give v

the label z1.

Lemma 2 The label on the root of T is at least (1 —

2/c)n.

Proof: From Lemma 1 at least (1 — 1/c¢)n of the
leaves are given label 1. Hence, the label of the root is
at least (1 —1/c)n — Zdepth L2Pmg = (1-2/c)n. O

An interval is not useful if most of its processors have
been killed and so we now carry out a second round of
killing. If a depth k& node has a label smaller than 2my,
we kill all the processors in its corresponding interval.
We also remove from 7' any node whose corresponding
interval has no live processors. The remaining nodes in
tree T' have the following properties.

Lemma 3 Suppose v is a remaining node in T, which
has depth k (0 < k <logn) and label =, then

1. ¢ > 2myg;

2. v has at least one child;

8. v =x1+ 22— mi if v has two remaining children;
4. x < x1 if v has one remaining child.

Proof: Property 1 is immediate. Suppose v has no
child removed due to stage 2 killing, then the labeling
rule implies that & = z1 422 —my if v has two remaining
children and that £ = z; if v has one remaining child.
Otherwise assume v has child v> removed. Since v is
remaining, the killing rule implies that > 2mj; and
zo < 2myg41. Therefore, v must have another child v,

labeled zi1, such that 1 = ¢ — 2 + mx > x. Since
1 > 2my41 and v is remaining, node v1 is not removed.
Hence, properties 2, 3 and 4 follow. a

Stage 3: Relabeling the tree. We now relabel tree
T as follows. The labels are to indicate the computing
power of the corresponding intervals.

e Each leaf of T, which corresponds to a processor
that is not killed in stage 1 and 2, is given the
label 1.

e The remaining nodes of T' are labeled inductively
in a similar manner to stage 2. Consider a depth
k node, v, which has not been removed. If v has
two children, we give v the label 1 + 2 — mgy1.
(Notice that the label would have been z1+22—my
in stage 2.) If v has one child, we give v the label
Tr1.

By Lemma 3 and the relabeling rule, the stage 3 labels
on the remaining nodes are at least as big as the stage
2 labels. Hence,
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Figure 2: Nodes v, v1 and v2 have labels z, #1 and z> and correspond to intervals I, I1 and I» respectively. Live
processors of H and remaining nodes of 7' are represented by black circles; killed processors of H and the nodes
removed from T' are represented by white circles. Arrows indicate the endpoints of the root interval.

Lemma 4 After stage 3 the label on the root is at least
(1 —2/c)n, and the label on a remaining depth k node
is at least 2my .

We use label z to indicate the computing power of I.
That is, the corresponding interval [/ can simulate x
columns of pebbles.

3.2 The Simulation

For clarity of presentation, we first assume that G has
n' processors, where n’ is the label on the root of 7" and
the number of live processors in H. Lemma 4 implies
that n' is a constant fraction of n. We also assume the
existence of pebbles (0,¢) and (n' + 1,¢), for all ¢ > 1,
which are known to H at time step 0. This ensures
that each pebble computed by G is dependent on three
pebbles.

Assigning databases

Algorithm OVERLAP first assigns databases to the live
processors of H such that the load is one. That is, each
live processor of H is assigned one database. Databases
bi,...,b, are assigned to the live processors of H, i.e.
the depth 0 interval. We assume inductively that OVER-
LAP assigns databases b;y1, ..., biys to [I. (Recall that
node v corresponds to interval I by assumption.) If v,
is the only child of v, then OVERLAP assigns databases
bit1,...,bixz to I1. If v1 and v are two children of v,
then £ = z1 4+ 2 — miy41 by the relabeling rule. OVER-
LAP assigns databases bit1,...,biys, tointerval Iy and
bite—zy41, ---, biys to Io. Notice that there are mp41
databases, namely biyz—wy41,...,bitz,, which are as-
signed to both I1 and 5. It is easy to see that at the leaf
level each live processor of H is assigned one database,
although some databases may be copied more than once.

Simulating G by A

Algorithm OVERLAP makes use of redundant computaion.

In particular, if processor p of H has a copy of database
b; then p computes every pebble (i, t), for t > 1. OVER-
LAP carries out the simulation in a recursive manner.
Suppose a depth k interval 7 is assigned databases b;41,

., biyz. Let Bi be the box of pebbles (j,t), where
1+1<j3<i4+zand 1 <t < mg We shall show in
Theorem 1 how I simulates every pebble in By. This
simulation is done recursively by the depth &k + 1 sub-
interval(s) of I. At the top level of the recursion the

depth 0 interval, i.e. H, simulates every pebble in By.

(Note that By contains all the pebbles created by G in

the first mo = —Z— steps.) OVERLAP then repeats to
gn

simulate the next mo steps of GG.

Let kmax = logn — loglog n — log ¢. We first recur-
sively define a set of values s(tk) for 0 < k < kmax and
1 <t < my. These values correspond to the time by
which a particular row of pebbles is computed.

1. Let s(lk) =1 for k¥ = kmax.
2. Let s(tk) = s(tk+1) + Dy for 1 <t < mpq1.

3. Let s(tk) = s(k) —1—5(,5)

t—mp 4 k+1

for mpp14+1 <t < my.

(Recall that the total delay in a depth k interval is at
most Dy by the killing in stage 1.)

Let the left endpoint of interval I be the leftmost
live processor in I, and the right endpoint be the right-
most live processor in I. (See Figure 2.) For nota-
tional simplicity, we assume that I is the leftmost depth
k interval and is assigned databases b1, ..., by. Let
By ={(,t) :1<:<g2,1<t<mg}. The proof of
the following theorem describes how algorithm OVER-
LAP performs the simulation.

Theorem 1 For 1 <t < my, if the value of the pebbles
(0,t) and (z + 1,t) are known by time step s(tk) by the
left and right endpoints of interval I respectively, then
by time step s(tk) every pebble (1,t) in By is computed
by all the processors in interval I which have a copy of
database b;.

Proof: We proceed by a backwards induction on k.
At level kK = kmax, we have my = 1 and box By has
size x X 1. Since live processors of I have load one, each
processor computes one pebble in Bji. By definition
s(lk) = 1. Hence, the base of the induction holds.

Suppose that the inductive hypothesis is true for k+
1. Notice that the hypothesis can be applied to any
depth &+ 1 interval. Let v be the corresponding depth
k node of I, then v has label z. There are two cases to
consider.

Case 1: Suppose that v has two children v, and vs.
By construction ¢ = z1 + 2 — mg41. Let Brp1 =
{(1,8) 1 <1<z, 1 <t <mpg1}. Let y =21 — mpga
and By ={(5,1):y+1<i<w, 1 <t< mpqr}. Let
column C consist of pebbles (y,t) and column D consist
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Figure 3: The box of pebbles Byi1, which has size x1 X mgy1, is represented by the lower left box with a dashed
boundary, and Blle-l-l is represented by the lower right box with a solid boundary. By is the union of all four boxes.
For interval I to compute every pebble in By, intervals I; and I» recursively compute Bypti1 and Blle-l-l' Once the
bottom half of By is computed the top half is computed in a similar manner.

of pebbles (z1 +1,¢), where 1 < ¢ < my41. Notice that
boxes Brpy1 and Blle-l-l have an overlap of width mgy1,
i.e. the mgy1 columns between C' and D are common
to both Bry1 and Bj,,. (See Figure 3.) Two facts can
easily be deduced from the inductive hypothesis.

e Fact 1 By time step s(tk+1), every pebble (y,t) in

column C' can be computed by I;. Notice that
here there are no conditions on pebbles (0,t) and
(z1+1,¢), for 1 < ¢ < mpyq1. This is true because
C and D are myy41 columns apart and z1 > 2mp41
by Lemma 4. Hence, the pebbles in column C do
not depend on the pebbles (0,¢) and (z1 + 1,1).
(The dotted diagonal lines in Figure 3 show the
dependencies of columns C and D.)

e Fact 2 Let z > 0 be some constant. If the value of
pebbles (0, ¢) and (z1+1,t) are known at time step
s(tk+1) +2z by the left and right endpoints of interval
I respectively, then by time step s(tk+1) + z, every
pebble (i,¢) in Biyq is computed. This is true
because there is no difference between starting the
simulation at time step z and at time step 0.

Similar statements can be made about the box Bj 4
and column ). Now suppose that the value of pebbles
(0,t) and (¢ + 1,t) are known at time step s(tk) by the
left and right endpoints of interval [ respectively. Fact 1
implies that any pebble (y,t) in column C can be com-
puted by I; by time s(tk+1). Since the total delay in
interval I is at most Dy then the left endpoint of inter-
val I can receive the pebble (y,t) (together with any

relevant database changes) by time s(tk+1) + D; which

equals s(tk) (cf. definition 2). Similarly, all of the peb-
bles in column I can be sent to the right endpoint of
interval I; by time s(tk). Notice that if 1 <t < mg41
then s(tk) is greater than s(tk+1) by a constant amount,
namely Dj. Hence, Fact 2 implies that if pebble (i,t)
is in either box Bg41 or By, then (i,) is computed
by time s(tk). (If (¢,t) is in the overlap then it is com-
puted by both intervals by time s(tk).) This implies that
if pebble (z,t) is in the bottom half of box By then it is

: (k)

computed by time s; .
Once the bottom half has been simulated interval [
simulates the top half of box By in a similar manner.

Thus, if pebble (,t) is in the top half, then it is com-
(,f,)c_'_l + s(tli)mk_'_l which equals s(tk) (cf.
definition 3). Hence, given that the value of pebbles
(0,t) and (¢ + 1,¢) are known at time step s(tk) by the
left and right endpoints of interval I all pebbles (¢, ¢) in
(k)

box By are computed by time step s,

puted by time s

Case 2: The case in which v has one child is sim-
pler. Let v; be the child of v. By construction, v;
has label z1 = z. By the induction hypothesis and
Fact 2, if the values of the pebbles (0,¢) and (z1, ), for

1 <t < mgy1, are known at time steps s(tk) by the left
and right endpoints of interval I respectively, then ev-
ery pebble (1,t) in Byy1 (i.e. the bottom half of By) is
computed by I; by time step s(tk). Since intervals I and
I1 have the same live processors (and hence the same
endpoints), the above statement holds for I. Interval [
then computes the top half in the same manner. Thus
if pebble (¢,¢) is in the top half then it is computed by
(,,lfz_'_l + s(tli)mk_'_l which equals s(tk) (cf. definition
3). The inductive step is thus complete. a

Recall that n' is the label of the tree root and n’
is a constant fraction of » by Lemma 4. We have the

following.

time s

Theorem 2 Suppose that guest linear array G has n’
processors and the host linear array H has n processors
and an average delay of dave. Algorithm OVERLAP sim-
ulates G with H such that the load on H s one and the
slowdown is O(dave log® n).

Proof: The load on H follows directly from the
database assignment. The box By contains all of the
pebbles computed by G in the first mg time

n
clogn
steps. The interval Iy corresponding to the rgot con-
tains all the live processors of H. Since pebbles (0, t)
and (n'+1, 1) are available at time step 0 by assumption,
Theorem 1 implies that Io, which is H, computes the

(0)

pebbles in box By by time $,,,. From the definitions we
have the recurrence s(,,lfz = 25(,,?:_:1) + 2Dy. Since Dy =

Zdave)(clog n), it follows that 5(72) = 2ks(,,lf) + 2k Do,
2 ) 8

for £ > 0. Hence, by setting k to kmax we obtain
s(,gl)] < clo"gn + 2¢davenlog® n = O(davenlog2 n), giving

a slowdown of O(dave log® n). O



Remarks. It is clear that the bandwidth required for
the communication between depth k intervals is at most
the bandwidth of G. Hence, our assumption that the
bandwidth on H is at most log n times the bandwidth
on G is enough to ensure that we can carry out all the
communication. This assumption can be removed if we
are willing to pay an extra factor of log n in the slow-
down. Also notice that our simulation works for any
constant ¢ > 2.

3.3 A Work Efficient Algorithm

In this section we modify OVERLAP so that the algo-
rithm is work efficient. Suppose that host network H is
a linear array of n processors with average delay dave,
and guest network G is a linear array of davenlog3 n
processors. The killing of processors in H and the la-
beling of tree T' is carried out exactly as before. If
database b; is assigned to processor p in the previous
discussion, OVERLAP now assigns b(;_1)as41; - - -, iag t0
p, where o is some constant and 8 = dave log® n. Hence,
the load on H is O(dave log® n). Algorithm OVERLAP
performs the simulation recursively as in Theorem 1.
The only difference is that at depth k¥ = kmax each
live processor computes adave log3 n pebbles. There-
fore, s(lk) = adave log n. It is easy to check that the

recurrence s(,,lf) = 2s (,:f:_:l) + 2D and its solution s( )

ok gk (k) » +2kDo remain true. Hence, by setting &k to kmax

we obtam s(ml)] = O(davenlog n), giving a slowdown of

O(dave log® n). We have,

Theorem 3 Suppose that H is an n-processor linear
array with average delay dave and G is a (davenlog3 n)-
processor linear array with unit delay links. Algorithm
OVERLAP achieves a slowdown of O(dave log® n) and a
load of O(dave log® n) when simulating G by H. This

semulation is work efficient.

3.4 Improving the Slowdown

We show below that the slowdown can be improved by a
factor of v/dave. We first consider the special case when
all the delays on the host links are the same.

Theorem 4 Let Hy be an n-processor linear array in

which each link has delay d. Let G be an nv/d proces-

sor linear array in which each link has delay 1. Then

G can be simulated on Hy with slowdown O(\/g) The

semulation is work efficient and has minimum load.

Proof: We show how to simulate \/E steps of G in
5d steps on Hg. For 1 < 3 < n let,
P, = {Pebbles (i,t): 1<t<Vd,
—2Vd+1<i—jVd<Vd},
I = {Pebbles (1,t): 1<t<+d,
1<i—(j—2)Vd <t}
R = {Pebbles (i,t): 1<t</d,
—t4+1<i—(5+1)Vd <0},
T = Pj—(LUR),
A = {Pebbles ((j —2)Vd, t): 1<t <Vd},
B = {Pebbles ((j —1)Vd+1,1): 1<t<Vd},
C = {Pebbles ((jv/4d,1): 1<t <Vd},
D = {Pebbles ((j +1)Vd+1,1): 1<t<+d}.

Pebbles Pj

QU

Iy
N

A B C D
3\d

Figure 4: Simulating \/E steps of G on Hp.

(See Figure 4.) Processor p; of Hy computes all the
pebbles in P;. Notice that this set of pebbles has over-
laps with the pebbles in P;_; and Pji1. First processor
p; computes the pebbles in the trapezium, 7. There
are 2d pebbles in T' and so this takes 2d steps. Pro-
cessor p; then passes column B to processor p;j_1 and
receives column A from p;_;. It also passes column C to
processor p;41 and receives column D from p;41. This
communication takes d + v/d < 2d steps using pipelin-
ing. Processor p; can now compute the pebbles in tri-
angles L and R in d steps. Hence, it takes at most 5d
steps in total for processor p; to compute every pebble
in P;. Once this is done the next \/E time steps can be
simulated in a similar fashion. a

In [2], Q(+/d) is proved to lower bound the slowdown
of simulating G on Hp.

Combining Theorem 2 and 4 we can improve the
slowdown to O(\/dave log3 n) while preserving efficiency
and minimum load. Suppose that the guest G is a lin-
ear array of \/davenlogg’ n processors and the host H is
a linear array of n processors with average delay dave.
We make use of an intermediate network Ho, which is
a linear array of nlog® n processors and has a delay of
dave on every link. Theorem 4 implies that network Ho
can simulate G with a slowdown of O(v/dave). The-
orem 2 implies that H can simulate Ho with a slow-
down of O(log®n). The combined slowdown is thus
O(Vdave log® n). The minimality of the load is immedi-

ate from the database assignment. Therefore,

Theorem 5 An n-processor host linear array of aver-
age delay dave can simulate a (\/davenlogg’ n)-processor
guest linear array with a slowdown of O(v/dave log® n)
and a load of O(\/dave log® n). The simulation is work

efficient and has minimum load.

4 Simulating Linear Arrays on General Networks

Algorithm OVERLAP can be generalized to the simula-
tion of a guest linear array by an arbitrary bounded-
degree fixed-connection host network. The following
fact [8] is used in our argument.

e Fact 3 An n-node linear array can be one-to-one
embedded with dilation 3 in any connected n-node
network.



Let ‘H be the n-node linear array embedded in H by
Fact 3. The proof of Fact 3 [8, page 470] implies that
if H has bounded degree § then H has average delay at

most 8dave. By Theorem 5, ‘H can simulate G with a
slowdown of O(v/dave log® n). Thus,

Theorem 6 A connected bounded-degree n-node net-
work H with average delay dave can simulate a

(Vdavenlog® n)-node linear array G with a slowdown of
O(Vdave log® n) and a load of O(v/dave log® n).

Theorem 6 does not hold when H has unbounded de-
gree. Consider the following example. Let H be a linear
array of «/n cliques, in which each clique contains /n
nodes. If a clique edge has delay 1 and an edge connect-
ing 2 adjacent cliques has delay n, then H has dave < 4.
Suppose m connected cliques are used to simulate n
steps of G. A work argument implies a slowdown of at
least v/n/m. A linear array embedded in these m con-
nected cliques has a total delay of at least mn, which
implies a slowdown of m. Hence, the slowdown is at
least max{/n/m,m} > n'/* = w(v/dave log® n), since

the average delay is a constant.

5 Simulating Other Networks on NOWs

The methods described in sections 3 and 4 can be used
to simulate a variety of other guest network computa-
tions on an arbitrary NOW in a latency-hiding fashion.
As an example of how to apply the methods, we show in
what follows how to simulate an m x m array GG on an
n-node host H. As before, we assume GG has unit delay
on all the links and H has bounded degree and average
delay dave. As discussed in section 4 there exists a lin-
ear array ‘H such that H is embeded one-to-one in H
and that H has average delay O(dave). The simulation
of G on H will be performed by simulating G on H. We
first show how to simulate G on an intermediate linear
array Ho, where Ho has no = nlog3 n processors and
delay dave on all the links.

Theorem 7 Let m = d;éinﬁ/f’
m x m array G on Hy with slowdown O(m + m2/n0).

We can stmulate an

Proof: The simulation depends on the relative sizes
of dave and ng.

Case 1: If dave < no, then m < no. Each of the first m
processors of Hg simulates one column of G; the other
processors of Hg are not used. To simulate one step
of GG, a processor of Hy computes m pebbles and then
communicates with each of its neighbors. This takes
m + daye steps, which is smaller than 2m steps. Hence
the slowdown is O(m).

Case 2: If dave > no, then m > ng. Each proces-
sor of Ho simulates m/ng columns of G. To simulate
m/ng steps of G, each processor of Hy computes at
most (3m/ng)(m/no)m pebbles and then communicates
with each of its neighbors. This takes 3m3/n8 + dave =
4m®/n3 steps. Hence the slowdown when simulating
every m/no steps is O(m2/n0). 0O

Theorem 6 implies that H (and thus H) can simulate
Hy with a slowdown of O(log3 n). Combined with The-
orem 7, the total slowdown is O ((m + m2/n0)log3 n),

which is O(m log®n + m2/n)

Theorem 8 Suppose that H is an n-processor bounded-
degree host network which has average delay dayve, and
G is an m x m guest array, where m = d;ll\/,inwg’

Network H can simulate G with a slowdown of
0] (d;\/,inwg’ log® n + dz\/,inl/g’ log* n) .

log? n.

Stated differently, the slowdown used to simulate an
N-node 2-dimensional array on a NOW with average
delay daye is O(V/Nlog® N + NY/*\/dave log® N). Theo-
rem 8 can be generalized to higher dimensional arrays.
Whether or not these bounds are tight up to a polylog
factor remains an interesting open question.

6 Lower Bounds

In this section we discuss the impact on the slowdown
of the simulation when the number of copies of each
database is bounded and the load is a constant. We
consider the case in which each database can have one
copy and the case in which each database can have at
most two copies. We suspect that our technique can
be generalized to the case in which each database has
a constant number of copies. Notice that although we
are restricting the number of copies of each database to
either one or two, a particular processor in the host can
have a copy of many databases.

For the case in which each database is allowed one
copy we give an example to show that the slowdown can
be dmax. Let G and Hi be n-processor guest and host
linear arrays. The delays on H; are as follows. Every
v/n-th link of H; has a delay of v/n and all other links
have unit delay. If at most /n processors of Hi have
copies of databases, then by a work argument the slow-
down when H; simulates GG is at least \/ﬁ Otherwise,
there exist databases b; and b;41 such that they are as-
signed to processors p and ¢ of Hq respectively and that
the delay between p and g is at least 1/n. Hence, for all
time steps ¢, processor p cannot compute pebble (i,t)
until y/n steps after ¢ computes (1 + 1,¢ — 1), and ¢
cannot compute (¢ + 1,¢) until v/n steps after p com-
putes (i,¢—1). This implies a slowdown of dmax = /7,
whereas dave 1s a constant. (Note that the above argu-
ment makes no assumption on the load.) Thus,

Theorem 9 If each database can have at most one copy,
the slowdown when simulating G by H1 is dmax.

For the case in which each database is allowed at
most two copies we construct a host network Hs whose
average delay is O(1), but for which the slowdown when
H, simulates G is Q(logn). Network H; is made up
of ©(n) processors and the link delays are either 1 or
d, where d = \/n. The following is a recursive con-
struction of Hs in which we define a series of boxes.
(See Figure 5.) We regard H> as a level k box, where
k = log (n/d). Network H; consists of two level k — 1
boxes, which are connected by de/log n edges of delay
1. In general, a level £ box, for 1 < £ < k, consists of
two level £ — 1 boxes, which are connected by 2Zd/log n
edges of delay 1. We say that these 2Zd/log 7 Processors
are in a segment. A level 0 box consists of a single edge
of delay d. Notice that a level £ box contains 2° edges
of delay d and ZZdZ/log n edges of delay 1. Hence, H»
has @(n) processors and constant average delay dave.
The following property of Hs is used in the proof of the
lower bound.
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Figure 5: A level 3 box. Host network Hj is a level k box, where k = log (n/d).

e Fact 4 If processors p and ¢ are in two different
segments [ and J, then the delay between p and
q is at least min{ulogn,vlogn}, where u and v
are the numbers of processors in segments [ and
J respectively. (Notice that u and v have to have
£

ligi'

p and g is at least d > log n.

the form

) In particular, the delay between

Theorem 10 If each database is allowed at most two
copies and the load is a constant ¢, then the slowdown
when simulating G by Hy is Q(logn).

Proof:

There are two cases to consider.

Case 1: There exists some “overlap” in the database as-
signment. In particular, suppose databases b;, b;41,...,
biy; are assigned to processors in segment [ and b;41, .. .,
bits, bitj4+1 are assigned to segment J # I, for some
j > 1. Suppose also that the other copy of bi4;41 is
assigned to J' # I and the other copy of b; is assigned
to I' # J. Notice that pebbles of the form (i + k, ),
for 1 < k < j, can only be computed by processors in
segment [ or J. Since the load is ¢, the number of pro-
cessors in segment I is at least j/c. The same is true for
segment J. We shall find a path of 45 pebbles such that
either a delay of O(jlogn) occurs, or a delay of logn
occurs O(j) times during the simulation. For simplicity
we assume that 7 is even. The case in which 7 is odd is
similar.

We use a triple (¢, ¢, p») to say that processor p, com-
putes pebble (i,1), and we use expressions of the form
(i,t,pz) — (1—1,t—1,py) to indicate dependency. That
is, processor p, receives pebble (1 —1,¢ — 1) from pro-
cessor p, before p, computes (,¢). (Note that p, may
be the same as p,.) Consider the computation of the
following path of 45 pebbles, 7 «— ... — 74;, where 7
is a triple of the form,

(14 k,t—k,pr) for k € A, where
A={k:1<k<j),
(i1+54+1,t—k,px) for k € B, where

(i+7,t—k,pr) fork €C, where

T = for k € D, where
D ={k:2j <k<3j},
for k € F, where

(1—k+35,t—k, px
(i—i—l,t—k,pk

(i,t — k,px) for k € F, where

Notice that the path goes backwards in time, and that
the path zigzags during time steps k, for k € BUC U
E U F. (See Figure 6.)

B={kodd:j<k<2j}

)

)

) : ,
C ={keven:j<k<2j}

)

) , ,
E = {keven: 3j < k <4y},

)

F={kodd:3j <k < 4j}.

’Cl‘

Ty

Figure 6: A path of 45 pebbles, where j is even.

By assumption processors pg, for k € CUFE, can only
belong to segment I or J. If processors pg, for k € CUFE,
do not belong to the same segment, then Fact 4 implies
a delay of (j/c)logn for the communication between
segments I and J. Hence, it takes more than (j/c)logn
steps to compute this path of 45 pebbles.

If processors pg, for k € CUF| all belong to segment
I, then Fact 4 implies a delay of log n in computing every
T, for 3 < k < 23. This is because processors pi, for
k € B, cannot be in segment [ by assumption. Simiarly,
if processors pg, for k € C' U E, all belong to segment J,
then there is a delay of log n in computing every 7, for
37 < k < 4y. Hence, it takes more than jlogn steps to
compute this path of 45 pebbles.

We can repeat this argument for every 4j steps.
Hence the slowdown is Q(logn).

Case 2: There exists no “overlapping” of the databases
as in case 1. Let b;,...,b;, for § > 1, be the longest
sequence of consecutive databases assigned to one seg-
ment. Call this segment I and the sequence of databases
S7. Notice that processors in I do not have a copy of
bi—1. Let J be a segment that is assigned a copy of b;_1,
and S be the sequence of consecutive databases which
includes b;—1 and which all have copies in J. If b; were



a member of Sy, then either the database sequences S
and St would produce the “overlapping” pattern suffi-
cient for case 1 or S; would be longer than S;. This
latter case contradicts with the definition of S;. Hence,
any segment which has a copy of b;_1 cannot have a
copy of b;. This implies that the processors computing
the pebbles in the ( — 1)st and ¢th column are at least
log n delay apart by Fact 4. Therefore, the slowdown is
Q(log n). o

7 Open Questions

This paper leaves many interesting questions unanswered.
Most generally, how much slowdown is needed to effi-
ciently simulate a guest network G with unit delay links
on a host NOW H with arbitrary link delays? In the
case that GG is a ring, we have proved upper and lower
bounds that are existentially tight to within a polylog-
arithmic factor. (For lower bounds, see [2].) It would
be nice to close the gap between the upper and lower
bounds. More importantly, it would be nice to devise
an approximation algorithm that was always within a
polylogarithmic factor of optimal for any NOW. In the
case that GG is a 2-dimensional array, our bounds may
be even less tight (although it may be possible to show
that the bounds are existentially tight up to polyloga-
rithmic factors — we are still investigating this issue).
The case when G and H are both 2-dimensional arrays
is also very intriguing but currently beyond our abilities.
More generally, it would be interesting to consider the
case when G and H have identical network structures
(but different link delays) in order to study the effect of
latencies in isolation.

Ultimately, one is interested in simulating efficiently
types of networks that appear often in the architectures
of parallel computers, like trees, arrays, butterflies and
hypercubes, on a network of workstations with arbitrary
link delays.
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