Parallel Algorithms for Graph Problems

Panagiotis Metaxas

Department of Mathematics
and Computer Science
Dartmouth College



Abstract of the Thesis

In this thesis we examine three problems in graph theory and propose efficient par-
allel algorithms for solving them. We also introduce a number of parallel algorithmic
techniques.

Computing the connected components of an undirected graph G = (V. FE) is
the first problem we examine. We propose an efficient algorithm which runs in
O(log*? |V|) parallel time using |V| + |E| CREW PRAM processors. This result
settles a question that remained unresolved for many years: a connectivity algorithm
for this model with running time o(log®|V|) was a challenge that had thus far eluded
researchers.

The second problem examined is the vertex updating for a minimum spanning tree

of a graph G = (V, F). We give optimal parallel algorithms (as well as linear-time

sequential ones) which run in O(log |V'|) time using 10|gv|‘|/| EREW PRAM processors.
This result is then used in the solution of the multiple updates of a minimum spanning
tree problem. We present an algorithm for this problem which runs in O(log k-log |V|)
parallel time using log%:g'w' EREW PRAM processors, where k is the number of
updates.

In the process of solving these problems, we introduce a number of parallel algo-
rithmic techniques. In particular, we give an algorithm for the pseudotree contraction
problem having running time O(log k), where h is the length of the longest simple
path in the pseudotree. Also, we propose the edge-plugging scheme which solves the
edge-list augmentation problem in constant time without concurrent writing.

Finally, we introduce the growth-control scheduling technique. This technique

balances carefully the work-performed versus progress-made ratio of an algorithm

giving a better running time.



Acknowledgements

Several years ago, Professors Dimitris Papoulias and Haralambos Papageorgiou
persuaded a doubtful and hesitant student of the Athens University to forgo a life
of ease and pleasure and instead to venture onto the icy path of graduate studies.
Perhaps I am acquiring by osmosis Puritan New England blood, but I have discovered
on this path the greatest rewards of my life and have met here a host of remarkable
mentors, friends, and colleagues.

My deepest gratitude goes to my brother Atha and sister Mina Salpoglou, whose
initial support and encouragement helped me survive the early stages of my studies,
far from home, without the comforts of ouzo, winter warmth, old friends, and the
gladdening chaos of Greece.

Of all my New World friends, professors, and colleagues who helped me, I would
like to single out my advisor, Donald B. Johnson, for setting consistently high stan-
dards for my work, for his patience during this long process, his faith in my abilities,
and for his subtle brand of humor. I would also like to thank the members of the
thesis committee: Sam Bent, Jim Driscoll, and Elias Manolakos for their help and
advice throughout the thesis preparation. Special thanks go to Jeff Shallit for his
eagerness to listen to my little problems and to provide help at any time, and to Sam
Bent for passing on to me his love for algorithms.

Regarding the thesis itself, [ want to thank Paul Pritchard, Larry Raab, and Don
Nielsen for their careful reading and their deft and diplomatic suggestions. Don in
particular, despite not having the faintest idea of what my work was about, was a
skillful gardener to the tangled mess of words which grew between the mathematical

symbols like weeds.



During my education, I was fortunate to have great teachers who I would also
like to thank. To those I have already mentioned, I should add Matt Bishop, Scot
Drysdale, Paris Kanellakis, Jeff Vitter, Clifft Walinsky and Stan Zdonik.

Next, [ have been fortunate in having fallen under the influence of a most extraor-
dinary faculty, institution, and group of colleagues. Where I had been told by friends
at other universities to expect professional jealousy, territorial intrigues, and neglect,
I found only generosity and support. The professional and human standards of my
professors, and the support and kindness of my fellow graduate students are difficult
to adequately acknowledge.

And finally, for all the uniqueness of this fine College, the beauty of Vermont and
New Hampshire, and the special friends I have made here, my life would have been
poorer, and this thesis perhaps would have been abandoned for its difficulty — if it

were not for the comfort, friendship, and inspiration of my new wife, Stella Kakavouli.



Contents

1 Introduction
1.1  Why Parallel Computation? . . . . .. . ... ... ... ... ....

1.2 Contents and Organization of the Thesis . . . . . ... ... ... ..

2 Models of Parallel Computation
2.1 The Existing Parallel Models . . . . . .. .. ... ... ... ....
2.2 The PRAM Model . . . . . .. . o
2.2.1  Description . . . . ... e
2.2.2  Handling Concurrent Accesses . . . . . . . ... .. ... ...
2.2.3 Relation Between PRAM Models. . . . .. ... .. ... ...
2.3 Other Parallel Models . . . . . .. .. .. .. L.

2.4 The Class NC' and Efficient PRAM Algorithms . . . . ... ... ..

3 Parallel Algorithmic Techniques
3.1 Parallel vs Sequential Complexity . . . . . . ... ... .. ... ...
3.2 Prefix Sum . ... oL
3.3 Pointer Jumping and List Ranking . . . . .. ... .. ... ... ..
3.4 Tree Contraction . . . . . . .. .. . . .

3.5 Pseudotree Contraction . . . . . . . . . . . .



3.6 Edge-Plugging Scheme . . . . . .. ... o oo 45
Algorithms for Graph Problems 50
4.1 Finding Connected Components . . . . . . .. ... ... ... ... 50
4.1.1 Definition . . . ... Lo 50
4.1.2 History. . . . .. e 52
4.1.3  On the Existing Algorithms . . . . . .. ... .. ... ... 53
4.2 Designing a Connectivity Algorithm . . . . .. ... ... ... ... 56
4.2.1 A General Idea and its Difficulties . . . . . . . ... .. .. .. 56
4.3 Growth-Control Schedule . . . . . . .. ... . 000 60
4.4 An O(1g%*n) Connectivity Algorithm . . . . . ... ... ... ..., 64
4.4.1  Outline of the Algorithm . . . . .. ... ... ... .. .. .. 64
4.4.2 The Algorithm . . . . ... .. .. Lo 69
4.4.3 Correctness and Time Bounds . . . . . ... .. ... ... .. 77
4.5 Updating a Minimum Spanning Tree . . . .. ... .. .. ... ... 85
4.5.1 Introduction . . . . . ... Lo 85
4.5.2  Definition of the Problem . . . . ... ... .. .. ... ... 86
4.5.3 Representation . . . .. .. ... oo 87
4.5.4 Breaking the Cycles . . . . .. ... . .o 0. 88
4.5.5  The Algorithms . . . . ... .. .. o 100
4.5.6 Binarization . . . . . .. .. Lo Lo 103
4.6  On the Edge Updating Problem . . . . .. .. ... .. ... ..... 104
4.7  On the Multiple Vertex Updates Problem . . . . . . . ... ... ... 106
4.7.1 Introduction . . . . . ... Lo 106
4.7.2 Optimality . . . . . .. 106



4.7.3 The algorithm . . . . .. .. Lo

5 Conclusion and Open Problems

5.1 Conclusions . . . . . . . e

5.2 Open Problems . . . . . ... ... o

6 Appendix
6.1 On The SV Algorithm . . . ... ... . o .



List of Figures

2.1

3.1

3.2
3.3
3.4

3.5

3.6
3.7
3.8
3.9

The PRAM model. . . . . . . . . . . . .

Part of the Parallel Graph Complexity. A solution to the problem
appearing in the beginning of an arrow was used as a subroutine, crucial
to a solution of the problem at the end of the arrow. . . . .. .. ..
The prefix sum algorithm. Element x,;, denotes the sum z, 0--- 0 xy.
The pointer jumping technique. . . . . . . .. .. ... ... ... ..
List ranking technique for the EREW PRAM. . . ... .. ... ...
The Shunting Schedule: The first phase. (a) Numbering of the leaves.
(b) Step 2: Shunting of odd numbered left children. (c) Step 3: Shunt-
ing of odd numbered right children. . . . . . ... ..o
A tree and its centroid paths. . . . .. ... oo L
A pseudotree. . . . ...
The usual pointer jumping technique cannot deal with cycles.

Using the CR shortcutting rules the cycle can be reduced to a rooted

tree in logarithmic number of steps. . . . . . . . .. ... 0L

26

29

30

36

33



3.10

3.11

3.12

3.13

3.14

3.15

4.1

Cycle-Reducing rules. (1) and (2) Terminating rules, (3) Bold-bold
rule, (4) Bold-light rule, (5) Light-light rule, (6) Light-Bold rule. Com-

parison between vertices means comparison between their correspond-

Top figure: Case 1 of the Lemma. Bottom Figure: Case 2 of the
Lemma. An asterisk (*) over a pointer means that this pointer could
be either bold or light. . . . . . .. ... .. ... 000
Contraction of the vertices v, u,w. . . . . . . ... ...
Edge lists of nodes v and w before (top) and after the edge plugging
step (bottom). . . . . . ..
The effect of the plugging step execution by all vertices of a pseudotree
but the representative r. On the left is P = (C, D). On the right is
L'(r) after the execution of the plugging step. . . . . ... ... ...
When all the vertices in a cycle execute the plugging step, their edge-
lists are connected with two rings of edges. Observe that the feirst
pointers of the vertices in the cycle end up in the first ring while the
last in the second. This will enable the future root of the cycle to
reverse the effect of its own edge-plugging, thus rejoining the two rings

into a single edge-list. . . . . . . .. ..o

A graph G with three connected components (top) and the pointers p

at the end of the computation (bottom). . .. .. ... .. ... ...



4.2

4.3

4.4

4.5

4.6

4.7

4.8

(Top) the input graph G. (Middle) Vertices have picked their mates.
Dotted are those edges they were not picked by any vertex. An arc
points from a vertex to its mate. Three pseudotrees are shown in this
figure. Note that each pseudotree contains a cycle. (Bottom) The new
components have been identified. Dashed edges are internal edges that
will not help the component grow. . . . . . . . ... ... ... .. ..
(Top) Graph G;_; in the beginning of phase ¢ — 1. To simplify the
figure, we assume that only the doubly marked edges will be used
during phase ¢ — 1 for hooking. (Bottom) Graph G, in the beginning
of phase 7. Vertex v} represents the component {vi™", v5™! 057!}, Edge
(vi,v}) represents the set of edges {(vi™!, v ), (v o5 L L.
Example of two null-edge removal steps. The three null edges in the
middle are being removed from the edge-list. . . . . .. ... ... ..
Assume that, at a later stage j, vertex r becomes the root of the
pseudotree. Then, r can easily reverse its edge-plugging. In the figure,
dotted lines denote the pointers that must be changed. . . . . . . ..
(a) The initial (given) MST, (b) the implicit graph after introducing the
new vertex z along with its weighted edges and (c) the corresponding
weighted tree. . . . . . . . L
Binarization: A node with more than two children is represented by a
right path of unremovable edges. . . . . . . . . ... ... ... ...
Pruning Rules for a Leaf. In this and in following figures, a condi-
tionally included edge is marked with a star (*), an (unconditionally)
included edge is dotted and we keep its weight letter. We erase an

excluded edge along with its weight letter. . . . . . . ... .. .. ..



4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

When v’s siblingisaleaf. . . . .. ... 0000000
Shortcutting Rules: The first two cases. . . . . . . ... .. ... ...
Shortcutting Rules: The third case. In (a) and (b) we show the sim-
plified updating assuming b>d. . . . . .. ..o
Assuming d = min{a,d,b}: By omitting u’s updating we have still
preserved the MaxWE’s of all three kinds of cycles. . . . . .. .. ..
Memory Access Conflicts and how to resolve them. Two (a) and three
(b) processors attempt to update v. . . . ...
Run of the Parallel Algorithm using SHUNTING on the tree of Figure
1. Dotted edges are included in the MST, deleted edges are excluded
from it. (a) In black are the first two processed vertices. (b) Third
step. (¢) Fourth and final step. . . . . .. ... ... L.
The graph G, results from putting together the & solutions. The figure
points out (G.’s bipartite nature. . . . . . ... ..o L
Cyclesin GG,. They are composed of alternative visits to z;’s and to tree
components. Vertices that are connected to z;’s are called e-vertices.
In this picture a cycle of length 4 is shown. . . . . . .. .. .. .. ..
Prunning and Shortcutting Rules for the CADR problem.. . . . . ..
Updating of a MST with 3 new vertices. In the lower part of the figure

the graph G, isshown. . . . . . .. . . oo oL

10

113



From the discussion of Theseus and Minotaur in the Labyrinth:

“... Let’s concentrate on the maze problem. Two nodes can be joined
by a continuous path if and only if they lie in the same connected com-
ponent of the graph.”

“Hmm,” Theseus murmured doubtfully. “What is a connected com-
ponent?”

“It is the set of all nodes that can be reached from a given one by a
continuous path,” the Minotaur recited proudly.

“Ah! Let me see if I've got this right. What you're saying is that
two nodes can be joined by a continuous path if and only if there exists a
continuous path that joins them?”

The Minotaur was deeply offended. “Well, you could put it like that,

but it seems to me you're trivializing an important concept.”

The true story of how Theseus found his way out of the Labyrinth by lan Stewart,
SCIENTIFIC AMERICAN, February 1991, page 137.

11



Chapter 1

Introduction

1.1 Why Parallel Computation?

Almost all computation done during the first forty years of the history of computers
could be called sequential. One of the characteristics of sequential computation is
that it employs one processor to solve some problem.

However, due to the limit the speed of light imposes on us, it seems extremely un-
likely that we can build uni-processor computers that can achieve performance signifi-
cantly higher than 1 GFLOPS (Giga FLoating-point Operations Per Second)[Den86].
If you consider the always-increasing human appetite for computational power (i.e.
for solving larger problems faster), a need for an alternative route to sequential com-
putation becomes apparent. Parallel computation seems the most promising (if not
the only) alternative.

Parallel computation is defined as the practice of employing a large number of
cooperating processors, communicating among themselves to solve large problems
fast, and it is quickly becoming an important area in computer science. It is possible
that during the next ten years this area will have grown so wide and strong that
most of the research conducted in the fields of design and analysis of algorithms,

computer languages, computer applications and computer architectures will be within

12



the context of parallel computation.

New parallel machines with novel architectures are being built every year. The
demand for laying the theoretical foundations and, more generally, understanding the
nature of parallel computation becomes continuously greater. The issues that arise

in this process are many. To mention only a few of them:

e What computational models can provide both realizable architectures and a

basis for abstraction simple enough for understanding parallel computation?
o What sort of problems are naturally suited for large scale parallelization?
o What are the basic techniques for designing parallel algorithms?

While no definite answer to these problems exists today, the efforts of the research
community have provided a better understanding of parallel computation.

In particular, several models have been introduced; a large number of problems
have been identified as amenable to parallel computation, and new techniques have

been developed to help the design of parallel algorithms.

1.2 Contents and Organization of the Thesis

We will introduce some new parallel algorithmic techniques and discuss where they
fall in the existing framework. Then we will show how they can help design algorithms
for some combinatorial optimization problems.

This thesis is organized as follows:

In the next chapter we review the existing models of parallel computation. We
begin with a description of the PRAM model, the parallel model most examined

today, which we describe along with some of its variations. We also briefly describe

13



some other related parallel models, namely the XRAM and the PPM models. Finally,
we introduce the notion of efficient PRAM algorithms and define NC', the class of
problems having fast parallel solutions.

In Chapter 3 we discuss some of the existing parallel algorithmic techniques,
namely prefix sum, list ranking and tree contraction. Then we introduce some new
ones: the pseudotree contraction and the edge-plugging scheme. These techniques
will be essential in the development of the graph algorithms in the following chapter.

In Chapter 4 we discuss some parallel algorithms. We begin by reviewing the
existing algorithms for computing the connected components of a graph. Then we
introduce the growth-control schedule which we apply to create a connectivity algo-
rithm for the CREW PRAM model. This algorithm works in O(1g**|V|) parallel
time using |V|+ | E| processors. An algorithm for updating a minimum spanning tree
follows, and this result is used to derive an algorithm for the multiple parallel updates
of a minimum spanning tree.

In the final chapter we give the conclusions and discuss some of the open problems

arising from our work.

14



Chapter 2

Models of Parallel Computation

2.1 The Existing Parallel Models

Several models for parallel computation have been developed in the last fifteen years.
One can distinguish three major categories into which these models fall:

In the first category we have the VLSI models, which are closest to today’s tech-
nological limits. Systolic arrays are examples of these models.

The second category contains models that employ a large number of processors
communicating using a fixed interconnection network. Hypercube, cycle-connected-
cube, shuffle-exchange and butterfly networks fall in this category.

In the final and most abstract category are models that do not restrict the way
processors communicate. The best known model in this category is the parallel ran-
dom access machine (PRAM) model. PRAM is an idealized parallel machine which
was developed as a straightforward generalization of the sequential RAM [CR73]. Tt
first appeared in Fortune and Wyllie’s work [FWT78] and has been used extensively
ever since. Because this is the model that we will be using, we will give a detailed

description of it.

15



SHARED MEMORY

Figure 2.1: The PRAM model.

2.2 The PRAM Model

2.2.1 Description

A PRAM [KR90] uses p identical processors, each one able to perform the usual
computation of a sequential RAM using a finite amount of local memory. The pro-
cessors communicate through some shared global memory (Figure 2.1) to which all
are connected. There is a global clock, and in one time-unit period each processor

can perform the following three steps:
1. Read from one memory location, global or local;
2. Execute a single RAM operation, and
3. Write to one global or local memory location.

If processor p; wants to communicate with processor p;, it can do so by writing to
some memory location from which p; will read. So, the model makes the assumption

that communication between processors takes unit time.

16



2.2.2 Handling Concurrent Accesses

The fact that the communication between the processors in the PRAM is implemented
via accesses to the shared memory makes access conflicts possible. These conflicts
may be caused by concurrent accesses to a memory cell by many processors for either
reading or writing.

Depending on the way the access of the processors to the global memory is handled,

PRAMs are classified as EREW, CREW and CRCW.

EREW In the exclusive-read-exclusive-write (EREW) PRAM model, no conflicts are
permitted for either reading or writing. If, during the execution of a program

on this model, some conflict occurs, the program’s behavior is undefined.

CREW In the concurrent-read-exclusive-write (CREW) PRAM model, simultane-
ous readings by many processors from some memory cell are permitted. How-

ever, if a writing conflict occurs, the behavior of the program is, as before,

undefined.

CRCW Finally, the concurrent-read-concurrent-write (CRCW) PRAM, the strongest
of these models, permits simultaneous accesses for both reading and writing. In
the case of multiple processors trying to write to some memory cell, one must
define which of the processors eventually does the writing. There are several
answers that researchers have given to this question. The most frequent ! of

them are:

! Two more CRCW PRAM models appear sometimes in the literature: The Weak and the Strong
CREW PRAM [EGS88]. In the former, all processors trying to write to a memory location must
write the value zero. No other value is permitted. In the Strong model, the value that is written
in the memory cell is the largest (or equivalently the smallest) of all the values attempting to be
written.

17



COMMON All processors attempting to write to a memory location must
write the same value, so the outcome of some writing is the same, no
matter which processor wins. This is called the COMMON CRCW PRAM

model.

ARBITRARY Any processor may win. No restriction is placed on the values
written. This is called the ARBITRARY CRCW PRAM. Note that, if the
program runs a second time, the outcome of a concurrent writing may be
different. However, the outcome of the computation in every case must be

correct.

PRIORITY In this model we assume that each processor has some unique
value 2d associated with it, the ¢d’s being drawn from a totally ordered set.

In case of a concurrent write, the processor with the lowest ¢d wins. This

is called the PRIORITY CRCW PRAM model.

2.2.3 Relation Between PRAM Models.

Given the plethora of PRAM models, the need for comparison and simulation among

the models arises. Several papers have established that there is a strict hierarchy

in the PRAM models [Eck77, Vis83, Kuc82, CDR86]. In particular, the EREW is

strictly less powerful than the CREW model, which in turn is strictly less powerful

than the CRCW model. The hierarchy is extended inside the CRCW model and their

power follows the presentation order. 2

Obviously, a program written for some model A can run on models stronger than

A in the hierarchy without any change: The program will not use any of the extra

features that the stronger model provide. Eckstein [Eck77] and Vishkin [Vis83] have

2In this hierarchy, Weak is the weakest of the CRCW models and Strong is the strongest of them.

18



shown that any algorithm written for the PRIORITY CRCW model can be simulated
on an EREW model with a slowdown of O(lg P) where P is the number of processors
employed by the algorithm. The slowdown depends on the complexity of sorting on
a EREW PRAM [AKS83, Col88].

Another very important result is the following: Cook, Dwork and Reischuk [CDR86]
proved that computing the OR of n bits requires Q(lgn) time on a CREW PRAM, no
matter how many processors or how much memory is used. The fact that this func-
tion is computed in O(1) time on a COMMON CRCW PRAM proves that concurrent
write is strictly more powerful than exclusive write.

Finally, Ku¢era [Kuc82] showed that each algorithm for the p-processor PRIOR-
ITY CRCW PRAM can be simulated by a COMMON CRCW PRAM with no loss

of parallel time provided that O(p?) processors are available.

2.3 Other Parallel Models

The PPM Model.

The parallel pointer machine (PPM) introduced by Goodrich and Kosaraju [GK89] is
the parallel version of Knuth’s linking automaton [Knu80, page B-295] (called also a
pointer machine), just as the PRAM is the parallel version of RAM. In the PPM the
shared memory can be viewed as a directed graph whose vertices are memory cells,
each cell containing some small number of value and pointer fields.

Access of the common storage by some processor is limited to the locations pointed
to by the processor’s pointer registers. A processor may load a pointer register in one
step and perform the usual arithmetic and comparison operations. However, pointer

arithmetic is not allowed. As in the PRAM, the communication between processors

19



is done via writing to and reading from the shared memory.

We categorize the PPMs according to how the simultaneous accesses to the shared
memory is handled as EREW, CREW and CRCW PPM. Note that these models are
weaker than their PRAM counterparts, because a PRAM can easily simulate a PPM

but not the other way around, since a PPM does not support array indexing.

The XRAM Model.

In [Val90], Valiant proposed the XRAM model as the most realizable parallel model
today. In this model, which can optimally simulate EREW and CRCW PRAMs, a
usual sequential execution step costs one, but a communication-between-processors
step costs g.

An XRAM executes in supersteps. Let’s assume that within a superstep ¢ some
processor executes «; local operations, sends [3; messages and receives 7; messages.

Then we say that the superstep lasted for
a;
ri = —+ B+
g

steps. Let ¢t = max{r;|i € < p >} where < p > is the set of the processors employed.
The run-time of a superstep is [t/ L] - L global operations or time [t/L] - L -g. The
parameter L is usually taken to have value lgp. At the end of L global operations,
all the processors know whether a superstep is complete or not. Within each period,

however, there is no synchronization among the processors.

2.4 The Class NC and Efficient PRAM Algorithms

In the search for fast parallel problems, a lot of attention has been given to class

NC', the class of problems solvable by fast parallel algorithms. A fast algorithm is

20



one which runs in polylogarithmic parallel time using a polynomial number of PRAM
processors. To be more precise we need some definitions.

Let polylog(n) = Ugso(log®n) and polynomial(n) = Upse(n'). A problem is in
class NC'iff it has an algorithm whose time and processor complexity, respectively,

are
t(n) € polylog(n) and
p(n) € polynomial(n).

Consider a problem P whose fastest known sequential algorithm has running time
T(n) for an input of size n. We say that a PRAM algorithm for P performs work

w(n), if it runs in time #(n) using p(n) processors, and

Observe that the definition implies w(n) = Q(T'(n)): if this were not true, then one
could design a sequential algorithm with running time less than 7'(n) by simulating
the steps executed by the parallel algorithm.

We say that a parallel algorithm is optimal iff

t(n) € polylog(n) and

Note that the second condition along with the above observation implies that for
optimal parallel algorithms w(n) = O(7T'(n)). This gives the possibility of creating
new sequential algorithms from optimal parallel ones.

A parallel algorithm is efficient iff

t(n) € polylog(n) and

21



w(n) € T(n)- polylog(n).

The idea behind this definition is that efficient algorithms achieve a high degree of
parallelism while the work they perform is within a polylogarithmic factor of optimal
speed-up.

For practical purposes, an optimal or efficient algorithm is much more useful than
one that simply is in NC. However, membership in NC reveals a problem with
inherent parallelism and has some theoretical interest as a problem with a promising
parallel solution.

Of course, we cannot expect to find NC algorithms for NP — complete problems,
i.e. problems for which no polynomial-time sequential algorithm is known. A question
that naturally arises is, can we find NC' algorithms for all the problemsin P (problems
solvable by polynomial-time sequential algorithms)? This is the well known P = NC
question, and it is widely believed that it has a negative answer [Gol77].

One of the major goals in designing parallel algorithms is to minimize ¢(n) as well
as w(n). It has been demonstrated that it is easier to design algorithms for the more
powerful CRCW PRAM model than for the CREW or EREW PRAM models [KR90].
However, due to the existing simulations between the PRAM models, the notion of
efficient parallel algorithms is robust, in the sense that any efficient algorithm for some
model is still efficient in any weaker model. On the other hand, the notion of optimal

algorithms is not robust in this sense.

22



Chapter 3

Parallel Algorithmic Techniques

3.1 Parallel vs Sequential Complexity

Probably the easiest approach to designing a parallel algorithm is to modify and
parallelize an existing sequential one. If this approach were generally successtul,
the task of designing parallel algorithms would be much easier. Unfortunately, it
seems that very few sequential algorithms are modifiable and even fewer have obvious
or simple parallel modifications. Moreover, problems that have simple sequential
solutions do not necessarily have a practical parallel solution, often do not have an
efficient parallel solution at all!

The most interesting example of the latter case is depth-first search [Tar72], a
technique which has applications in almost every area of computer science. It has
been used as a basis for many problem solutions and, as is well known, it has a sim-
ple linear sequential implementation. However, despite considerable research efforts,
an efficient parallel implementation for this technique has not yet been found. Ag-
garwal, Anderson and Kao [AAKS89] have given the fastest (deterministic) parallel
implementation which runs in O(lg'" n - /n) time using n® processors. Even the best

randomized algorithm runs in O(lg’ n) parallel time using almost n* processors.

!The exact number of processors is n- M M(n), where M M (n) is the sequential time required to

23



Prefix Sum

Deterministic
Coin
b .
[CV86b] Tossing Pseudotree
Contraction
[GPS87] $ Edge-list
List Ranking Augmentation
Coloring
[TV85] Planar graphs IMO91a]
Growth-Control

Euler Tour Schedule
on trees
[ADKPS9] Lowest
ACD. Common Graph
\ Ancestor Connectivity
Tree. [MRS6]
Contraction Euler Tour
on graphs
[IMO1b] o Biconnectivity [JM91c]
Decomposition Strong
Expression Orientation M.LS.
Evaluation
Updating M.S.T.
M.S.T.
s-t numbering
2-edge
Triconnectivity connectivity
Multiple
Updating M.S.T. Planarity test

Figure 3.1: Part of the Parallel Graph Complexity. A solution to the problem ap-
pearing in the beginning of an arrow was used as a subroutine, crucial to a solution
of the problem at the end of the arrow.

24



What is worse, there is some evidence that an efficient parallel algorithm may not
even exist [Rei85].

In the past decade, a considerable body of PRAM algorithms has been devel-
oped for a variety of areas, including graph theory, computational geometry, pattern
matching, etc. In Figure 3.1 we show a small part of the parallel complexity for graph
problems.? As one can see, at the top of the figure are a number of techniques have
been developed so far. These techniques are regarded as basic building blocks in the
design of new parallel algorithms. Prefix sum, list ranking, and tree contraction are
among them. In addition, our research has revealed two more useful techniques: the
pseudotree contraction and the edge-plugging scheme. In the following sections of
this chapter we give a brief overview of the existing techniques and then describe the

new ones in some depth.

3.2 Prefix Sum

We start our discussion on parallel algorithmic techniques with the Prefix Sum, de-

fined as follows:

Problem 1 We are given an assoctative operator o and n elements x4,...,x, drawn
from some domain D placed in an array M. Fori=1,---,n we want to compute the
n prefir sums

1020 :--0X;

Let us use the 37, <;<; ¥; notation to symbolize this sum without restricting the o

operation to addition. We will describe a recursive algorithm for this problem (Figure

multiply two n x n matrices in Strassen’s model. Currently M M (n) = n2375.

2The paper by Vishkin [Vis91] contains more on the relations between the complexities of parallel
problems.

25



S L12|134|T56L78
S 12014216 |L18

M T1 |T12|T3 [T14|T5 |T16|T7 |T18

NN N

M L1112 013 L1415 L1617 | T18

Figure 3.2: The prefix sum algorithm. Element z,, denotes the sum z, 0 --- 0 xy.

3.2), adopted from the one given by Ladner and Fisher [LF80]. This algorithm works

in O(lgn) time using n EREW PRAM processors.

Input: n elements x4, ..., z, placed in memory cells M[1..n], such that M[¢] contains
element z;.
Output: For 7 = 1,...,n each M[s] contains the prefix sum 3>, <; 7;

Prefix Sum Algorithm:

Procedure Prefix Sum(M, 1, n)
for : =1 to n/2 in parallel do
let S[i] « M[2i — 1] o M[2¢]
call Prefix Sum(S, 1, n/2)
for : = 1 to n in parallel do

if even(i) then M[i] « S[i/2]

26



if odd(7) then M[i] « M[i — 1] o M[i]

The running time of this algorithm is given by the recursion t(n) = t(n/2) 4+ 4
with ¢(1) = 0, therefore t(n) = O(lgn). Moreover, no concurrent access to memory
cells occurs. We could easily implement the algorithm by using n processors, each
one assigned to a different element. According to our definition of work this is not
an optimal algorithm, since w(n) = O(nlgn).

However, the work actually performed is w(n) = w(n/2) + O(n) = O(n). This
discrepancy occurs because the naive implementation wastes a lot of processors. There
actually exists a better implementation, based on Brent’s scheduling principle [Bre74],

leading to an optimal algorithm. The idea is as follows:

The Scheduling Principle.

Observe that the computation is done in ¢t = O(lg n) parallel steps with y; primitive
operations in each step. Let Y = 3=, <, y;. If we employed max;{y;} = n processors,
we could execute the j’th step in constant time. On the other hand, if we had

p < max;{y;} processors available, we could simulate the computation of the j’th

Y5
p

parallel step in time (%ﬂ < (%) + 1. Therefore, the total parallel time to simulate

the algorithm would be no more than

> = 2 L= E b= 4

ig<e P P P P
So, we have actually proven the following:
Theorem 1 Suppose that an algorithm is composed of Y primitive computational
operations executed in t parallel steps, and let y;,1 < 5 <1 be the operations execuled
at step j. Then the algorithm can be implemented in O(% + 1) parallel steps using
p < max;{y;} processors.

27



a

Brent’s scheduling principle assumes that allocating processors to operations is
not a problem. This is true when, for 1 < j <t

(a) the y;’s can be computed and

(b) we can group the y; operations in groups of cardinality p.

In fact, processor allocation is straightforward in the prefix sum algorithm. Con-
sider having p < n/lgn processors available. Assign blocks of lgn consecutive array
entries to each processor. The algorithm proceeds in three phases. In the first phase
each processor computes the prefix sum of its own block sequentially. At the end
of this phase, p values remain and their prefix sum is computed using the algorithm
given above in O(lg p) time using p processors. In the last phase, the results found
in the previous phase are distributed and used to compute the prefix sum of each

element in the block sequentially.

3.3 Pointer Jumping and List Ranking

Consider having a linked list of n elements, each one having a pointer p pointing to
the next element in the list, and the last element’s pointer pointing to itself. Pointer-
jumping is a technique, developed by Wyllie [Wyl81], that causes all the elements’

pointers to point at the last element after lgn steps. (Figure 3.3)
Pointer Jumping Algorithm:

for 1 =1to [lgn| do
for each node v in parallel do

p(v) — p(p(v))

28



O o D
0O 0o _a o _o—=0)

00T o o oo o

o o o o o o=20(

Figure 3.3: The pointer jumping technique.

The pointer jumping technique is used very often in parallel algorithms. It was first

used in solving the list-ranking problem, a simple generalization of the prefix sum:

Problem 2 We are given an assoctative operator o and n elements x4, ..., x, drawn
from some domain D. The elements are being placed in the cells of a linked list.
Fach cell v in the list is assumed to have a field val(v) containing x; and a field
p(v) containing a pointer to the cell containing the next element x;4q1 in the list. For
1 =1,...,n we want to compute the n suffix sums
TiOTiq10 0T, = T
i<j<n
A simple algorithm that solves the problem is given below:
Input: A linked list of n elements {x;}.

Output: Each cell v in the list contains the suffix sum 37, <, ;.

29



O ol

TR AT RN
Figure 3.4: List ranking technique for the EREW PRAM.

List Ranking Algorithm:

Procedure List Ranking
for : =1to [lgn]| do
for each cell v in parallel do
val(v) « val(v) o val(p(v))

p(v) — p(p(v))

This simple algorithm works in O(lgn) using n CREW PRAMs. It can be easily
transformed to run on an EREW PRAM by having each cell reaching the last element
copy its contents, thus pretending it is the final node. (Figure 3.4).

However, w(n) = O(nlgn), therefore, it is not optimal. Cole and Vishkin [CV86a]
have given an optimal EREW PRAM algorithm using very elaborate techniques. The
algorithm was later simplified somewhat by Anderson and Miller in [AM91]. The basic

idea comes from the deterministic coin tossing technique developed in [CV86b].

3.4 Tree Contraction

Many problems have input represented as a rooted tree. Probably the best known of

these is the expression tree evaluation problem: Given a tree whose external nodes are

30



numbers and whose internal nodes are operations, compute the expression represented
by the tree. One natural generalization of this problem is the all subexpressions eval-
uation, which asks to compute all the partial subexpressions defined by the internal
nodes.

Both problems have a simple sequential solution based on the depth-first search
technique. However, when working in parallel, things are not quite as simple. The
obvious parallel solution which processes the leaves simultaneously performs well on
a balanced tree but it is very slow when the tree is unbalanced. To get a better
worst-case running time, one would have to process many tree nodes concurrently. A
valid tree-contraction schedule achieves this objective.

Let’s assume that we have defined a number of operations which process the nodes
of the tree as follows: A prune operation removes the leaves of a tree, and a shortcut
operation removes nodes of degree two from the tree. Of course, both operations
may update the parent’s and/or child’s nodes. Moreover, individual prunings and
shortcuttings take O(1) time to be performed.

A walid tree-contraction schedule [JM91b] is one which schedules the nodes of the
binary tree for pruning and shortcutting in such a way that:

(i) when a node is operated upon it has degree one or two, and

(ii) neighboring nodes are not operated upon simultaneously.

We first mention a lower bound for any valid tree-contraction schedule. Any valid
tree-contraction schedule must have length Q(lgn) since at most [n/2] + 1 nodes can
be removed simultaneously.

There are, actually, several valid tree contraction schedules that can achieve this

lower bound. First, Miller and Reif [MR85] proposed such a schedule, which was

31



1-/C</¥5@/;/\\© "
ST SA

(b) 3 (o)

Figure 3.5: The Shunting Schedule: The first phase. (a) Numbering of the leaves.
(b) Step 2: Shunting of odd numbered left children. (c) Step 3: Shunting of odd
numbered right children.

constructed on the fly by an optimal randomized algorithm?®. The problem and its
applications drew the attention of researchers, and soon several optimal deterministic
algorithms were presented [ADKP89, KD88, CV88, GR86, GMT88]. For a discussion
of the history of the parallel tree-contraction algorithms see [KR90].

We should note here that several researchers who have given solutions to other
tree contraction problems * have used a variety of names to denote the “removal of
a leaf” and “removal of a node with degree two” operations. Rake has been used as

a synonym for prune, compress and by-pass as synonyms for shortcut. Finally, shunt

3A newer version of their paper was published in [MR89]

4We mention some of these tree problems: Minimum vertex cover [CV88], maximum indepen-
dent set, maximum matching [He86], algebraic tree computation, problems on cographs [ADKP89],
partitioning weighted tree [KD88], etc.

32



and rake have been used to denote the application of a prune followed by a shortcut.

We will briefly describe here the simplest of these schedules, called the shunt-
ing algorithm, which was proposed independently by [ADKP89] and [KD88]. The
algorithm is composed of a number of phases, each containing the following steps

(Figure 3.5):

1. Number the leaves of the tree from left-to-right. Here, the input is supposed
to be a regular binary tree, i.e. a binary tree in which every internal node
has exactly two children. The numbering can be done using the eulerian tour

technique developed by Tarjan and Vishkin [TV85] within the desired bounds.
2. Shunt the odd-numbered leaves that are the left children of their parent.
3. Shunt the odd-numbered leaves that are the right children of their parent.

4. Shift out the last bit of the remaining leaves and repeat steps 2 to 4 until the

whole tree has been contracted.

Theorem 2 ([ADKP89]) The shunting algorithm computes a valid tree-contraction
schedule which has length O(lgn).

a

It we had one processor assigned to each node, we could contract the tree in the
desired time using n processors. But the time in which each leaf is processed can
be computed beforehand and placed in an array of length [n/2] + 1. The array is
filled with pointers to leaves having numbers 1,3,5,7...., then to leaves having numbers
2,6,10,14,..., etc. In general there are O(lgn) phases numbered 0 < ¢ < [lg(n — 2)],

and in each of them, leaves numbered 2¢,3-2¢,5-2,7-2, ... are shunted. Thus, having

33



the array, it takes time O(n/p) using p < n/lgn processors to do the contraction.
Optimality is achieved for p = n/lgn.

Another valid tree-contraction schedule is computed by the so-called ACD tech-
nique. The accelerated centroid decomposition (ACD) technique was proposed by
Cole and Vishkin [CV88]. Though the ACD method is rather complex and lengthy
to fully describe, we will give here a brief outline of it.

We first define the centroid decomposition of a tree T'. Let size(v) of a node v be
the number of nodes that are contained in the subtree rooted at v, and let centroid
level of node v be [lgsize(v)]. Note that there are at most [lgn] centroid levels
in any binary tree with n-nodes. The centroid path of v is the longest path which
passes through v, and is composed of nodes having the same centroid level as v along
with tree edges connecting them. The direction of the path is from child to parent.
(Figure 3.6.)

Centroid decomposition of a tree T is the partition of the tree nodes into centroid
paths. Such a partition is always possible, since each node can have the same centroid
level with at most one of its children. A node v is the tail of its path, if it has no
child with the same centroid level as itself.

According to the ACD technique, some node v is scheduled for removal as follows:
Let ¢p(v) be the centroid parent of v, that is, the parent of v if it belongs to the same
centroid path, and let A, be the sum of the sizes of the non-centroid children of all
centroid ancestors of v in its centroid path. Define K, to be the index of the most
significant bit in which the bit representation of A, and A, differ.

Schedule. If v is the tail of a centroid path with level 7, it is pruned at time
2t + 1 = 2K, + 1; otherwise it is shortcutted at time 2K, + 2.

The idea behind this schedule is that, if a node is shortcutted at time ¢, its non-

34



Figure 3.6: A tree and its centroid paths.

centroid child was pruned at time t’ < .

Finally, we should note that other valid tree-contraction schedules can be derived

by the algorithms in [GR86] and [GMT88].

35



Ry
e

Figure 3.7: A pseudotree.

3.5 Pseudotree Contraction

A pseudotree P = (C,D) is a maximal connected directed subgraph with |C| =
n vertices and |D| = n arcs for some n, for which each vertex has outdegree one
(Figure 3.7). An immediate consequence of the outdegree constraint is that every
pseudotree has exactly one simple directed cycle (which may be a loop). We call the
number of arcs in the cycle of a pseudotree P its circumference, circ(P).

A rooted tree is a pseudotree whose cycle is a loop on some vertex r called the
root. So, it has circumference one. A rooted star R with root r, is a rooted tree whose
arcs are of the form (a,r) with € R, i.e. all of whose arcs point to r.

A pseudoforest F' = (V, A) is a collection of pseudotrees. An equivalent definition
of a pseudoforest [Ber85] is a functional graph F' = (V, f), the graph of a finite function
f on a set of vertices V. We can think of f as being implemented by a set of pointers
p, so we will also call I a pointer graph (V,p). We will refer to pseudoforests using
any of the three equivalent definitions.

We define the pseudotree contraction problem as follows:

Problem 3 Given a pseudotree P = (C, D), create a rooted star R = (C, D') having

root some vertex r € C such that for each v € C, then (v,r) € D'

36



We will show how to solve the pseudotree contraction problem in O(lg |C|) parallel
time using |C'| CREW PRAM processors.

Pseudoforests are especially interesting in parallel computation, since they arise
often in parallel graph algorithms when vertices of a graph draw simultaneously a
pointer to a neighbor, an operation called hooking. Connectivity, minimum spanning
tree, maximal independent set and tree-coloring, [JM91a, NM82, SV82, HCS79, AS&7,
GPS87, JM91c¢| are among the problems that deal with creation and manipulation of
pseudotrees.

However, the presence of the cycle complicates the parallel contraction of the
pseudotrees. The reason that the well known pointer-doubling technique [Wyl81] does
not work on a cycle is that it will not terminate (Figure 3.8). Even if one modifies
this technique to recognize a cycle by keeping track of all the vertices pointed to by
some pointer, pointer-doubling performs poorly as it may run in time linear in the
circumference of the cycle.

We introduce here a set of pointer-jumping rules called cycle-reducing (CR) short-
cutting rules [JM91a]. These rules are used to reduce a pseudotree to a rooted star,
without concurrent writing by the processors involved, in time [logs/, & | where & is
the longest simple directed path of the pseudotree. (Figure 3.9.)

Let G = (V, E) be a graph. We assume that each vertex v € V has been assigned
an ¢d(v) € Id, which is a distinct integer, for example the id-number of the processor
which is responsible for the vertex. Let F' = (V,p) with F' C G be a given pseudoforest
defined on the vertices of G. We would like to contract each of F’s pseudotrees to
a rooted star. We will do that using the CR shortcutting rules (Figure 3.10). These
rules assign the vertex r having the smallest id among all the vertices in the cycle

to be the root of the future rooted tree. The idea behind the CR rules is that they

37



7~
2

\__ @

Figure 3.8: The usual pointer jumping technique cannot deal with cycles.

33



Figure 3.9: Using the CR shortcutting rules the cycle can be reduced to a rooted tree
in logarithmic number of steps.

39



1. if v(@w t% v@%()w

2. if vogw t% UO%@U)
3.if vO—=0O—=0w then vmw

v < w
4. if vO—=0O—=0Qw
v > w
. then K\
51 20O0—=0O—=0w = v O Ow
. th
6.if vO— =O—=0w =~ Do Nothing

Figure 3.10: Cycle-Reducing rules. (1) and (2) Terminating rules, (3) Bold-bold rule,
(4) Bold-light rule, (5) Light-light rule, (6) Light-Bold rule. Comparison between

vertices means comparison between their corresponding id’s.

will not let any of the vertices of the pseudotree shortcut over the future root, even
though at the outset the root is not known.

To use the CR rules we will create two kinds of p pointers: bold and light. Bold
pointers belong only to possible roots of a pseudotree. All other vertices have light

pointers. Each vertex v of the pseudotree will first execute the rule enabling statement:

for each vertex v € C' in parallel do

bold(v) « id(v) < id(p(v))

To contract a pseudotree, its vertices repeatedly execute the CR procedure given

below. The rules of this procedure are also graphically described in Figure 3.10.

if bold(v) and p(p(v)) =wv
then bold(v) «— false

40



p(v) v
else if bold(v) and p(p(v)) = p(v) then bold(v) — false
else if bold(v) and bold(p(v)) then p(v) — p(p(v))
else if bold(v) and not(bold(p(v)))
then if id(v) > id(p(v)) then bold(v) — false
p(v) < p(p(v))
else if not(bold(v)) and not(bold(p(v))) then p(v) «— p(p(v))

{ else if not(bold(v)) and bold(p(v)) then Do-Nothing }

We will refer to the first two rules as terminating rules, and to the remaining
four rules as bold-bold, bold-light, light-light and light-bold, respectively. The names
are given according to the v and p(v) pointers. Shortcutting occurs in all but the
light-bold rule, in which case the vertex attempting the jump might shortcut over the
smallest numbered vertex of a cycle.

We now show that the CR rules will, in fact, contract a pseudotree to a rooted
tree. Then we will prove that this contraction takes time logarithmic in the number

of vertices in the pseudotree.

Lemma 1 Let P be a pseudotree with cycle c. When the CR rules apply on P for a
long enough period of time, they contract it to a rooted tree. The root of this tree is

the smallest numbered vertex v that appears on c.

Proof. We say that vertex v has reached vertex u if p(v) = u. According to the
rule enabling statement and the CR rules, vertex r will have a bold pointer for as long
as there is a nontrivial cycle in the pseudotree. At the same time, any vertex that
reaches r must do so with a light pointer. So, no vertex will shortcut over r because

the light-bold rule applies. At the same time, r will be continually shortcutting over

41



the other pointers in the cycle since the bold-bold and bold-light rules permit it.
Eventually, the first terminating rule will apply and r will reach itself, effectively

becoming the root of a rooted tree. O

Let P be a pseudotree composed of n vertices and n pointers (arcs) and let r be
its root, if P is a rooted tree, or its future root (the smallest numbered vertex on
P’s cycle). We define distance d, of a vertex v € C' to be the number of pointers on
the simple directed path from v to r. Also, we define k th distance d* of vertex v to
denote d, after k applications of the CR rules on P. We can write d, as d°. We will
show that each application of the CR rules on P decreases the distances d, of the

vertices v € (' by roughly a factor of two-thirds. More specifically, we will show that:

Lemma 2
2dk—1

dt <[ : T

v —

Proof: The proof is by induction on the distance d*. The base case holds trivially,
since for all v and for all k such that d*~! < 2 the lemma is true.

For a given vertex v we assume that for all the vertices having distance smaller
than d* and for all the k—1 previous applications of the CR rules the hypothesis holds.
That is, we assume that for all vertices u and for all k satisfying 1 < d*=! < d*! the

following holds:

U

251
5

d’“g[ :

With this hypothesis we now prove:

2dk—1

4 < [=-]
3

We will consider two cases, one accounting for application of the bold-bold, bold-

light and light-light rules on v (that is, when v’s pointer is shortcutting), and one for

the light-bold rule (when v’s pointer is stuck, but its parent’s pointer is shortcutting).

42



Figure 3.11: Top figure: Case 1 of the Lemma. Bottom Figure: Case 2 of the Lemma.
An asterisk (*) over a pointer means that this pointer could be either bold or light.

CASE 1: Let’s assume that v’s pointer is bold or p(v)’s pointer is light. Since in
all cases v’s pointer will shortcut (Figure 3.11, top), the analysis is identical.
Let w = p(p(v)). We have that d*~1 —2 = d*~!, and we assume that d* < Pdk%_lw

We want to prove that d* < PdﬁT_lw

At the £’th application of the CR rules v will reach w, so we have:

&< 1+d
2dF1 — 2
_ 14%1
2451 4
= 1+ ][5 —3
251
< 12
24
- [T}

CASE 2: This is the case where v’s pointer is light (Figure 3.11, bottom) and
p(v)’s pointer is bold. The pointer of v’s grandparent is either light or bold, but in
any case p(v) will shortcut. So, let w = p(p(p(v))). We have that d*=! — 3 = d"~1,

w

and we assume that: dj, < Pdk%_lw We want to prove that: d¥ < (—Qdi_lw,

43



At the k’th application of the CR rules p(v) will reach w, therefore we have:

IN

d~ 24 d*
2dk—1

2|

Q(dﬁ_l — 3)"

IN

2+ |

a

Now we prove the following lemmas that will be useful in the connectivity algo-
rithm. For increased efficiency, we will assume that the rules are applied in two steps.
In the first, the two terminating rules apply, and in the second step, the remaining

rules apply. Let o = 1.71 > 1/(lg 2).

Lemma 3 When the cycle-reducing rules are applied [ak] times to a rooted tree, any

vertex within distance 2% from the root reaches the root of the tree.

Proof. From Lemma 2 and the two terminating rules we derive that when the
cycle-reducing rules are applied £ times to a rooted tree, any vertex within distance

(%)k — 2 from the root reaches the root of the tree. The Lemma follows by observing

that [ak] > k/(lg2), therefore (2)[F] > 2k, 0

Lemma 4 When the cycle-reducing rules are applied [ak| times to a pseudotree P
whose cycle has circumference no larger than 2%, they contract it to a rooted tree with
root the vertex r having the smallest id among the vertices in the cycle. Moreover,

any vertex within distance 2% from r in the original pseudotree has reached r.

44



Proof. We can view r as a vertex at distance circ(P) from itself. If cire(P) < 2F,
then r’s pointer will reach itself in [ak]| steps (Lemma 3) and r will become the root
of a rooted tree. On the other hand, any vertex at distance 2% from r will reach r

after [ak]| applications of the CR rules. O

So we have proved the following theorem for the CR rules:

Theorem 3 A pseudotree P whose longest simple path is max,ep{d,} = h will be
contracted to a rooted star R after ﬂg3/2 k| applications of the CR rules. The root of

R is the smallest numbered vertex on P’s cycle.

3.6 Edge-Plugging Scheme

A common representation of a graph G = (V, E) is the adjacency list: The graph is
represented as an array of |V| vertices, and each vertex v is equipped with a pointer
to its edge-list L(v), a linked list of all the edges that connect v to other vertices of the
graph. The pointer next(e) points to the edge appearing after edge e in the edge-list
where e is contained.

Contraction is one of the basic operations defined on graphs [Wil85]. Under this
operation, two vertices v and w connected with an edge (v, w) are identified as a new
vertex vw (Figure 3.12). We can generalize slightly this operation to be performed
on a subset of tree-connected vertices of the graph, rather than just on the vertices
of one edge. Again, this subset is identified with a new vertex.® In practice, one of
the vertices in the subset, called the representative, plays the role of the new vertex.

To keep the representation of the graph consistent, one needs to include all the edges

>Sometimes this new vertex is called a supervertez.

45



VY vUw
O

w w

Figure 3.12: Contraction of the vertices v, u, w.

formerly belonging to the edge-lists of each vertex in the set, into the edge-list of the
newly formed vertex.

As we discussed in the previous section, the vertex subsets that appear naturally
in parallel computation are pseudotrees. Without loss of generality, we can think of
the representative r as being the vertex assigned as the root by the CR rules. So, the

following edge-list augmentation problem naturally arises:

Problem 4 Given a pseudotree P = (C, D) C G =(V,FE), i.e. C CV and D C E,
augment the edge-list of one of C’s vertices, say the representative r, with the edges

that are included in the edge-lists of all the vertices v € C'.

We will show how to solve this problem in constant time without memory access
conflicts once the representative of the pseudotree is known.

Let the first and last functions defined on L(v) give the first and last edges,
respectively, appearing in L(v). For implementation reasons it is convenient to assume
that there is a fake edge at the end of each edge-list. All these functions are easily
implemented with pointers in the straightforward way.

We represent each edge (v, w) by two twin copies (v,w) and (w,v). The former

is included in L(v) and the latter in L(w). The two copies are interconnected via a

46



3
=
£

<
e~

—~
<

pa—

3
=
£

j
I

<
e~

—~
<

pa—

Figure 3.13: Edge lists of nodes v and w before (top) and after the edge plugging
step (bottom).

function fwin(e) which gives the address of the twin copy of edge e.

The edge-list augmentation problem can be solved with the edge-plugging scheme
we present here. Let v € C', v # r be a vertex in the pseudotree and (v,w) € D be its
outgoing arc of the pseudotree P. According to this scheme, v will plug its edge-list
L(v) into w’s edge-list by redirecting a couple of pointers. The exact place that L(v)
is plugged is after the twin edge (w,v) contained in L(w) (Figure 3.13). This ensures
exclusive writing. The edge-plugging is done by having each vertex v € C — {r}

execute the plugging step:

for each vertex v € C' — {r} in parallel do
let (v,w) € D
let (w,v) = twin(v,w)
next(last(L(v))) « next(w,v)

next(w,v) « first(L(v))

47



)
[ == %%%%% (=01

[jH [ I=[T=l = 1=
EB%]%
e [ = = [ = == =

Figure 3.14: The effect of the plugging step execution by all vertices of a pseudotree
but the representative r. On the left is P = (C, D). On the right is L'(r) after the
execution of the plugging step.

We can see that the effect of having all v € €' — {r} perform the plugging step
simultaneously is to place all the edges in their edge-lists into r’s updated edge-list

L'(r) (Figure 3.14). In particular we can prove the following lemma.

Lemma 5 [f there is a directed path p from v to r in P = (C, D), then after the

execution of the plugging step by all the vertices in p but r,

(v,w) € L(v) = (v,w) € L'(r).
No writing conflict occurs during this operation.

Proof. The path p in P composed of edges in D corresponds to a unique sequence
of next pointers in L'(r), through which any edge in L(v) is accessible. Moreover, the
only processor that will access pointer next(twin(v,w)) is the processor assigned to

vertex v. Therefore there is no writing conflict. O

So, we have shown that the edge-list augmentation problem can be solved in

constant time once the representative of the pseudotree has been determined.

48



Figure 3.15: When all the vertices in a cycle execute the plugging step, their edge-lists
are connected with two rings of edges. Observe that the first pointers of the vertices
in the cycle end up in the first ring while the last in the second. This will enable the
future root of the cycle to reverse the effect of its own edge-plugging, thus rejoining
the two rings into a single edge-list.

One may ask what the effect is of having the edge-plugging step being executed by
the vertices of the pseudotree before determining the representative. (In particular,
the connectivity algorithm we will present in Section 4.4 may execute the plugging
step before the contraction of a pseudotree to a rooted tree.) In other words, what if
the representative also executes the edge-plugging step.

The effect of this is to place the edges of the pseudotree’s vertices into two linked
rings (Figure 3.15). However, this is a recoverable situation since, in general, the
representative can later reverse the effects of its own edge-plugging, thus joining the
two rings into a single linked list. Lemma 6 in Section 4.4.3 explains how this can be

accompliced.

49



Chapter 4

Algorithms for Graph Problems

4.1 Finding Connected Components

4.1.1 Definition

Computing the connected components of an undirected graph is a fundamental com-
putational problem. We will define the problem and then discuss some of the sequen-
tial and parallel algorithms that solve it.

Let G = (V, E) be an undirected graph on |V| = n vertices and |E| = m edges. A
path p of length k is a sequence of edges (ey, -, €;,-- -, e;) such that e; € E for ¢ =
1,---,k, and e;’s terminal endpoint is €;11’s initial endpoint for 2z =1,..., k — 1. We
say that two vertices belong to the same connected component if and only it there is
a path connecting them.

The problem of finding connected components of a graph G = (V, F) is to divide
the vertex set V into equivalence classes, each one containing vertices that belong
to the same connected component. These classes are usually expressed by a set of
pointers p such that, vertices v and w are in the came class if and only if p(v) = p(w)

(Figure 4.1).

30



O

e

Figure 4.1: A graph G with three connected components (top) and the pointers p at
the end of the computation (bottom).

51



4.1.2 History

It is well known that the problem has a simple linear sequential solution using depth-
first search [Tar72]. In brief, the algorithm finds the connected components one-by-one
by repeating the following step until all vertices have been visited:

Step. Find a vertex that has not been visited yet. Vertices reachable from this
initial vertex belong to a connected component.

Unfortunately, efficient implementation of depth-first search in parallel seems very
difficult [Rei85]. As we have stated, no polylogarithmic-time deterministic parallel
algorithm is known and the best randomized algorithm [AAKS9] runs in O(log” n)
using almost n* processors.

So, the designers of parallel algorithms have followed a different approach which
has roots in the early work of the Czechoslovakian engineer Boruvka [Bor26] on min-
imum spanning trees. !

Hirschberg, Chandra and Sarwate [HCS79] gave the first efficient parallel connec-
tivity algorithm. It has parallel running time O(lg”n) using n?/lgn CREW PRAM
Processors.

This algorithm was later improved by Chin, Lam and Chen [CLC82] who reduced
the number of processors by a factor of lgn, while Nath and Maheshwari [NM8&2]
showed how to implement it on the EREW PRAM model when n? processors are
available.

For the CRCW PRAM model in which concurrent writing is permitted, Shiloach
and Vishkin [SV82] gave an algorithm which has running time O(lgn) using n + m
processors. This algorithm was later improved by Cole and Vishkin [CV86a] to use
only (n +m)/a(n,m)-lgn ARBITRARY CRCW PRAM processors, where a(n,m)

!See the article by Graham and Hell [GH85] on this algorithm’s interesting history.

52



is the inverse Ackerman function. There is also an optimal randomized algorithm
[Gaz91] for the latter model with O(lgn) time complexity. Other algorithms with
minor improvements are reported in [AS87, LM86, Phi89].

If we were to implement a connectivity algorithm on a PRAM, the implementation
bound would be O(lg n) time using n +m CRCW PRAM processors, or equivalently,
O(lg®n) time using the same number of CREW PRAM processors. The reason is
that the [CV86a] algorithm uses very elaborate techniques. This fact was noted by
Karp and Ramachandran in [KR90], where a connectivity algorithm with running
time o(lg®n) for the CREW PRAM is included among the challenges that had thus

far eluded researchers.

4.1.3 On the Existing Algorithms

We mentioned that all the existing parallel connectivity algorithms could be viewed
as implementations of Bortuivka’s minimum spanning tree algorithm. This algorithm
maintains a minimum spanning forest by repeating the following step (adapted from
Tarjan [Tar83, page 73] who also makes the observation that Boravka’s method is
well suited for parallel computation):

Step. For every tree T in the forest, select a min-cost edge incident to T'. Con-
struct the new forest by augmenting the trees with the selected edges.

Initially, each vertex is trivially a tree. At the end we are left with a minimum
spanning tree (assuming the input graph was connected).

Basically, there are two parallel implementations of this idea: The [HCST9] al-
gorithm and the [SV82] algorithm. They mainly differ on the selection of the data
structure used to represent the set of edges and on the model of parallel computation

they use.

33



The algorithms deal with components, sets of vertices organized as rooted trees or
rooted stars. A component C5 is neighboring to another component € if and only if
there is an edge (v, w) between vertices v € Cy and w € Cy. We briefly describe the

algorithms here.

The HCS Algorithm.

In the [HCS79] algorithm, the input graph G' = (V, E) is given by an array D of the
|V| vertices and an adjacent matrix A of size |V| x |V for the edges of E.

At the end of the algorithm, D(v) = D(w) = x if and only if vertices v and w
belong to the same connected component and vertex z is the representative of this
component.

In the beginning, each vertex v is the representative of a component containing

only itself. The algorithm proceeds as follows:

for Ign times in parallel do:

1. The representative of each component finds the neighboring component with
the smallest id-number using the adjacency matrix, and hooks to it by drawing
a pointer to it. The pseudotrees with circumference 2 generated by this step

easily become rooted trees.

2. The trees are contracted to rooted stars using pointer-jumping. The roots of

these stars are the representatives of the newly formed components.
3. The entries of D and A are updated to reflect the new situation.

Each of the steps of the algorithm takes O(lgn) time, so the total running time

is O(Ig?n). Moreover, no write conflict occurs, and careful allocation of processors

o4



[CLC82] implements the algorithm employing only n?/1g®n of them. Note that the
algorithm actually computes a minimum spanning tree of a graph at no extra cost if

hooking is done over least cost edges.

The SV Algorithm.

On the other hand, the [SV82] algorithm keeps the edges of its input graph G' = (V, F)
in an array of |F/| edges, not organized in any particular way. (Even though in their
description the edge vector is lexicographically sorted, this is not essential.) The
vertices are placed in the array D and at the end the output is given, as in the
previous algorithm, by the entries of the D array.

The description of the algorithm in their paper is a little complicated, so we
present a simpler, less formal, description of it. Recall that the algorithm is for a
model which supports concurrent write, which is a feature used extensively in the

algorithm.

for Ign times in parallel do:

1. The representative of each component tries to hook to some neighboring com-
ponent by pointing to it. This is achieved by having all good edges of the
component competing to be selected for hooking by writing to some memory
location. By “good” edges, we mean edges that know they are not internal to

the component and also that their selection will not create a cycle.

2. The hooking process in the previous step was “conservative” in selecting neigh-
boring components, to make sure that no cycles were introduced. This con-

servatism could result in halting the growth of some components if no good

5]



edge was found. In this step, these latter components hook to any neighboring

component they can find.

3. The trees created in the previous step are contracted a little bit using the

pointer-jumping technique for a constant number of times.

The lack of simplicity in the description of the algorithm comes from the effort to
avoid creating directed cycles during the hooking process. We remark that, if we let
cycles occur and then use the CR rules [JM91a] to deal with them, a much simpler

algorithm results. See Appendix 6.1 for details on this.

4.2 Designing a Connectivity Algorithm

4.2.1 A General Idea and its Difficulties

Let G = (V, E) be the input graph with n = |V| vertices and m = |F| edges. We
will assume that there is one processor Proc(i) assigned to each vertex ¢ € V and
one processor Proc(i,j) assigned to each edge (7, j) € . Each component is equipped
with an edge-list, a linked list of the edges that connect it to other components.
Typically the algorithm will deal with components, which are sets of vertices found
to belong to the same connected component of . Initially each component is a single

vertex. The algorithm proceeds as follows (See Figure 4.2):

repeat until there are no edges left:
1. Each component picks, if possible, the first edge from its edge-list leading to
a neighboring component (called the mate), and hooks by pointing to it. The

hooking process creates pseudotrees. If a component has an empty edge list, it

hooks to itself.

56



Figure 4.2: (Top) the input graph G. (Middle) Vertices have picked their mates.
Dotted are those edges they were not picked by any vertex. An arc points from
a vertex to its mate. Three pseudotrees are shown in this figure. Note that each
pseudotree contains a cycle. (Bottom) The new components have been identified.
Dashed edges are internal edges that will not help the component grow.

57



2. Each pseudotree is identified as a new component with one of its vertices as
its representative. Each representative receives into its edge-list all the edges

contained in the edge-lists of its pseudotree.

3. Edges internal to components are removed.

There are three problems we have to deal with in order for the algorithm to run fast

without concurrent writing.

The existence of cycles. The parallel hooking in the first step of the algorithm
above creates pseudotrees which need to be contracted. The usual pointer-
doubling technique does not work on cycles when exclusive writing is required
As we have said, the HCS and SV algorithms put some effort in dealing with
them: The first spends O(lgn) time to create trivial pseudotrees while the

second uses the power of concurrent write to avoid their creation.

We can solve this problem using the cycle-reducing shortcutting technique we
introduced in a previous section. Recall that this technique, when applied to a
pseudotree, contracts it to a rooted tree in time logarithmic in the length of its
cycle, and when applied to a rooted tree, contracts it to a rooted star in time

logarithmic in the length of its longest path.

The edge-list of a new component. Computing the set of the edges of all the
components in a pseudotree without concurrent writing may be time consuming;:
There is possibly a large number of components that hook together in the first
step and therefore a large number of components that are ready to give their
edge-lists simultaneously to the new component’s edge-list. Again, SV uses
the power of concurrent writing to overcome this problem, while HCS uses the

adjacency matrix and O(n?) processors to solve it in O(lgn) time.

38



The edge-plugging scheme we introduced in a previous section achieves the
objective in constant time without concurrent writing, whether or not the com-

ponent is contracted to a rooted star.

Finding a mate component. Having a component pick a mate may also be time
consuming: There may be a large number of edges internal to the component,
and this number grows every time components hook. None of these internal
edges can be used to find a mate. Therefore, a component may attempt to find
a mate many times without success if it picks an internal edge. On the other
hand, removing all the internal edges before picking an edge may also take a

lot of time.

This problem is solved by the growth-control schedule we will introduce in the
next section. Components grow in size in a uniform way that controls their
minimum sizes as long as continued growth is possible. At the same time
internal edges are identified and removed periodically to make hooking more

efficient.

We should note that, even though both the cycle-reducing technique and the edge-
plugging scheme provide valuable tools for the algorithm, it is the growth-control
schedule that achieves the o(lg”n) running time. We have succeeded not only in
defining an optimal rate for components to grow (so as to control the overhead at-
tendant on redundant edge removal) but in enabling the algorithm to recognize when

necessary whether a component is growing too fast and therefore can be ignored.

39



4.3 Growth-Control Schedule

First, let us illustrate the need of such a schedule. We argued that having a component
pick a mate may also be time consuming. We will make this statement more precise.

The cycle-reducing rules and the edge-plugging scheme provide the elements of a
greedy-like connectivity algorithm that works correctly on the CREW PRAM model
of parallel computation. Let T'(n) be some number that we will compute shortly. The

algorithm is as follows:

Algorithm 1.

for T'(n) phases in parallel do

1. Representatives of the components perform the hooking step if they can find a

mate.

2. Try to contract each of the resulting pseudotrees by applying the CR rules for

a constant number of times.
3. Identify the roots of any of the resulting rooted trees as new vertices.

4. Perform the plugging step on all the vertices but the representative of each

component.

5. Identify internal edges and remove them using pointer jumping for a constant

number of times.

It is not difficult to see that this algorithm correctly computes the connected compo-
nents of a graph in 7T'(n) phases. Moreover, we observe that, if we are sure that each

component can hook in each phase, then only lg n phases are needed.

60



However, we cannot be sure that every component will hook in every phase. The
reason is that every time two components C; and Cy hook together, the number of
internal edges grows. This growth is by a factor of |C| x |Cs] in the worst case, and
the time needed to remove them using pointer jumping is lg(|C1| x |Cy|).

As a result of this, some component may attempt to hook many times before
it can find a neighboring component. In particular, when components grow at the
slowest rate, that is by just pairing up in every hook, the number of internal edges

added in the edge-lists in the worst case follows the sequence:
12,22 42 82162, ..., (g)2 — 20 92 9% 96 98 92ls(n/2)
So, the time to remove them is:
ooog2¥=2. Y  i=0(g’n)
0<i<lg(n/2) 0<i<lg(n/2)
Therefore, the number of phases T'(n) in this particular case would be O(lg®n). So,
the crucial observation is the following:

In the beginning, components grow very fast. Later, when they have grown and
there are lots of internal edges, there is a slowdown on the growth rate.

This observation leads to the need for controlling the components’ minimum sizes.
We introduce the growth-control schedule which lowers the running time by a factor
of v/Ign without increasing the number of processors involved. We give a brief de-
scription of it here and in the next section go into the details.

The growth-control schedule allows the size of the connected components of a
graph to increase in a uniform way. To implement the schedule, the algorithm is

divided into a number of phases. Phase ¢ takes as input a graph G; = (V;, E;). Each

vertex v' € V; represents a component formed in the previous phase ¢ — 1 containing

61



Figure 4.3: (Top) Graph (;_1 in the beginning of phase ¢—1. To simplify the figure, we
assume that only the doubly marked edges will be used during phase ¢ — 1 for hooking.
(Bpttom) Graph G; in the beginning of phase i. Vertex v} represents the component

{vi7h o5 vi Y. Edge (vi,vh) represents the set of edges {(vi™!, vy ), (vs  vi™h)}.

62



several vertices v;_l € V,_1, where [ € Id. We will write v;_l € v' to denote the
membership of a component found in this way. Each edge (v',w') € E; represents

the set
{(vi7 Y wi )| (v7  wint) € Bi_y, where vj™' € v' and wi ™! € w', with [,k € Id}

of edges between distinet components v/ =" and w} ', which were found to belong to
components v and w' respectively of G during phase 7 — 1. (See Figure 4.3.)

The purpose of each phase ¢ is to allow just enough time for the components
constituting the input graph G; to grow by a factor of at least 2VIgn Therefore only
[VIgn] phases are needed. When this growth has been achieved, the components
are contracted to rooted stars using the CR rules, while useless edges (internal to the
components and multiple among components) are removed from the graph. Then, a
new graph (1 is created, induced by the components formed during the :’th phase.
The next phase will operate on this graph.

A phase is further divided into stages. Stage j contains one hooking step followed
by a number ¢; of pseudotree contraction steps and a number ¢y of useless-edges
removal steps. The constants ¢; and ¢; are chosen so that components that have
grown enough to enter the next phase can be recognized immediately. The growth

factor has been chosen so that each phase has O(lgn) running time.

63



4.4 An O(lg?n) Connectivity Algorithm
4.4.1 Outline of the Algorithm

Definitions

n

Let eritical bound B be the quantity 2Vier  Some component €' is in category ¢ if
|BY] < |C| < |B™*],i=0,1,..., where |C| denotes the number of vertices in C'. No
component may be in a category ¢ > 4, = [vIgn .

The algorithm executes a number of phases, requiring that each component en-
tering phase 2 is at least in category 2. Therefore at most ¢,,,, phases are needed.

We say that some component has been promoted to phase 2, if its size is at least
| BY]. We should note that the notion of promotion is needed mainly for the analysis;
a component may or may not know whether it has been promoted during a phase.

In the beginning of the algorithm all components (which are simply single vertices),
are in category 0. Fach phase is divided into stages. In each stage j, components
grow in size by hooking to other components. The purpose of a phase can be seen as
allowing just enough time for hookings between components, so that all the compo-
nents have either been promoted to the next phase or they cannot grow any more. If
some component cannot grow any more, it is because it is not connected to any other
component. In this case it is called done, else it is called active.

We identify edges that components do not need to keep: Internal edges are edges
between vertices within the same component. These edges are useless and may be
removed. In general, it is difficult to recognize these edges immediately. When an
internal edge is recognized as such, it is declared null. Since each component will
contain many vertices, there may be multiple edges between two components. For

each component pair, only one such edge needs to be kept in order to hook the two

64



components. It is called the useful edge. The remaining edges are called redundant
edges. When redundant edges are recognized as such, they are also declared null and
can be removed along with the null internal edges. Of course, it does not matter

which of the multiple edges is kept as useful. Any one will do.

The Stages of a Phase

As we stated in the previous section, phase ¢ takes as input a graph G; = (V;, E;). Each
component C' € V; contains at least? B’ vertices of the original graph (i organized in
a rooted star, with representative the root of the star denoted by vi. These vertices
were found to belong to ' in previous phases, and they will not play any role in
phase 2 or in later phases. So we may assume that in the beginning of a phase each
component (' is a single vertex v, the representative. In the remainder of the section,
when referring to a fixed phase ¢, we will use the term “component” to refer both to
the set (' of vertices in the component and to the representative v, of the component.
It should be clear from the context which definition applies.

Each component is equipped with an edge-list. We will keep the following invariant

that will be used to prove correctness:

Invariant 1 In the beginning of a phase @ there is at most one edge between any two

distinet components v* and w'. In particular,
(v, w') € E; iff there was an edge (v,w) € B and v € v',w € w'

During each phase ¢, components continually hook to form bigger components. As
we have described in previous sections, the hooking is done by having each component

C pick, if possible, the first edge (v, w), v € C from its edge-list and point to its mate

’If a component has fewer than B' vertices, then it is as big as it will get.

65



w. This operation is carried out by the representative of C'. If there is no edge left
in (s edge-list, then C' is not connected to any other component, and it is done. At
the end of the last phase all components are done.

The hooking operation creates a pseudoforest having bold and light pointers as
needed by the cycle-reducing technique. Any component will perform O(1/Ig n ) hook-
ings per phase, each one in a different stage.

The pseudoforest is then contracted using the cycle-reducing shortcutting tech-
nique for O(y/Ign ) steps. The objective is the following: After O(y/Ign) steps,
components with fewer than B vertices have become rooted stars and are ready to
hook in subsequent stages to keep growing. The exact number of CR rule applications
that achieve this objective is [any/Ign |, for a = 1.71.

Components that are rooted trees at the end of a stage are called ready. Those
that still do not have a root are called busy. If some pseudotree C' is busy at the
end of a stage, its cycle had circumference greater that B, and therefore it has been
promoted to the next phase. C' will not hook in subsequent stages of this phase. At
the end of the phase it will be given enough time to become contracted to a star and
to prepare for the next phase.

Next, the vertices of the newly formed rooted trees are recognized. Then, all the
vertices v but the roots of the contracted trees will execute the plugging step described
in Section 3.6. Let r be the root of a rooted tree and v be a vertex executing the
plugging step. This will place the edges of v’s edge-list into r’s edge-list. However,
if v is a vertex of a busy component, this will not work, since there is no root in v’s
component. Fortunately, a busy component will be detected in a later stage and this
problem will be fixed.

Edges (x,y) can now recognize their new endpoints p(z) and p(y) and are renamed

66



\ /NW

Figure 4.4: Example of two null-edge removal steps. The three null edges in the
middle are being removed from the edge-list.

accordingly. Those having both of their endpoints pointing at the same root are
apparently internal and nullify themselves. Then, the edge-list of the root is cleared
of null edges by O(v/l1gn ) null-edge removal steps. This is a simple application of

the pointer-doubling technique (Figure 4.4):

for all edges ¢ do in parallel

if null(next(e)) then next(e) « next(next(e))

The exact number of null-edge removal steps is 2[y/Ign ] + 1, and is chosen so
that any component having fewer than B vertices (and therefore fewer than B? null
edges) can remove all its internal edges, thus it can find a non-null edge in the next
stage. This ends a stage.

In the next stage, the roots of ready components will try to hook again. We say
that a vertex (root) v had a successful hooking, if its mate w belongs to a different
component. Observe that it is possible for a promoted component not to become a
rooted star at the end of some stage j, because it contained a path longer than B. As
a consequence, some internal edge e may not be nullified at the end of j. Moreover,
the root of the component may pick e for hooking in a later stage. This is called

internal hooking.

67



A root having an internal hooking may or may not detect it. For example, some
un-nullified internal edge (,y) may be recognized by the root r at the time of the
hooking by checking if r # x: If this is the case, x was at a distance greater than B
from r in the tree, and so x did not have the time to reach r and rename (x,y) to
(r,y). In this case r will not hook, since its component is known to be promoted.

An (undetected) internal hooking will only create a pseudotree, and the cycle-
reduction rules will be called again to deal with it. So, before the application of
the CR rules, components have to execute the rule enabling statement, described in
section 3.5.

The idea behind the O(y/Ign ) stages per phase is that after that many successful
hookings a component has been promoted in any case. On the other hand, one
internal hooking means that a component has already been promoted.

Finally, there is another case we should address. Consider a component C' having
more than B vertices, but whose height is less than B. The CR shortcutting process
will contract it to a rooted star during the stage of its formation. However, C' may
have more than B? internal edges, and the edge-removal process may not remove
them all. This component may be unable to hook if it picks one of the remaining
unremoved null edges in the next stage. So, failure to hook means that the component
has been promoted.

Each stage takes O(y/Ign ) steps and there are at most O(/Ig n ) stages, summing
up to a total of O(lgn) steps per phase. We can prove that after O(y/Ign) stages all
components have been promoted. They may not have been contracted, though. In

the final part of the phase:

e All components are contracted to rooted stars, and representatives are identi-

fied.

63



o Edges are renamed by their new endpoints.
o All internal edges are identified and nullified.

o All multiple edges are identified. One of them is kept as useful while the rest
are nullified as redundant. This is done as follows: First, we sort the edge list
of each component in lexicographical order. We note that there are optimal
sorting algorithms for both the CREW PRAM model [Col88, AKS83, Hag87]
and the CREW PPM model [GK89] that run in O(lgn) time. Then, blocks of
redundant edges are identified and nullified. This step takes O(Ign) time using

M Processors.
o The edge-list of each component is prepared by deleting all the null edges.

Each of these steps take O(lgn) parallel running time. So, the total running time

of the algorithm is O(lg3/2 n) using at most n + m CREW PRAM processors.

4.4.2 The Algorithm

The important ideas have been presented in the previous section. We now present
the algorithm in detail.

In the beginning, each component contains a single vertex v € V of the input
graph G = (V, F), so we initialize by setting root(v) to true for each v € V. We
also form the edge-list of each component. Then, we perform the procedure phase
tmar = [Ign] times. Finally, we execute procedure component identification

after which, the vertex set V' has been divided into a number of equivalence classes
CCr={vjveVand p(v) =v, }, k€ Id

containing the connected components.

69



Procedure phase

1. { Initialization }

for each vertex v do in parallel
if root(v) then not(promoted(v))
stage(v) « 0

mate(v) «— v
2. { Component Promotion }

for i — 1 to [/Ign] do

execute stage(i).

COMMENT: This step tries to promote the components to the next phase. At

the end of this step, each component is either promoted or done. Each stage

takes time O(/Ign ).

3. { Contract the pseudoforest to rooted stars }

for each vertex v such that not(root(v)) do in parallel

bold(v) « id(v) < id(p(v))

for i — 1 to [a-lgn| do
for each vertex v in parallel do

v executes the appropriate CR rule

COMMENT: At the end of the last stage components were rooted stars, rooted
trees or pseudotrees. This step gives enough time to the last two categories to
become rooted stars before they enter the next phase. First we execute the rule

enabling step and then apply the CR rules.

70



4. { Rename edges and identify internal edges }

for each edge (v,w) in parallel do

rename (v, w) to (p(v), p(w))

for each edge (v,v) in parallel do

null(v,v)

COMMENT: Internal edges of rooted stars are easily recognized and nullified.

5. { Identify redundant edges }

Run list-ranking [Wyl81] on the edge-list of each component to find the distance

of each edge from the end of its list.
Copy each edge-list in an array using as index the results of the list ranking.
Sort the array [Col88, GK89] and use the results to form a sorted linked list.

COMMENT: The sorting places all multiple edges in blocks of consecutive iden-

tically named edges.

for each edge (v,w) in parallel do

if next(v,w) = (v,w) then null(v,w)

COMMENT: The last edge in a block of consecutive edges having identical (v, w)
names is kept as useful. The rest nullify themselves as redundant. Since the
useful edge (v,w) found in L(v) may, in general, differ from the useful edge
(w,v) found in L(w), some care must be taken for the twin function to be

recomputed correctly. Step 7 below takes care of it.

6. { Remove internal and redundant edges. }

71



for j «— 1 to 2[lgn] do
for each edge ¢ do in parallel
if null(next(e))

then next(e) «— next(next(e))

COMMENT: This step tries to remove blocks containing up to B? consecutive
null edges. However, if the first edge, say e, on some list L(v) was null, it has

not been removed. This is so because no pointer jumped ¢,.

for each vertex v such that root(v) in parallel do
if null(first(L(v)))
then first(L(v)) « next(first(L(v)))

COMMENT: This step explicitly removes any null e, from first(L(v)). The

remaining edges satisty Invariant 1.

. { Recomputation of the twin function. }

for all useful edges (v,w) in parallel do
let (v/,w') = next(v,w)
(v, w) writes its address to prev(v’,w’)

twin(v,w) < prev(next(twin(w,v)))

COMMENT: This final step recomputes the twin function of the useful edges
(v,w) in constant time as follows: First, observe that, after removing redun-
dant edges from an edge-list, all edges named (v,w), useful and redundant,
point at the same location. This location is the edge (v',w’) that comes lexi-

cographically after (v,w). The useful edge (v,w) passes its address to a field

72



prev(v’,w’). From there, the useful edge (w,v) reads it, by following pointer

next(twin(w,v)).

Procedure stage(i)

1. { The hooking step }

for each active vertex v such that root(v) and not(promoted(v))
do in parallel
let (z,y) « first(L(v))
if (z,y) = nel then done(v)
else if © # v then promoted(v)
else if (z,y) = (v,w) and null(v,w)
then promoted(v)
else mate(v) «— w
p(v) = w

not(root(v))

COMMENT: Roots of still active and possibly unpromoted components try to
pick an edge from their edge-list. If there is no edge in L(v), i.e. first(L(v)) =
nil, its component is not connected to any other component and it is done. If
v # v then p(x) # v, then d2 > B. This indicates that v was the root of a tree,
not a star. If the edge found was null, v’s component had more than B? null
edges and therefore more than B vertices. In the last two cases, r’s component

is promoted. Otherwise, v can hook to its mate vertex w.

2. { Pseudotree contraction }

73



for each vertex v such that not(root(v)) do in parallel

bold(v) « id(v) < id(p(v))

for j «— 1 to [ay/Ign | do
for each vertex v do in parallel

v executes the appropriate CR rule

COMMENT: First we execute the rule enabling statement and then apply the
CR rules for [ay/Ign] times, which forces all components with fewer than B
members to become rooted stars. Observe that after this step components with

more than B members may become rooted trees or non-rooted pseudotrees.

This step takes O(y/Ign ) time.
. { Root recognition step }

for each vertex v such that p(v) = v do in parallel
root(v)
mate(v) « v
if stage(v)=1—1
then stage(v) « 1
else promoted(v)
next(twin(first(L(r)))) « next(last(L(r)))

next(last(L(r))) « nl

COMMENT: The new roots of the newly formed trees or stars identify them-
selves. In root v was also root in the previous stage, its component may still
be unpromoted. But, if there was at least one stage j : stage(v) < j < ¢ dur-

ing which v did not hook, then during stage j vertex v belonged to either a

74



busy component or a rooted tree with height more than B that had an internal
hooking. In either case the component was promoted. Note that v performed
the edge-plugging step during stage stage(v). Lemma 6 of the next subsection
explains why the effect of v’s plugging step can be reversed by the last two

statements.
. { The edge-plugging step }

for each vertex v such that not(root(v)) and stage(v) =1 —1
do in parallel
next(last(L(v))) « next(twin(v,w))

next(twin(v,w)) « first(L(v))

COMMENT: Non-root vertices that were roots in the previous stage and there-
fore hold an edge-list plug it into their mate’s edge-list. At this point each
unpromoted star has all the edges of its component members contained in its

root’s edge-list.

. { Edge renaming and identification of internal edges }

for each edge (v,w) do in parallel
if p(v) = r and root(r)
then rename (v, w) to (r,w)
if p(w) = r and root(r)

then rename (v, w) to (v,r)

for each edge (r,r) do in parallel

75



null(r,r)

for each vertex v such that not(root(v)) and root(p(v)) in parallel do

null(last(L(v)))

COMMENT: Edges identify their new endpoints. Those having both endpoints
on the same root are apparently internal and so nullify themselves. The root(r) =
true condition assures that lists of non-rooted pseudotrees are not altered. Fi-
nally, the last statement explicitly nullifies the unnecessary fake edges at the

end of the edge-lists.

6. { Null-edge removal }

for j «— 1to2[\/Ign]+1do
for each edge ¢ do in parallel
if null(next(e))

then next(e) « next(next(e))

for each vertex v such that root(v) do
if null(first(L(v)))
then first(L(v)) « next(first(L(v)))

COMMENT: Blocks composed of up to B? consecutive null edges are removed.
Unpromoted stars now contain no null edges. This ensures that they will have

a successful hooking at the next stage.

Procedure component identification

76



for : — 1 to [lg\/lgn] do

for each vertex v € V in parallel do

p(v) — p(p(v))

COMMENT: Let’s assume that the input graph was composed of k£ connected com-
ponents. The execution of the y/Ign phases has created a pseudoforest F' = (V,p)
composed of k rooted trees, one for each connected component. The depth of these
trees is at most \/Ign: At the deepest level lie the vertices hooked in the first phase;
at the next level lie the vertices hooked in the second phase, etc.

The execution of this procedure contracts each of these trees to rooted stars. After

this step, vertices v and w are in the same connected component C'C} if and only if

p(v) = p(w) = vg.
4.4.3 Correctness and Time Bounds

Theorem 4 The algorithm correctly computes the connected components of a graph

in O(lg3/2 n) parallel running time without concurrent writing.

Proof. Correctness follows from Lemma 13 below. The running time comes from

the fact that there are [\/Ign | phases, each taking O(lgn) parallel time. O

We will prove that in the beginning of each stage j, the root r of each rooted tree
P holds in L(r) all the edges (v, w) which in the beginning of phase ¢ belonged to the
edge-lists L(v) of vertices v € P and were not deleted as internal in previous stages.
Let G; = (V;, E;) be the input graph of phase <. We define M; = (V;, mate) to be
the pointer graph composed of the mate pointers of V; at the beginning of stage j.

Note that each of the M;’s is a pseudoforest.

77



We say that the root r of a rooted tree P = (C,mate) satisfies invariant (2) if
V(v,w) € F; such that v € C and not(null(v,w)) = (v,w) € L(r) (2)

Lemma 6 At the beginning of stage j each rootr of a rooted tree P = (C, mate) € M,

satisfies (2).

Proof. We will prove the lemma by induction on j. In the beginning of the first
stage M; is composed of |V;| vertices, and the lemma holds true.

We assume that the lemma is true at the beginning of stage j, that is, every root
of M; satisfies (2). We will show that the invariant holds true at the beginning of
stage 3 + 1.

During stage j the unpromoted roots of M; hook to form larger components
(step 1). Then, in step 3, some roots will recognize themselves as the roots of M.
We have to prove that these roots satisfy invariant (2) at the beginning of stage j + 1.

We will distinguish two cases:

(1) Root r was also a root in the beginning of stage j. Then, for every vertex v that
belonged to a tree which during the hooking step hooked on r’s tree, there is a path
of mate pointers from v to r. So, after the plugging step (step 4) Lemma 5 applies.
Moreover note that step 6 removes only null edges. Therefore, at the beginning of
stage j + 1, root r satisfies (2)

(2) Root r was not a root in the beginning of stage j, therefore r was a part of
a promoted component. We can see that the effect of having all vertices in a cycle
execute the plugging step (Figure 4.5) is to break the edge-lists in two rings. To
reverse the effect of plugging, re-join these two rings of edges into a chain. This can

be done by r in stage j.

78



r first(L(r))
w [+—=]

Figure 4.5: Assume that, at a later stage j, vertex r becomes the root of the pseu-
dotree. Then, r can easily reverse its edge-plugging. In the figure, dotted lines denote
the pointers that must be changed.

79



This operation is actually simple: r can reverse the steps of its own edge-plugging
by executing the following statements:

next(twin( first(L(r)))) « next(last(L(r)))

next(last(L(r))) « nl

To prove that the above statements correctly re-join the rings, we have to show
that (a) first(L(r)) still points to edge (r,w), the edge that r chose during its most
recent hooking stage 7' < j, (b) twin(r,w) = (w,r), and (c) no edge shortcutted over
(ryw), (w,r), or last(L(r)) during stages j' to j.

The first(L(r)) pointer is only altered by a hooking step, so (a) is true. Twin
functions are only computed at the end of a phase, not during stages, so (b) is also
true. Finally, as one can see by examining step 5 of procedure stage, these three

edges were never nullified; so, (¢) is also true. a

REMARK. Since only the edge-list of an already promoted component will ever
be divided into two rings, one can actually postpone dealing with them until the end
of the phase. Then one can construct the edge-lists of the components from scratch.
This takes O(lgn) time, so it can be done at no extra cost. The reason that we chose
to describe the rejoining steps as we did in Lemma 6 instead, was to provide the

details for an implementation of Algorithm 1 (Section 4.3).
Lemma 7 If at the end of stage j some component is busy, it has been promoted.

Proof. By definition, a component is busy if at the end of a stage it is still a
pseudotree. Of course, such a component will not pick a mate in the beginning of
the next stage because it has no root to do the operation. Procedure stage contracts
the components for [alg B] steps. So, according to Lemma 4, pseudotrees with

circumference less than or equal to B will be rooted trees at the end of stage j and

80



therefore not busy. Thus, a busy component had more than B members, and so it

has been promoted to the next phase. a

Lemma 8 Let C' be a component which in stage j has an internal hooking. Then C

has been promoted.

Proof. Recall that internal hooking happens when (' picks as a mate an internal
edge (without knowing it). Also note that such a hooking cannot happen in stage 1
because all components enter the first stage without internal edges. So, 7 > 1.

At the end of stage 7 — 1 all components within distance B from the root have
reached the root (Lemmas 3 and 4) and have nullified the appropriate entries in the
root’s edge list. So, an internal edge must be connecting the root of the component to
some vertex v in the tree, which was at a distance more than B from the root, since
it did not have enough time to reach the root. Thus, there are at least B components
that reached the root (namely those in the path from v to the root), and so C has

been promoted. a

Lemma 9 If a component C' cannot find a mate at some stage j, then either it has

been promoted or it is not connected to any other component.

Proof. Let C be a component that cannot find a mate at some stage j of phase ¢.
We will distinguish two cases: (a) C found no edges in its edge list, and (b) C' found
a null edge in its edge list.

(a) According to Lemma 6, in the beginning of each stage the root of a component
C' holds all the edges of its members that have not been removed as null. So, if an
edge of €' was not null, it would be in C’s edge list. Therefore, C' is not connected to

any other component in the graph.

81



(b) First we observe that j > 1. Note that at the end of stage j — 1 the algorithm
performed the null edge removal step for 2[lg B| 4+ 1 times. This removes any block
containing up to B? null edges from the edge list of the component’s root. Next
we observe that any component with fewer than B members cannot have more than
B(B —1)/2 internal edges. So, a root may find a null edge in its edge list only if its

component is bigger than B and therefore is promoted. O

Lemma 10 FEvery active, non-promoted component at stage j will have a successful

hooking at stage 7 + 1.

Proof. Let C' be a component that is not promoted at the end of stage j. C
is a rooted star because |C'| < B. Also, by Lemma 6, its root holds all the edges
that belonged to the edge-lists of its vertices and were not deleted in previous stages.
Moreover, L(r) contains no internal edges because they were all identified and deleted.

So, if L(r) contain any edges, r will have a successful hooking at the next stage. O

Lemma 11 After [lg B| successful hookings in some phase, a component has been

promoted.

Proof. First we show that if a root r is not promoted after performing k successful
hookings, it was continuously hooking to components having successful hookings. For,
if one of these components had an internal hooking, it was promoted; therefore, r’s
component was part of a promoted component.

Next, we can easily prove by induction that, after each successful hooking at stage
7, components have sizes at least 27. Therefore after [lg B] successful hookings, r is

the root of a component of size B and thus has been promoted. a

82



Lemma 12 At the end of phase i each component is either promoted or not connected

to any other components.

Proof. Fach phase is composed of [lg B] stages. In the beginning of a stage
each component is either ready or busy. A busy component cannot pick a mate, but,
according to Lemma 7, it is a promoted pseudotree. On the other hand, a ready
component is a rooted tree which can pick a mate from its edge list that contains all
the edges of its members (Lemma 6). So, the reason for which a ready component
may not be able to find a mate (according to Lemma 9), is that the component is
promoted or done. Otherwise the component will find a mate.

A hooking may either be successful or internal. An internal hooking, according
to Lemma 8, can only happen to an already promoted component. So, we only have
to follow components which have successful hookings for [lg B| stages. But these

components (Lemma 11) have been promoted at the end of the last stage. a

Lemma 13 In the beginning and at the end of each phase ¢ (a) The components are
rooted stars. (b) The size of each active component is at least |B'|. (c) Invariant 1

is preserved. (d) There are no internal edges.

Proof. (a) This is obviously true in the first phase, where components are com-
posed of a single vertex, the root. During the stages, these components are hooked to
form a pseudoforest. Then, at step 2 of procedure phase, the pseudoforest is trans-
formed to a set of rooted stars. The remaining steps do not affect the structure of the
components, and so, in the beginning of the next phase, the components are stars.

(b) This is immediate from Lemma 12.

(c) Again, this is true for the first phase. For the remaining phases, step 4 of

83



procedure phase uses bucket sort to identify multiple edges and the step 5 removes
them.
(d) Internal edges are nullified in step 3 and are removed in step 5 of the procedure

phase. O

84



4.5 Updating a Minimum Spanning Tree

4.5.1 Introduction

The vertex updating problem for a minimum spanning tree is the problem of updating
a given MST of a graph G when a new vertex z is introduced with weighted edges to
the vertices of G.

This problem was first addressed by Spira and Pan in [SP75], where a O(n) sequen-
tial algorithm was presented. Another solution using depth-first-search and having
the same time complexity was later given by Chin and Houck in [CHTS].

Pawagi and Ramakrishnan [PR86] gave the first parallel solution to the problem.
Their algorithm, which runs in O(lgn) time using n? CREW PRAM processors,
precomputes all maximum weight edges on paths between any two nodes in the tree,
and then breaks the (g) cycles simultaneously in constant time. Varman and Doshi
[VD86] presented an efficient solution that works in the same parallel time, but uses
only n CREW PRAMs. Their solution is a “divide and conquer” algorithm which,
using the separator theorem, breaks the input tree in y/n subtrees of roughly the same
size by removing y/n — 1 edges. Then, it solves the problem recursively in all subtrees
and merges the results. Even though their idea is simple, the implementation details
make the algorithm rather complex. Lately, Jung and Mehlhorn [JM88] gave an
optimal solution for the more powerful CRCW PRAM model. However, simulating
this algorithm without concurrent writing slows down its performance by a factor
of lgn. Their approach reduces the problem to an expression evaluation problem
by defining a function on the nodes of the MST which, when evaluated effectively,
computes the new MST.

We present an optimal yet simple solution for the EREW PRAM model which

89



works in O(lgn) parallel time using n/lgn processors. Our solution needs a valid
tree-contraction schedule. Several methods that provide such schedules have been
proposed in the past few years, such as the ones reported in [MR85, ADKP89, KD8&8,
CV88, GR86, GMT88]. All these methods give a schedule for contracting a tree of n
nodes into a single node in O(lg n) parallel time using n/lgn processors, provided that

the prune (remove leaves) and the shortcut (remove nodes of degree two) operations

have been defined.

4.5.2 Definition of the Problem

We are given a weighted graph G = (V) Eg), along with a minimum spanning tree
(MST) T = (V, E) and a new vertex z with n weighted edges connecting z to every
vertexin V. (Note: If, in an instance of the problem, z is not connected to some vertex
x, we can assume an edge (z,x) having maximum weight.) We want to compute a
new MST 77" = (VU {z}, £').

One parallel solution would be to compute the MST from scratch, but this re-
quires time O(lg>n) with n?/lg’n CREW PRAMs [CLC82]. Sequential algorithms
for computing the MST from scratch on a sparse graph take O(mlglgn) time, where
m is the number of edges in the graph [Yao75, CT76]. The fact that the number
of cycles in the input graph is small (there are O(n?) cycles versus an exponential
number of cycles in general graphs) enables us to compute the new MST faster, by
breaking the cycles.

Upon introducing the new vertex z along with n weighted edges, (g) cycles are
created. If we break these cycles by deleting the maximum weight edge (MaxWE)
that appears in each cycle, the resulting tree will be the new MST. It is easy to see

that at most n of these 2n — 1 weighted edges will be included in the new MST.

86



Figure 4.6: (a) The initial (given) MST, (b) the implicit graph after introducing the
new vertex z along with its weighted edges and (c) the corresponding weighted tree.

No non-tree edge of the old graph can be included because all of them are already
MaxWEs on some existing cycle in the original graph; so we need not consider any
such edge. Moreover, any sequential algorithm that solves the problem must take
time Q(n): Consider the case when an existing MST forms a path and vertex z is
connected to the two ends of the path. Then, any of the n + 1 edges could be the

MaxWE, and a sequential algorithm must examine them all.

4.5.3 Representation

In light of this discussion, we may take the input to be a tree T" with n — 1 weighted
edges (corresponding to the given MST) and n weighted nodes (corresponding to
weights of the newly introduced edges to z). We will call this object a weighted tree
(Figure 4.6). Note that a path between two weighted nodes in T' corresponds to a cycle
in the graph augmented with z. Such a graph is shown in Figure 4.6b and is implied
in Figure 4.6¢c. Thus we call this object the implicit graph.

In the discussion that follows, reference to the weight of a node will mean reference

to the corresponding edge in the implicit graph, unless noted otherwise.

87



4.5.4 Breaking the Cycles
Outline of the Algorithm

As we have said, we are given the input in the form of a weighted rooted tree. We
assume that each vertex has a pointer to a circular linked list of its children, and the
linked lists are stored in an array. This representation of the input is not crucial,
since it can be derived in O(lgn) time using n/lgn processors from any reasonable
representation (see [CV88] for a discussion of representation).

The algorithm consists of a number of phases. During each phase, nodes of degree 1
(i.e. leaves) and nodes of degree 2 (internal nodes having one child) of the weighted
tree are being processed. Fach tree-node is processed once in the entire course of the
algorithm. The order in which the nodes are processed in parallel is dictated by a
tree-contraction schedule. Two such schedulings — the Shunting and the ACD — were
described in Section 3.4. Processing a node means examining the edges composing
small cycles (cycles of length 3 or 4) that the node is part of, and breaking these cycles
by removing the MaxWE that appears in them, effectively computing the MST of
the subgraph induced by the examined edges. This is done by a set of rules which
also update neighboring nodes, so that the size of the unprocessed part of the tree
decreases without losing any information about the MaxWEs of larger cycles.

A sequential algorithm needs only to apply the appropriate rule while visiting
the nodes of the tree. Thus a depth-first-search visit of the nodes suffices. When
working in parallel, though, the rules can apply to many nodes at once, provided that
no confusion arizes from the updating of neighboring nodes. A valid tree contraction
schedule suffices to assure that neighboring nodes are not processed at the same time.

When all edges have been examined (i.e. after processing all the nodes), the MST of

88



Wy/W2 W3\ W4 \Whx

0 V2 U3 V4 Us

V4 Us

Figure 4.7: Binarization: A node with more than two children is represented by a
right path of unremovable edges.

the implicit graph has been computed.

The rules assume a binary tree as input, so some preprocessing is needed to
transform the weighted tree to a binary weighted tree. This can be achieved in O(lgn)
time using n/lgn EREW PRAM processors, and is needed only for ordering the
processing of a node’s children; only the parallel algorithms need this transformation.
This transformation is performed by the procedure binarize, which we briefly describe
here. For the details we refer to Section 4.5.6. Each node v = ug with & > 2 children
is augmented with k& — 2 fake nodes wu; (see Figure 4.7) to form a right path. Each
of the children v; of node v is attached as a left child of node w;_;, while u;_; has
a right child as well. The weights of the edges connecting the u;’s have weights
—oo which makes them unremovable by the MST algorithm. The fake nodes do not
have weights. They are introduced only to facilitate the order of processing of v’s
children. At the end of the algorithm the right path is always included in the MST
of the binarized problem, giving a unique obvious solution to the original problem.

The binary weighted tree has the same number of cycles, but may have height much

89



larger than the input tree and may contain twice as many nodes. This, though, does
not affect the running time of the algorithm, which is logarithmic in the number of

tree nodes, regardless of the height of the tree.

Invariants and Rules

The rules are divided into two categories: Rules that are applied to nodes of degree 1
(pruning rules), and rules that are applied to nodes of degree 2 (shortcutting rules).
For simplicity we will assume that the former is a leaf and the latter is an internal
node with one child. This will not always be the case but the treatment is essentially
the same.

Each node is examined once for rule application. Then, its incident edges are
identified as being either (unconditionally) included into the new MST, excluded from
it, or conditionally included in it. A conditionally included edge is one which will be
included in the MST unless it is the MaxWE of another cycle which has not been
yet considered. In the figures of this section, a conditionally included edge is marked
with a star (*).

It is useful to observe that the edge with minimum weight incident to some node
will always be included in the MST. Actually, many sequential and parallel algorithms
are based on this observation (i.e. [Pri57, SP75, CLC82]). Edge inclusion makes use
of this observation.

Another useful observation is that whenever some edge is found to correspond
to the MaxWE of some cycle it can be removed from the tree without affecting the
computation of the remaining graph. (Kruskal’s MST algorithm makes use of this
fact.) Edge exclusion is based on this observation.

Let w: VUE — R give the weights of the nodes and the edges. In the beginning of

90



the algorithm the weight of a node v, it it exists, is the weight of the edge connecting
v to z. Some nodes (fake or not) may not have an assigned weight. For the purposes
of the algorithm, a weight of +o00 is assumed on each of them. To resolve ties, we
adopt the convention that the currently processed node has weight larger than its
equally weighted neighbor.

Let us define the provisional graph to be the graph induced by the edges ex-
amined since the beginning of the algorithm. Note that whenever a leaf v is pro-
cessed, three edges are examined: (z,v), (v, p(v)) and (p(v), z), where p(v) represents
the parent of v. Whenever an internal node is processed, five edges are examined:
(z,0), (v,p(v)), (p(v), 2), (v,u) and (u,z), where u represents v’s only child. Each

application of a rule on some node preserves the following three invariants:
Invariant 2 The minimum spanning tree of the provisional graph has been computed.

This will be true, because we will consider and break all cycles of the provisional
graph by removing the MaxWE appearing in them. Furthermore, the rules will assure
that the non-excluded edges of the provisional graph will constitute a MST. So, it
will be the MST of the provisional graph because (i) connectivity is preserved, (ii) no

cycles remain and (iii) the cycles have been broken by removing their MaxWE.

Invariant 3 The weight w[v], if it is defined, of some unprocessed node v corresponds
to the max weight edge (MaxWE) on the unique path from z to v either via edge (z,v)

or through edges contained in the provisional graph.

As we said, application of a rule on some node v will examine and break all the
small cycles that v is on, by removing their MaxWE. Some larger cycle sharing the
MaxWE with a broken small cycle will also be broken. The next invariant describes

how other larger cycles containing v are affected.

91



Invariant 4 Let ¢ be a larger cycle containing node v, and let e be its MaxWE. After
the application of a rule on v, then either ¢ has been deleted or there remains another

cycle in which e is the MazWE.

Initially, since there are no processed nodes and the provisional graph is empty,
the invariants hold. We now show how these invariants can be preserved under tree-

contraction operations.

Pruning Rules

Consider a cycle involving leaf v, p(v) and z. Let w[(v,p(v))] = a, w[v] = b and
w[p(v)] = ¢ (see Figure 4.8). The small cycle of length 3 they form can be broken
in such a way that the invariants are preserved by removing one of the three edges

involved. We consider the following cases:

a = max{a, b, c}: Then, edge (v, p(v)) must be excluded from the new MST. When
it is removed, the tree is broken into two subtrees (which are connected in
the implicit graph via z). Moreover, the edge that corresponds to b has to be
included in the MST, since this is the only way that v can be connected with

the graph.

b = max{a, b, c}: Then, node v can be included in the MST only via (v, p(v)). There-

fore, this edge is added in the MST while edge (z,v) is excluded from it.

¢ = max{a, b, c}: In this case the best way to include p(v) is not via (z, p(v)), so this
edge is excluded. It could be best to include p(v) via v, but if so, we do not
know it yet. But in this case the MaxWE that connects p(v) with the provisional

tree will have weight max{a,b}. The edge corresponding to min{a, b} has to

92



c

a = max{a, b, ¢}

¢ = max{a, b, ¢} <>\%gg{a, b}

min{a, b}

Figure 4.8: Pruning Rules for a Leaf. In this and in following figures, a conditionally
included edge is marked with a star (*), an (unconditionally) included edge is dotted
and we keep its weight letter. We erase an excluded edge along with its weight letter.

93



¢ =max{a, b, c,d e} O\Q

min{max{a, b}, max{d, e}}

min{a, b} min{d, e}

Figure 4.9: When v’s sibling is a leaf.

be included in the MST. In the figure, this is indicated by labeling v with
min{a, b}. The edge corresponding to max{a, b} is conditionally included. We
update w[p(v)] := max{a, b} to preserve Invariant 3. The effect of the update is
the following: If w[p(v)] is found to be a MaxWE of some other cycle later on, the
edge corresponding to max{a, b} will not be included in the MST. Otherwise,
if upon termination of the algorithm no rule has excluded w[p(v)], it will be

included.

Some special care must be taken in the case that v’s sibling, say w, is also a
leaf (Figure 4.9) and is processed at the same time. This, for example, can happen
when the ACD scheduling method is used, which schedules v and u to be processed
at the same time. Let wlu] = e and w[(u,p(v))] = d. If ¢ = max{a,b,c,d, e},
then (z,p(v)) must be excluded and some precaution taken to avoid simultaneous
reading or writing on p(v) by the two processors. Moreover this cycle of length 4
(z,v,p(v),u, z) must be broken, by excluding one of the four edges. Also w[p(v)] must
be updated to either max{a, b} or max{d, ¢}, depending on which child was connected
to the excluded edge. In particular, if max{a,b} > max{d,e} then max{a,b} is

excluded and w[p(v)] := max{d, e}. Else if max{d, e} > max{a,b} then max{d, e} is

94



d a
b ¢
‘ AN
a = max{a, b, ¢} b = max{a, b, ¢}
or a = max{a,d, e} d = max{a,d, e
e e
d a p a
¢ ¢

Figure 4.10: Shortcutting Rules: The first two cases.

excluded and w[p(v)] := max{a, b}.

Shortcutting Rules

Let’s consider a situation where v has only one child u. There are two possible small
cyclesinvolving v: A “lower” one (z,v,u, z) and an “upper” one (z, v, p(v), z). We will
describe how to break these cycles in such a way that the invariants are preserved. Let

wv] = a, wl(v,u)] = b, wlu] = ¢, w[(v,p(v))] = d and w[p(v)] = e (see Figure 4.10).

a = max{a,b,c} or « = max{a,d,e}: Then, the best way to include v in the MST
is either via (v,p(v)) or via (v,u). Thus, the edge with weight min{b, d} must
be included in the MST. The other, equal to max{b,d} will be conditionally

included, i.e. it will be included if and only if it is not the MaxWE in another

95



cycle involving z,u, p(v), and possibly other nodes. Therefore we can preserve
the MaxW E-related information about these cycles by introducing a new short-

cutting edge (u, p(v)) corresponding to the edge with weight max{b, d}.

b = max{a,b,c} or d = max{a,d,e}: In the first case edge (v,u) must be excluded
from the new MST and can be deleted. In the second case edge (v, p(v)) must
be excluded. In either case v becomes a “leaf”, and it then can be processed
using the rules for pruning. (Of course, in the second case we use the term
“leat” loosely: Node v is the parent of u but, nevertheless, it can be pruned as

a leaf because it has degree one.)

¢ = max{a,b,c} and e = max{a,d,e}: Then, (z,u) and (z,p(v)) must be excluded
from the MST, and the edge corresponding to min{a, b, d} must be included. We
have to update p(v) and u so that they reflect this fact, preserving the invariants.
In Figure 4.11 this case is presented, with the further assumption that b > d for
a simplified picture. We observe that there may exist (i) cycles involving edges
(z,v), (v, p(v)) and edges in the upper part of the tree, (ii) cycles involving (z, v),
(v,u) and edges in the lower part of the tree, and finally (iii) cycles going through
u,v,p(v) that do not involve (z,v). The update should preserve information
about these cycles as dictated by Invariant 4. We update w[p(v)] := max{a, d}
to account for cycles of the first type, and wlu] := max{a, b} to account for
cycles of the second type, both corresponding to conditionally included edges.
Finally, we introduce a conditionally included shortcutting edge (p(v),u) with

weight max{b,d} to account for cycles of the third type.

It is worth noting that in the last shortcutting rule not all three weight-updates

are needed for the correctness of the algorithm. One of them can be omitted as

96



¢ = max{a, b, c% and ¢ = max{a,d, e} max{a, d}*

d a max{b, d}*
©)
b\;@\c min{a, b, d} max{a, b}*
kb>d
$a = min{a, b, d} a # min{a, b, d} $
o
0 .

Figure 4.11: Shortcutting Rules: The third case. In (a) and (b) we show the simplified
updating assuming b > d.

97



ax
b

max{a, b}*

Figure 4.12: Assuming d = min{a, d,b}: By omitting u’s updating we have still
preserved the MaxWE’s of all three kinds of cycles.

redundant (Figure 4.11): If ¢ = min{a,b,d}, then we don’t need the shortcutting
edge because some MaxWE occurring in cycles of the third type will also be MaxWE
in some other cycle of the first or the second type. So, updating w[p(v)] := d* and
wlu] := b* is enough. Otherwise, if ¢ # min{a, b, d}, and say b > d, then updating of
u is not needed, because information about cycles of all three types is preserved (see
Figure 4.12). This observation can lead to a simpler implementation of the algorithm.

Again, a weightless node is treated as if it where holding the maximum value.

Memory Access Conflicts

The fact that shortcutting may update both parent and child nodes creates a pos-
sibility of a write conflict. Consider the following situation: Let (see Figure 4.13a)
nodes x, v,y satisfy p(y) = v and p(v) = x, and assume that nodes = and y are to
be processed simultaneously. Moreover, let’s assume that shortcutting node x calls
for updating child node v with w[v] := a, and shortcutting node y calls for updating

parent node v with w[v] := b.

98



Figure 4.13: Memory Access Conflicts and how to resolve them. Two (a) and three
(b) processors attempt to update v.

Recall that, according to Invariant 3, the weight of a node represents the MaxWE
on the path from this node to z via processed neighbors. The write conflict actually
represents a cycle involving nodes z,x, v, y, and possibly x’s parent and/or y’s child.
Since just two processors may try to write on the same memory cell, the conflict
can be avoided and the cycle behind it broken by removing the edge max{a, b} while
updating w(v] := min{a, b}.

This is the only kind of access conflict that can be created by the shunting schedule
we have described. There are other schedules, though, which create a slightly more
complicated conflict when updating a node with three values (see Figure 4.13b), say
a,b, and ¢. Again, this can be resolved by breaking the MaxWEs of the three cycles
behind the conflict. Therefore, in this case the algorithm should update wlv] :=
min{a, b,c} and should exclude the edges that correspond to the other two values.?

The above discussion verifies that application of the rules preserve the invariants,

proving the following Lemma:

3The write conflict that occurs when two sibling leaves are pruned simultaneously (Figure 4.9)
can be viewed as a special case of this conflict.

99



Lemma 14 Application of a pruning or a shortcutting rule on some node v of the

weighted graph preserves the invariants.

Correctness Lemma

We have described a set of rules that define a prune operation which removes the
leaves of a tree, and a shortcut operation which removes nodes of degree two from the

tree. Note that individual prunings and shortcuttings take O(1) time to be performed.

Lemma 15 When the rules are applied on the nodes of a binary weighted tree at
times given by any valid tree contraction scheduling, they correctly produce the updated

mintmum spanning tree.

Proof. As we said, a valid contraction schedule defines processing times on nodes
having degree 1 or 2. So, only the prune and shortcut operations are needed, and
they are provided by the rules. Moreover neighboring nodes are not scheduled at
the same time, and any node may be accessed for updating its weight simultaneously
by at most three processors. This conflict can be resolved easily as mentioned in
the previous subsection. Therefore, the shortcutting and pruning operations can be
done without confusion, and their application, according to Lemma 14, preserves the
invariants. Thus, at the end of the schedule, the MST of the provisional graph, and

therefore the updated MST of the implicit graph, has been computed. O

4.5.5 The Algorithms

As we said earlier, the vertex updating problem has a lower bound of Q(n) sequential

time. A sequential algorithm for some problem of size n is optimal if it runs in

100



time that matches a lower bound for the problem to within a constant factor. The
sequential and parallel algorithms we present here are all optimal. 4 We discuss now

the sequential and parallel algorithms that can be derived using the rules.

Theorem 5 There are optimal sequential and parallel algorithms that solve the MST
vertex updating problem based on the rules presented above. The sequential algorithms

run in O(n) time and the parallel algorithms run on a binary weighted tree in O(n/p)

time using p < n/lgn EREW PRAM processors.

Proof. A. THE OPTIMAL PARALLEL ALGORITHMS. In Section 3.4 we presented
two valid tree-contraction schedulings that can be used to contract a binary tree in
logarithmic time. Using the pruning and shortcutting rules with the schedulings we
arrive at two parallel algorithms that solve the MST vertex updating problem. Since,
in either scheduling, at most three processors may attempt to operate on the same
data item at a certain time, we can schedule the operations in such a way that no
read or write conflicts occur. This observation along with Lemma 15 completes the
proof for the parallel case.

B. THE OPTIMAL SEQUENTIAL ALGORITHMS. The rules we presented do not
depend on the particular order in which the nodes of the tree are removed. So,
different removal sequences of the nodes yield different algorithms and, in particular,
we can derive sequential algorithms from the parallel ones. The running time of these
algorithms differ only by a constant. We present here some of these algorithms:

Remove on the fly. Use depth first search to visit the nodes of the tree. Every time
a node of degree 1 or 2 is encountered, process it using pruning or shortcutting rule,

respectively. Each node will be visited at most twice (on the way down the tree and

4Optimality of parallel algorithms is defined in Section 2.4.

101



on the way up the tree), so the algorithm runs in O(n).

Postorder. Another algorithm simpler to implement but with the same time-bound
is the following: Visit the nodes of the weighted tree in postorder (using, for example,
depth-first-search). A node is processed after all its children have been processed, so
only the pruning rules are needed. Since each node is processed at most once, we
have an O(n) sequential algorithm. °

Shunting. A third algorithm follows from the parallel scheduling of [ADKP89].
Number the leaves of the tree in a left-to-right manner and place their addresses
in an array of length [n/2] 4+ 1 as dictated by the schedule. Then visit the array
performing shunts on the nodes of the array.

ACD. Visit the leaves of the tree computing their centroid levels and performing
centroid decomposition [CV88]. Bucket-sort the scheduled numbers; place them in

an array of length n and then process the nodes of the array. a

REMARK 1. This list does not exhaust the possible sequential and parallel al-
gorithms that can be based on the rules presented, but includes only the simpler
ones. We should note that other tree-contraction techniques (like the ones presented
in [GR86] and [GMTS88]) lead to different algorithms with the same bounds. (The
shunting scheduling is shown in Figure 4.14).

REMARK 2. The shunting method described in [ADKP89] requires that the root
of the tree not be shunted until the end. This is needed mainly for the expression
tree evaluation algorithm. In our case, shunting the root is permitted since there is

no top-to-bottom information to be preserved.

5 As a matter of fact, this algorithm is similar to the one given in [CH78], but the pruning rules
make it easier to describe and understand.

102



Figure 4.14: Run of the Parallel Algorithm using SHUNTING on the tree of Figure
1. Dotted edges are included in the MST, deleted edges are excluded from it. (a) In
black are the first two processed vertices. (b) Third step. (¢) Fourth and final step.

REMARK 3. Tree contraction algorithms often require a second “expansion” phase
after the contraction phase. The algorithms we present here do not need a second
phase because of Invariant 2: At the end of the tree contraction phase the new MST

has been computed.

4.5.6 Binarization

We now discuss how a general tree can be transformed into a binary tree using the
procedure binarize:

Each node v having k children vy, - - -, vy, is represented by a right path (Figure 4.7)
composed of v = ug and k — 2 fake nodes uy, -+, up_z, so that node u; is the right
child of w;_; and the parent of w;4;. Node v;, e =1,---,k — 1 becomes the left child
of node u;_y and v the right child of u;_s. We assign weights of —oo to the edges
of the right path, so they can not be excluded by the rules. The fake nodes have no

assigned weight (which is treated as the maximum value weight by the algorithm)

103



because they are only introduced to facilitate the processing order of v’s children. Of
course, the real nodes v and the v;’s keep their weights.

Recall that the shunting scheduling accepts as input a regular binary tree. When
using this technique, the binarization should be extended to handle nodes v with
only one child in the input tree. For each of them, a second child v’ is introduced, for

which w[v'] = 0o and w[(v,v’)] = —cc.

Theorem 6 There are logarithmic-time optimal parallel algorithms solving the MST

vertex updating problem on a rooted tree.

Proof: The binarized graph has exactly the same number of cycles as the given
graph, and at the end of the algorithm the edges composing the right path are always
included into the new MST. Therefore, the solution of the binarized problem shows

a corresponding unique and unambiguous solution to the general problem. O

Similar binarization techniques to the one described have been used in [VD86,
CV88, ADKP89]. Another technique [JM88] “plants” a balanced binary tree over
the v;’s with v as the root. The internal nodes and the internal edges have weights
as those in the right path in the previously described technique. Both constructions
require the list ranking algorithm [CV86a] which runs within the desired bounds.
(Actually, in [VD86] the Eulerian tour technique is used which has the list ranking

procedure as a subroutine.)

4.6 On the Edge Updating Problem

The edge updating problem of a MST can be defined as follows: We are given a
graph GG = (V, E) and its MST T = (V, E’) as input along with the weight function

w: F — R. Also we know that one of the edges e changes weight, and we want to

104



compute the new MST 7". A sequential algorithm for this problem is given in [Fre83]
with O(y/m) running time.

It is obvious that if e is a tree edge and decreases its value, or if e is not a tree
edge and increases its value, then T = T. In the other two cases we have:

A TREE EDGE INCREASES. A simple solution is to consider the two connected
components that e divides the graph into, and to find the minimum weight edge

connecting them. So, a simple algorithm for it, is:
1. Preorder the tree using the Eulerian tour technique [TV85].

2. Using the preorder numbering, divide V into the two subsets V; and V3 created

by removing e from T

3. Put all edges connecting some vertex in V; to some vertex in V, in an array of

length m = |E| and compute the minimum.

The running time of this algorithm is O(lgn) using m/lgn EREW PRAMs.

A NONTREE EDGE DECREASES. Consider the cycle it creates in the tree when
this edge is added, and remove the MaxWE in it using a variation of the list ranking
algorithm in which the rank of a list element [ is defined to be the maximum of the
values appearing in the elements following [ in the list. The running time is O(lgn)
using n/lgn EREW PRAMs [CV86a].

This problem is a special case of the edge insertion in a MST problem for which
[CHT78] have shown a simple reduction to the vertex insertion problem. Our algorithm

can be used to solve this problem in parallel as well.

105



4.7 On the Multiple Vertex Updates Problem

4.7.1 Introduction

We define the problem of multiple vertex updates of a MST as follows: Let G =
(Vi, Eg) be a weighted graph on n vertices and m weighted edges and T' = (Vg, Er)
be its MST. Suppose (7 is augmented with k = |V} | new vertices that are connected to
Ve by kn = |Ei| new weighted edges, but they are not connected among themselves.
We are asked to compute the new MST T".

We will prove the following Theorem:

Theorem 7 The multiple updates MST problem can be solved in parallel in time
O(lgnlg k) using nk/lgnlgk EREW PRAM processors.

The problem of multiple vertex updates was considered in [Paw89] where a parallel
algorithm is presented. It runs in O(lg nlg k) time using nk CREW PRAM processors.
We will show how our solution for the (single) vertex update problem can be used to

achieve a better solution for the multiple updates problem.

4.7.2 Optimality

A sequential algorithm can solve the problem in time O(kn), by solving k single
update problems sequentially. Another approach would be to compute the MST of
the augmented graph G' = (Vg U Vi, Ep U E)) from scratch. Again, the edges of (¢
that are not in the given MST do not need to be considered.

The augmented graph G’ can be sparse or dense depending on the value of k.
The best algorithms to compute the MST of a graph G = (V, E') sequentially run in
time O(m lglgn) for sparse graphs [Yao75, CT76] and in time O(n?) for dense graphs

(using Prim’s well known algorithm [Tar83, page 75]). Assuming that the number of

106



edges connecting the new vertices to the tree is O(kn), the k single updates solution
is preferable, since it is simpler and, for sparse graphs, asymptotically faster.

The solution we present solves the problem in O(lgnlg k) time using nk/lgnlgk
EREW PRAM processors. It is therefore optimal for graphs having O(kn) edges and

also uses a weaker model of parallel computation than the one used in [Paw89].

4.7.3 The algorithm

Our solution follows in general the solution presented in [Paw89] but in certain parts
uses different implementation techniques to achieve the tighter time and processor
bounds.

The algorithm consists essentially of three parts.
1. Make £ copies of T', and solve k update MST problems in parallel.

2. Combine the MSTs of the k solutions into a new graph .. This graph may

contain cycles. Transform it to an equivalent bipartite graph Gv.
3. Solve the bipartite MST problem on the graph .

We will show that each of these parts can be implemented within the desired

time-processor bounds.

Solving & Updating Problems

Making k copies of T' can be done efficiently as an application of Brent’s scheduling
principle, which we explained in Section 3.2: Making k copies of T' requires O(kn)
operations and can be done in constant time if kn processors are available. Therefore,

it can be done in O(lgnlg k) time using kn/(lgnlg k) processors.

107



According to Theorem 1, a single updating of a MST can be done in O(n/p) time
when p processors are available. Here we have k problems to solve, each of size n.
Allocating n/(lgnlg k) processors per problem, it takes O(lgn lg k) time to solve each

problem in parallel.

Creating the Bipartite Graph

Next, we have to combine the &k solutions found in the first part into a new graph G,
which in turn is transformed to an equivalent bipartite graph Gy. By equivalent here,
we mean that there is a cycle in Gy if and only if there is a cycle in G,. Graph G,
will never be explicitly created. It is only defined for the sake of description.

Consider the MST of some solution T; = (VU {z;}, E;). Then, E; consists of edges
(v,w) that belonged to the old MST T, along with new edges of the form (z;,v). An
important observation is that if some edge (v,w) of the old MST does not appear in
all k solutions, it will not be included in the final MST. This is so, because edge (v, w)
was the MaxWE of some cycle in one of the subproblems and thus must be excluded.
So, G, = (VU{z, -+, z}, E.) is composed of original edges (v, w) that appear in
all k solutions, along with edges of the form (z;,v), Vi € {1,---,k}. It is easy to see
that the formation of (¢, can be done within the desired bounds, because there are
at most n — 1 such edges per solution to examine.

We can view (G, as a collection of subtrees C; of the old MST that are held together
by the z;’s (see Figure 4.15). Every cycle in (¢, can be viewed as starting at some
2;, then entering subtree (; at a node v, and visiting some of its nodes, then exiting
through a node v! and visiting z;, etc, until returning back to z; (Figure 4.16). The
nodes v, that are adjacent to some z; are called e-nodes.

The transformed graph Gy, = (Vi, {21, -z}, F)) has a set of vertices V, which

108



C C, C;

Figure 4.15: The graph G, results from putting together the k& solutions. The figure
points out (G.’s bipartite nature.

c, c,

Figure 4.16: Cycles in G,. They are composed of alternative visits to z;’s and to tree
components. Vertices that are connected to z;’s are called e-vertices. In this picture
a cycle of length 4 is shown.

109



contains one vertex v for each e-node v, of (G,. Consider a path from z; to some e-node
ve, and let @ be the MaxWE on this path. Then edge (z;,v) € Ej corresponds to this
path and has cost equal to x’s cost. The algorithm needs, therefore, to compute all
MaxWE on all paths from z; to e-nodes v.. This is done as follows:

First, all e-nodes v, are recognized, and then we root each of the T;’s at z;. Both
of these operations can be done within the desired bounds. Now we have to compute
the MaxWEs on the paths between the z;’s and the e-nodes. So, we have to solve k
instances of the following problem:

ALL DISTANCES TO RoOT (ADR). Given a (regular binary rooted) tree with n
nodes having weights associated with its edges, find the MaxWE for each path from
a node to the root in O(n/p) time using p < n/lgn EREW PRAM processors.

A sequential algorithm for the problem uses depth first search and runs in linear
time. The parallel algorithm reduces the problem to tree-contraction as follows: Asso-
ciate a function mwe(v) for each node v, where mwe(v) = max{(v, p(v)), mwe(p(v))}
if v is not the root and mwe(root) = (). Use tree contraction to contract the tree and
then tree expansion® to compute mwe(v) for all v. We can come up with simple rules
which are given in Figure 4.17.

THE MULTIPLE ADR PROBLEM. Given k (regular binary rooted) weighted trees
each one with n nodes, compute the ADR problem on each of them in time O(lg nlg k)
using nk/lgnlg k processors.

The solution is a simple application of the previous algorithm. We associate

n/lgnlgk processors per tree and compute the problem in time O(lgnlg k).

5The expansion phase is needed because the definition of the function is top-down.

110



PRUNING SHORTCUTTING

(< @ @\@ = max{(v,w). (u,0))

max{ (v w) muwe( W)
©

max{ (v, w), mwe(w)}

Figure 4.17: Prunning and Shortcutting Rules for the CADR problem.

The Bipartite MST problem

For the third part of the algorithm we need the following definition of the bipartite-
MST problem: Let G = (V;,V,, E) be a weighted bipartite graph, where |V;| = k

and |V, | =n, k <n. We want to compute its MST.

Lemma 16 The bipartite-MST problem can be solved in O(lgnlgk) parallel time

using kn/(lgnlgk) processors.

Proof. The algorithm that we use is a well-known algorithm whose main idea is
attributed to Boruvka [Tar83, page 73] and was described in its parallel form in
[CLC82]. The analysis, though, and the time-processors bounds for the bipartite-
MST problem, are new.

First, let us give some definitions. A pseudotree is a digraph in which each node
has outdegree one. A pseudotree has, at most, one (simple) cycle. A pseudoforest is
a graph whose components are pseudotrees. The algorithm consists of a number of
stages. In each stage, each vertex v selects the minimum weight edge (v, w) incident

to it. This creates a pseudoforest of vertices connected via the selected edges. In

111



this case the cycle of each pseudotree involves only two vertices, so it can be easily
transformed into a tree. Next, each tree is contracted to a star using pointer-doubling,
and vertices in the same component are identified with the root of the star.

A crucial observation here is that, after the first stage, there will be no more than
k vertices in the resulting graph and the problem can be solved in O(lg? k) time using
k?/1g* k processors. So, we only have to show that the first stage can be performed
within the desired bounds.

As we said, the first stage consists of finding the minima of O(n) sets of vertices,
each with cardinality O(k) and then to reduce the O(k) resulting pseudotrees of height
O(n) to stars. For the first part, Brent’s technique applies. For the second part, we

use the optimal list-ranking technique of [CV86a].

112



Figure 4.18: Updating of a MST with 3 new vertices. In the lower part of the figure
the graph G, is shown.

113



Chapter 5

Conclusion and Open Problems

5.1 Conclusions

We have presented new parallel algorithmic techniques for the pseudotree contraction
and the edge-list augmentation problems. We also discussed some of the existing
parallel connectivity algorithms and argued that what they are missing is a scheduling
that carefully balances the work-performed versus progress-made ratio. Then we
presented the growth-control schedule that achieves this objective. These techniques
have been used to design new parallel algorithms for the minimum spanning tree
problem [JM91¢].

The major contribution of this thesis is a simple connectivity algorithm for the
CREW PRAM model of parallel computation. This algorithm works in O(lg3/2 n)
time and narrows the gap of the performance between several CREW and CRCW
PRAM graph algorithms by a factor of 1g¥/? n.

Other algorithms having running times that depend on a connectivity algorithm
include the Euler tour on graphs [AV84, AIS84], biconnectivity [TV85], ear decom-
position [MSV86, MR86] and its applications on 2-edge connectivity, triconnectiv-
ity, strong orientation, s-t numbering etc. The surveys by Karp and Ramachandran

[KR90], Eppstein and Galil [EG88], and Vishkin [Vis91] include more details on these

114



problems.

We should also mention that, with a minor modification, the algorithm works on
the weaker CREW PPM (Parallel Pointer Machine) model [GK89]. The modification
is to substitute the sorting routine we use at the end of each phase by the optimal
sorting algorithm of Goodrich and Kosaraju [GK89]. In the PPM model, the memory
can be viewed as a directed graph whose vertices correspond to memory cells, each
having a constant number of fields.

Other contributions of the thesis are the optimal parallel and sequential algorithms
for the vertex updating of a minimum spanning tree problem and the algorithm for
the multiple updates of an MST problem. The algorithms for the former problem
run optimally in O(lg [V]) time using % EREW PRAM processors, also leading to

optimal sequential algorithms. The algorithm for the latter problem runs in O(lg & -

lg |V]) parallel time using lgz:g"vl EREW PRAM processors.

5.2 Open Problems

We will now discuss some of the open questions that arise from our work.

The connectivity algorithm is an efficient but not optimal algorithm. Two natural
problems arising are how to reduce the number of processors employed by the algo-
rithm to (n +m)/lgn and/or how to implement it using the weaker EREW PRAM
model. For both problems, the CR rules must be modified. Since these are essentially
pointer jumping rules, techniques analogous to those used in [AM91, CV89] and in
[NM82] may apply.

The O(lg3/2 n) time bound in the algorithm is one that does not arise often in
parallel algorithms, and so it looks possible that it can be reduced. We remark that

Wyllie [Wyl81] and Shiloach and Vishkin [SV82] conjecture that a O(lgn) bound can

115



not be achieved by the CREW PRAM model. Even if this is true, a O(Ig' ™ n) bound
may be possible. One way to achieve this result is to remove efficiently the null edges
that are generated when the components grow in size. A bucket-sorting algorithm
with running time o(lg n) would suffice to improve the time bound, but it does not
seem possible. Probably the best way to go about it, is to create a better design of
the duration of phases and stages and/or to apply growth-control arguments to null
edge removal procedures.

Another interesting open problem is to examine the average case running time for
Algorithm 1: It is natural to assume that null edges will not always be found in the
beginning of some component’s edge-list, therefore some component may be able to
make progress even if it has not removed all of its null edges.

We should also mention that the techniques presented may apply to directed
graphs. Most of the directed graph algorithms use matrix multiplication techniques
which requires almost n® processors, making them highly impractical.

The vertex updating for a minimum spanning tree showed an application of tree
contraction. It is interesting to find other tree problems for which the tree contraction
technique applies. Moreover, a relevant question is the following: Can one come up
with a general way of defining pruning and shortcutting rules for tree-contraction in
parallel, for those tree problems that are solved sequentially using depth-first-search?
Finally, developing simple and fast SCAN algorithms for tree contraction would lead
to implementation of several PRAM algorithms on machines which are described by

the SCAN model.

116



Chapter 6

Appendix

6.1 On The SV Algorithm

Consider the following connectivity algorithm:

for lgn phases in parallel do

1. The representatives of the components hook, if they can. The hooking is done
by having all edges (r,z) that are adjacent to some component representative

r compete to be chosen by r.

2. The pseudotrees are contracted for a while by a constant number of CR rules

application.

3. Representatives of new components are recognized. Fdges rename their end-
points according to the representative’s names. Internal edges become idle for

the remaining of the run of the algorithm.

As one can see, this algorithm solves correctly the connectivity problem in O(lgn)
steps using n + m ARBITRARY CRCW PRAM processors. The proof is similar to

the one given in [SV82].

117



Bibliography

[AAKS9]

[ADKP89]

[AIS84]

[AKSS3]

[AMO1]

[ASS7]

A. Aggarwal, R.J. Anderson, and M.-Y. Kao. Parallel depth-first search
in general directed graphs. In Proc. of the 21st Annual ACM Symposium

on the Theory of Computing, pages 297-308, May 15-17 1989.

K. Abrahamson, N. Dadoun, D.G. Kirkpatrick, and T. Przytycka. A
simple parallel tree contraction algorithm. Journal of Algorithms, 10:287—

302, 1989.

B. Awerbuch, A. Israeli, and Y. Shiloach. Finding Euler circuits in loga-
rithmic parallel time. In Proc. 16th Annual ACM Symposium on Theory

of Computing, pages 249-257, 1984.

M. Ajtai, J. Komlds, and E. Szemerédi. Sorting in clogn parallel steps.

Combinatorica, 3:1-19, 1983.

R.J. Anderson and G.L. Miller. Deterministic parallel list ranking. Algo-

rithmica, 6:859-868, 1991. Also: Proc. 3rd AWOC 1988.

B. Awerbuch and Y. Shiloach. New connectivity and MSF algorithms for
shuffle-exchange network and PRAM. [FEFE Transactions on Computers,

(C-36:1258-1263, 1987.

118



[AV84]

[Ber85]

[Bor26]

[Bre74]

[CDRS6]

[CHTS]

[CLCS2]

[Col88]

[CR73]

M Atallah and U. Vishkin. Finding Euler tours in parallel. Journal of

Computer and System Sciences, 29:330-337, 1984.

C. Berger. Graphs. North-Holland, Amsterdam, The Netherlands, 2nd

edition, 1985.

Otakar Boriivka. O jistém problému minimélnim. Prdce Mor. Prirodovéd.
Spol. v Brné (Acta Societ. Scient. Natur. Moravicae), 3:37-58, 1926. (In

Czech.) Translation of the main parts of this paper appears in [GH85].

R. Brent. The parallel evaluation of general arithmetic expressions. Jour-

nal of the ACM, 21(2):201-206, 1974.

S. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds
for parallel random access machines without simultaneous writes. SIAM

Journal of Computing, 15(1):87-97, February 1986.

F. Chin and D. Houck. Algorithms for updating minimal spanning trees.

Journal of Computer and System Sciences, 16(12):333-344, 1978.

F.Y. Chin, J. Lam, and I-N. Chen. Efficient parallel algorithms for some
graph problems. Communications of ACM, 25(9):659-665, September

1982.

R. Cole. Parallel merge sort. SIAM Journal of Computing, 17(4):770-785,

August 1988.

S.A. Cook and R.A. Reckhow. Time-bounded random access machines.

Journal of Computing Systems Science, 7:354-375, 1973.

119



[CT76]

[CV86al

[CV86b]

[CVSS]

[CV8Y]

[Den86]

[Eck77]

[EGSS]

[Fre83]

D. Cheriton and R.E. Tarjan. Finding minimum spanning trees. SIAM

Journal of Computing, 5:724-742, 1976.

R. Cole and U. Vishkin. Approximate and exact parallel scheduling with
applications to list, tree and graph problems. In Proc. 27th Annual IEEFE

Symposium on Foundations of Computer Science, pages 478-491, 1986.

R. Cole and U. Vishkin. Deterministic coin tossing and accelerating cas-

cades: Micro and macro techniques for designing parallel algorithms. In

18th Annual ACM Symposium on Theory of Computing, 1986.

R. Cole and U. Vishkin. The accelerated centroid decomposition technique
for optimal parallel tree evaluation in logarithmic time. Algorithmica,

3:329-346, 1988.

R. Cole and U. Vishkin. Faster optimal parallel prefix sums and list

ranking. Information and Computation, 81:334-352, 1989.

P.J. Denning. Parallel computing and its evolution. Communications of

the ACM, 29(12):1163-1167, December 1986.

D.M. Eckstein. Simultaneous memory accesses. Technical Report TR-79-

6, Computer Science Dept, lowa State Univ., Ames, [A, 1977.

D. Eppstein and Z. Galil. Parallel algorithmic techniques for combinatorial

computation. Annual Review of Computer Science, 3:233-283, 1988.

G. Frederickson. Data structures for on-line updating of minimum span-
ning trees. In Proc. of the 15th Annual ACM Symp. on Theory of Comput.,

pages 252-257, 1983.

120



[FWT8]

[Gaz91]

[GHS3]

[GKS9]

[GMTSS]

[Gol77]

[GPSST]

[GRS6]

S. Fortune and J. Wyllie. Parallelism in random access machines. In
Proc. of the 10th Ann. ACM Symposium on the Theory of Computing,

pages 114-118. ACM, 1978.

H. Gazit. An optimal randomized parallel algorithm for finding connected
components in a graph. SIAM J. Comput., pages 1046-1067, 1991. Also:

Proc. 27th FOCS 19%6.

R.L. Graham and P. Hell. On the history of the minimum spanning tree

problem. Annals of the History of Computing, 7(1):43-57, January 1985.

M.T. Goodrich and S.R. Kosaraju. Sorting on a parallel pointer machine
with applications to set expression evaluation. In Proc. 30th IEEFE Sym-

posium on Foundations of Computer Science, pages 190-195, 1989.

H. Gazit, G. L. Miller, and S. H. Teng. Optimal tree contraction in the
EREW model. In Concurrent Computations: Algorithms, Architecture,
and Technology, New York, 1988. Tewksbury and Dickinson and Schwartz

(editors), Plenum Press.

L. Goldschlager. The monotone and planar circuit value problems are log

space complete for P. SIGACT News, 9(2):25-29, Summer 1977.

A. Goldberg, S. Plotkin, and G. Shannon. Parallel symmetry-breaking
in sparce graphs. In Proc. 19th Annual ACM Symposium on Theory of

Computing, pages 315-324, 1987.

A. Gibbons and W. Rytter. An optimal parallel algorithm for dynamic

expression evaluation and its applications. In Proc. of Symposium on

121



[Hag87]

[HCS79]

[HeS6]

[IMsS]

[JM91a]

[TMO91b]

[JM91c]

Foundations of Software Technology and Theoretical Computer Science,

volume 6, pages 453-469. Springer Verlag, 1986.

T. Hagerup. Towards optimal parallel bucket sorting. Informaton and

Computation, 75:39-51, 1987.

D.S. Hirschberg, A.K. Chandra, and D.V. Sarwate. Computing connected
components on parallel computers. Communications of ACM, 22(8):461—

464, August 1979.

Xin He. Efficient parallel algorithms for solving some tree problems. 2/th
Allerton Conference on Communication, Control and Computing, pages

TT7-786, 1986.

H. Jung and K. Mehlhorn. Parallel algorithms for computing maximal

independent sets in trees and for updating minimum spanning trees. In-

formation Processing Letters, 27(5):227-236, April, 28 1988.

D.B. Johnson and P. Metaxas. Connected components in O(log?’/2 n) par-
allel time for the CREW PRAM. In Proc. of 32nd IEEE Symposium on

the Foundations of Computer Science (FOCS’91), October 1991.

D.B. Johnson and P. Metaxas. Optimal parallel and sequential algorithms
for the vertex updating problem of a MST. Technical Report PCS-TR91-
159, Department of Mathematics and Computer Science, Dartmouth Col-

lege, Hanover, NH, 1991.

D.B. Johnson and P. Metaxas. A parallel algorithm for computing min-

imum spanning trees. Technical Report PCS-TR91-166, Department of

122



[KDSS]

[Knu80]

[KRI0]

[Kuc82]

[LFS0]

[LMS6]

[MRS5]

[MRS6]

Mathematics and Computer Science, Dartmouth College, Hanover, NH,

November 1991.

S. Rao Kosaraju and Arthur L. Delcher. Optimal parallel evaluation of
tree-structured computations by raking. Aegean Workshop on Computing,

pages 101-110, 1988.

D.E. Knuth. The art of Computer Programming: Vol. 2: Seminumerical

Algorithms. Addison-Wesley, Reading, Massachusetts, 2nd edition, 1980.

R. Karp and V. Ramachandran. Parallel algorithms for shared-memory

machines. Handbook for Theoretical Computer Science, 1:869-941, 1990.

L. Kucera. Parallel computation and conflicts in memory access. Infor-

mation Processing Letters, 14(2):93-96, 1982.

R.E. Ladner and M.J. Fischer. Parallel prefix computation. Journal of

ACM, 27:831-838, 1980.

C. E. Leiserson and B. M. Maggs. Communication-efficient parallel graph
algorithms. In [International Conference on Parallel Processing, pages

861-868, 1936.

G. L. Miller and J. H. Reif. Parallel tree contraction and its application.
In 26th IEEE Symposium on Foundations of Computer Science, pages

478-488, 1985.

G.L. Miller and V. Ramachandran. Efficient parallel ear decomposition

with applications. Technical report, MSRI, Berkeley, CA, 1986.

123



[MRS9]

[MSV86]

[NM82]

[Paw89]

[Phi89]

[PRS6]

[Pri57]

[Rei85]

G. L. Miller and J. H. Reif. Parallel tree contraction. Part 1: Fundamen-
tals. Advances in Computing Research, 5:47-72, 1989. Part in 26th FOCS

1985.

Y. Maon, B. Schieber, and U. Vishkin. Parallel ear decomposition search
(EDS) and s-t numbering in graphs. Theoretical Computer Science,

47:277-298, 1986.

D. Nath and S.N. Maheshwari. Parallel algorithms for the connected
components and minimal spanning tree problems. Information Processing

Letters, 14(1):7-11, March 1982.

S. Pawagi. A parallel algorithm for multiple updates of minimum spanning
trees. In International Conference on Parallel Processing, volume III,

pages 9-15, 1989.

C.A. Phillips. Parallel graph contraction. In st Symposium on Parallel

Algorithms and Architectures, pages 148-157, 1989.

S. Pawagi and 1.V. Ramakrishnan. An O(logn) algorithm for paral-
lel update of minimum spanning trees. Information Processing Letters,

22(5):223-229, April, 28 1986.

R.C. Prim. Shortest connection networks and some generalizations. Tech.

Journal, Bell Labs, 36:1389-1401, 1957.

J. Reif. Depth-first search is inherently sequential. Information Processing

Letters, 20:229-234, 1985.

124



[SP75]

[SVs2]

[Tar72]

[Tar83]

[TV85]

[Val90]

[VDS6]

[Vis83]

[Vis91]

P.M. Spira and A. Pan. On finding and updating spanning trees and
shortest paths. SIAM Journal on Computing, 4(3):375-380, September

1975.

Y. Shiloach and U. Vishkin. An O(logn) parallel connectivity algorithm.

Journal of Algorithms, 3:57-67, 1982.

R.E Tarjan. Depth-first search and linear graph algorithms. SIAM Journal

on Computing, 1(2), 1972.

R.E. Tarjan. Data Structures and Network algorithms. Society for Indus-

trial and Applied Mathematics, Philadelphia, Pennsylvania 19103, 1983.

R.E. Tarjan and U. Vishkin. An efficient parallel biconnectivity algorithm.

SIAM Journal of Computing, 14(4):862-874, 1985.

L.G. Valiant. General purpose parallel architectures. Handbook of The-
oretical Computer Science, 1:945-971, 1990. Edited by J. van Leewen,

Elsevier Science Publishers B.V.

P. Varman and K. Doshi. A parallel vertex insertion algorithm for min-
imum spanning trees. In 13th ICALP, Lecture Notes, volume 226, pages

424-433, 1986,

U. Vishkin. Implementation of simultaneous memory address access in

models that forbid it. Journal of Algorithms, 4:45-50, 1983.

U. Vishkin. Structural parallel algorithms. Technical Report UMIACS-
TR-91-53, CS-TR-2652, University of Maryland, College Park, Maryland

20742, April 1991.

125



[Wil85]

[Wyl81]

[YaoT5]

R.J. Wilson. [Introduction to Graph Theory. Longman, Inc., New York,

3rd edition, 1985.

J.C. Wyllie. The Complexity of Parallel Computation. PhD thesis, Com-

puter Science Dept., Cornell University, [thaca, NY, August 1981.

A. Yao. An O(|F|loglog |V|) algorithm for finding minimum spanning

trees. Information Processing Letters, 4:21-23, 1975.

126



