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ABSTRACT 
Pseudo-random number generators are ubiquitous components of 
content generation systems, because their outputs are difcult to 
predict but also repeatable given an initial seed. Tese properties 
make them especially useful as the basis for “random” decisions 
during a generative process, as they allow the process to be chaotic 
but also repeatable. Tis paper describes an open-source family of 
pseudo-random algorithms which allow for shufing and distribut-
ing items in a reversible and incremental manner. To demonstrate 
the applicability of these algorithms, I show how they have been 
used in the creation of a word-search game which includes strong 
guarantees about the distribution of words that can be discovered. 

CCS CONCEPTS 
• Teory of computation → Pseudorandomness and deran-
domization; Generating random combinatorial structures; • 
Applied computing → Media arts; • Security and privacy → 
Hash functions and message authentication codes. 
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Generative Algorithms, Computational Creativity, Pseudo-random 
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INTRODUCTION 
Pseudo-random number generators (PRNGs) are a fxture of gen-
erative algorithms, supplying unpredictable values that are used 
to disrupt undesirable regularity when generating anything from 
music to poetry. Most generative algorithms must make decisions 
as part of their execution, and while some decisions may be made 
based on principles or encoded theories of the medium in question, 
others are usually made arbitrarily, and these decisions give rise 
to additional variety in the space of generated artifacts. If these 

arbitrary decisions were to be made using a uniform policy, the arti-
facts produced by the process would always be the same given the 
same input parameters, but in order to more closely mimic human 
creative processes (which rarely result in identical outputs even 
with the same inputs), these decisions are more ofen made using 
some random or pseudo-random process. Pseudo-random processes 
and PRNGs in particular are ofen the go-to choice because unlike 
truly random processes, they allow for a repeatable performance: 
if a particular output is especially useful or aesthetically pleasing, 
it can be recreated easily. 

Tese algorithms typically include the ability to generate a de-
pendable sequence given an initial seed, and therefore efectively 
group an indefnite set of arbitrary decisions that are part of a cre-
ative process and tie them to a single input value. To give a concrete 
example, imagine an AI painter which must somehow decide ex-
actly how each digital stroke of a painting afects its digital canvas. 
In a human painting, the chaotic interactions between paint viscos-
ity and the physical systems of the brush and canvas give a slightly 
diferent character to each stroke, and this variety is important to 
the overall impression of the end result, although it is by no means 
the result of conscious decisions on the part of the painter, nor 
is it important exactly how each brush stroke turns out: it only 
maters that they do not all look the same. To emulate this chaotic 
system digitally, a computer may use a PRNG to decide exactly 
which pixels should be colored when the AI artist adds a digital 
stroke to the virtual canvas. Tese micro-level decisions must be 
made arbitrarily, but instead of treating these decisions as millions 
of individual inputs to the creative process, they are efectively tied 
together to depend on a single parameter: the seed of the PRNG. 
With the same seed (and holding other parameters constant), a 
painting may be exactly reproduced, down to the “random” virtual 
splaters of ink. Tis reproducibility might be especially useful in 
other domains, for example, in games to allow diferent users to 
experience the same content (cf. e.g., Noctis [8]). 

Although PRNGs are typically irreversible, reversible versions 
do exist, and have been applied in cryptography. Whereas a normal 
PRNG allows the ‘next’ number in a pseudo-random sequence to 
be generated given a seed value, a reversible PRNG also enables 
the efcient computation of the previous sequence value. Using 
reversible PRNGs for generative purposes allows a number of inter-
esting derivative algorithms to be created, including incremental 
shufing and distribution algorithms, and these applications are the 
focus of this paper. Unlike a normal algorithm for shufing items 
randomly, an incremental algorithm can generate a small part of a 
complete shufed sequence without computing the entire sequence, 
and in particular, an isotropic incremental algorithm can generate 
parts of the sequence in any order. Both the reversibility and the 
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incremental nature of the algorithms developed here open up new 
possibilities in the space of generative games. 

Anarchy is an open-source library available in C, Python, and 
Javascript that makes use of a reversible PRNG to provide a suite of 
low-level functions for building generative algorithms. To demon-
strate how these algorithms can be used as components of more 
complex generative algorithms, I describe an application that gen-
erates a hex grid of leters which includes all of the words from 
an arbitrary corpus. Whereas a human designer of a word-search 
game might carefully choose a thematically consistent set of words 
and then lay them out to create interesting juxtapositions, the algo-
rithm described here enables a categorically diferent design space 
(that of indefnite word grids) but approaches the task with much 
more modest goals (no considerations for thematic relevance or 
juxtaposition are made). Accordingly, this is an example of hybrid 
machine-human creativity: the machine part of the design system is 
responsible only for very low-level decisions in the creative process 
(most of the game is designed by the human around the algorithm’s 
capabilities), but enables the combined system to achieve a result 
that would be efectively impossible for a human alone (simply 
because of the sheer size of the generated game board, which lends 
a unique feeling to the game from the player’s perspective). 

RELATED WORK 
Tis work is inspired by work in pseudo-random number generation 
and texture synthesis. Tere are also parallels to work in cryptogra-
phy, although those algorithms operate under a very diferent set 
of constraints from algorithms designed for creative uses. 

Pseudo-Random Number Generation 
Te basis of the Anarchy library is a reversible pseudo-random 
number generator, similar conceptually to such well-know systems 
as the Mersenne Twister [14]. However, to build a reversible gen-
erator, much simpler techniques were used (not worrying about 
cryptographic applications helps), including ideas derived from the 
linear feedback shif register [3]. As mentioned already, existing 
reversible PRNGs for use in cryptography demonstrate some of the 
advantages of such systems [5], but to our knowledge, reversible 
PRNGs have not yet been widely used in generative algorithms. For 
those interested in practical advice on PRNG construction, Jones’ 
guidelines for PRNG use in bioinformatics is informative [10], al-
though many of the restrictions necessary for that work do not 
necessarily apply to generative algorithms. 

It is worth noting that the usefulness of PRNGs in generative 
algorithms is contested, and researchers concerned with human 
ascriptions of creativity have pointed out that the use of “random” 
or even pseudo-random processes may decrease the layperson’s 
perception of the creativity of a system [4]. Colton, Cook, Hepworth, 
and Pease state: 

…any unexpected behaviour or output by sofware is 
cherished by observers. However, the botom drops out 
of this experience when they realise that – rather than 
some inspired choices – a random number generator 
was largely responsible for the novelty. 

Te point is well taken that pseudo-random processes may be a 
double-edged sword when it comes to building creative systems, but 

they are nevertheless an important part of the designer’s toolbox. 
Also, the specialized PRNG systems described here are not deployed 
strictly in the service of unexpectedness, but rather in order to 
achieve variety in situations where order would be boring to the 
audience. 

Texture Synthesis 
Another inspiration for this work is texture synthesis algorithms, 
also sometimes referred to as procedural noise algorithms [13]. In 
particular, the work of Ken Perlin and others on Perlin noise [18] 
and simplex noise [9, 17] demonstrates the concept of an isotropic 
incremental algorithm. Simplex noise provides an N-dimensional 
everywhere-continuous (and diferentiable) function, which can be 
computed at an arbitrary point in space without requiring knowl-
edge of more than a fnite neighborhood around that point. Tis 
means that it is isotropic, in the sense that it does not mater which 
order diferent regions are computed in, and incremental, in that 
any particular region of interest may be evaluated without requir-
ing the evaluation of the function over a larger region. Note that 
it is very much not reversible, however: given a particular height 
value, fnding all of the regions which are at that height requires 
enumeration of the space until such a region is found, with no 
guarantees about how long that process might take or whether 
there is even any point in the space at that height. 

Te key idea here is that given limited local dependence between 
values, a property like continuity can be guaranteed everywhere 
while allowing the function to be computed quickly for arbitrary 
inputs. In simplex noise, for example, the noise value at each point is 
determined by a combination of fnite-domain basis functions, so for 
any particular point, the algorithm only needs to know the values 
for a fxed number of local basis functions, and basis functions 
elsewhere in the space are guaranteed by their fnite domains to be 
irrelevant at that point. I use the term “incremental” to refer to this 
because although the function is defned over a large region of 2D 
space (it repeats when the seed values for the PRNG that determines 
basis functions cycles), it can be computed for a portion of that 
space without computing the value of the function everywhere. 
Furthermore, the word “isotropic” implies that the order in which 
regions are generated is irrelevant to the algorithm, as opposed to 
an incremental algorithm where sub-regions could be computed 
independently, but only in a particular order (for example if there 
was some dependency between subregions). 

Simplex noise and related isotropic incremental algorithms are 
crucial enablers for vast procedural worlds such as the galaxy of 
Noctis or the near-endless terrain of Minecraf [8, 16]. Seeding al-
lows these worlds to be shared, but as detailed in the following 
section, augmenting these algorithms using reversible PRNGs ofers 
additional benefts. Te sheer amount of virtual space that can be 
generated by these algorithms makes a categorical diference to 
the player’s experience and usually also ends up infuencing many 
other aspects of the design of these games. 

It is important to mention here that the resulting aesthetic and 
thematic content of these games is ofen colonialist: by using gen-
erative techniques to create a “vast, untamed wilderness” or “a 
near-infnite galaxy of worlds to explore,” these games reinforce the 
harmful colonialist myths of terra nullis and promote the twisted 
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idea that brutal subjugation/harvesting of vast game territories 
is both enjoyable and unproblematic (see for example, [6]). Tese 
kinds of generative systems have sometimes been used in less prob-
lematic ways, and Kreminski and Wardrip-Fruin have identifed 
gardening games as an example genre that puts players a difer-
ent relationship with generated artifacts to ultimately serve very 
diferent aesthetic and thematic ends [12]. 

Exhaustive PCG 
Sturtevant and Ota’s work [19] on exhaustive PCG, or EPCG, is quite 
relevant to this work, both because their approach (exhaustive enu-
meration of possible solutions) enables similar design spaces, and 
because reversible isotropic incremental algorithms can be used as 
part of an EPCG approach for ranking and unranking solutions. In 
fact, given a arbitrary ranking/unranking algorithm which indexes 
solutions in some domain-specifc order, Anarchy’s incremental 
shufing capabilities can produce an augmented ranking/unrank-
ing algorithm which indexes solutions in pseudo-random order, 
which could be used to promote variety in systems which use early 
stopping criteria during generation. Whereas the most signifcant 
limitation of EPCG is the difculty in applying it to problems with 
large design spaces, incremental algorithms are specifcally de-
signed to tackle that problem by only ever generating the part of 
the space that the player has the time to explore. 

Cryptography 
Previously mentioned systems such as reversible-cellular-network-
based PRNGs [5] have typically been applied in the domain of cryp-
tography, which has stringent requirements for pseudo-random 
numbers. In addition, the general concept of encrypting and de-
crypting a message carries with it the notion of a reversible but 
chaotic transformation, and research in symmetric cryptography 
has investigated means of preserving certain properties through 
such transformations (e.g., [11]). As a consequence of ignoring cryp-
tographic constraints, however, Anarchy can be beter optimized 
for creative purposes and generally requires less memory and time 
than more secure algorithms. 

Figure 1: Simplifed Python code for the flop operation, 
which is its own inverse. 

FLOP MASK = 0 x f 0 f 0 f 0 f 0 f 0 f 0 f 0 f 0 

def f l o p ( x ) : 
l e f t = x & FLOP MASK 
r i g h t = x & ˜ FLOP MASK 
return ( ( r i g h t << 4 ) | ( l e f t >> 4 ) ) 

THE ANARCHY LIBRARY 
Anarchy is an open-source library with C, Python, and Javascript 
implementations available at github.com/solsword/anarchy. It inclu-
des a reversible PRNG which is used to power algorithms for incre-
mental shufing and incremental distribution. 

Reversible PRNG 
Anarchy’s reversible PRNG produces sequences of numbers in ei-
ther forward or reverse order which are chaotic and which have 
relatively long periods. Te PRNG is constructed using a sequence 
of the following operations on unsigned 64-bit integers (unsigned 
32-bit integers in Javascript): 

swirl(n)
Shifs each bit n units lef, wrapping higher-

 order bits into lower-order bits so no infor-
mation is lost. 

fold(n)
XORs the frst n bits with the bits to their 

 lef. Fold is its own inverse. 

flop 
Swaps every 4-bit sequence with the adja-
cent 4-bit sequence. Flop is its own inverse. 

scramble 

Operates like a linear feedback shif register, 
but uses a circular shif and an XOR mask 
that doesn’t overlap the trigger bits, so that 
it is reversible. 

Te specifc seed adjustments and operation sequence used for 
the PRNG are still being optimized for period and autocorrelation; 
refer to the source code for implementation details. Tese primitive 
reversible operations can be assembled into a number of possible 
PRNGs, and their individual reversibility is the most important 
property of the algorithm. Te reverse PRNG is constructed by 
applying the inverse of each operation used for the forward direc-
tion in reverse order. So a PRNG that used swirl(7), fold(11), 
flop, scramble could be reversed by calling rev scramble, flop, 
fold(11), rev swirl(7). For convenience the individual parame-
ters are determined from an input seed, so that a variety of value 
sequences can be generated using diferent seeds. Optimizing to 
minimize sequence correlation for sequences generated from se-
quential seeds is a current area of development for the library. 

It is worth noting that in this and all algorithms in this paper, 
reversibility comes with a cost: the quality of the pseudo-random 
numbers is not up to cryptographic standards. Results from the 
dieharder test suite [2] for Anarchy’s PRNG are mixed: it fails 
many of the tests that are sensitive to repeated bit sequences such 
as the bitstream, oqso, and dna tests, but passes others including 
opso, rank 32x32, and birthdays. It does pass the Marsaglia and 
Tsang GCD tests from the dieharder suite, but more interesting is 
that while it passes 1-, 2-, and 3-bit STS serial tests, it fails for 4 
bits and most (but not all) longer bit sequences, implying that the 
PRNG has a problem with some bit sequences either appearing too 
regularly or else some not appearing at all. Tankfully, what would 
be a signifcant faw for application to a sensitive feld such as statis-
tical or cryptographic randomization is only relevant to generative 
algorithms insofar as it produces unwanted and human-observable 
regularities in generated output. Te PRNG does pass tests such 
as the diehard parking lot test and the RGB permutations test 
which both test the algorithm in ways similar to how it might be 
used to generate content for a game. Improving the algorithm to 
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upend(3)

spin(2)

flop(2)

Figure 2: An example of how reversible parametrizable prim-
itives can be combined to perform a shufle operation. Note 
that the shufled index of each individual element can be 
computed independently in constant time, regardless of the 
number of items being shufled. Anarchy’s shufle algo-
rithm uses a total of 15 applications of its seven primitive 
operations rather than just the three shown here. 

pass more of these tests under the constraint of reversibility is one 
area of future work. 

Incremental Shufling 
A common operation in generative algorithms is shufing, typically 
using a memory-based swapping algorithm such as the Fisher-Yates 
shufe [7]. A shufed set can be used to select a subset from a larger 
set at random without replacement, and in this case, only a prefx 
of the shufed set is needed. When the required prefx size is small 
and the superset is large, Batagelj and Brandes have proposed a 
virtual Fisher-Yates shufe [1] which takes time proportional to the 
desired subset size. Anarchy takes this further, using its reversible 
PRNG to provide arbitrary access to shufed elements in constant 
time per element, thus doing away with the requirement that the 
portion of the shufed set being used is a prefx (in other words, it 
is not only incremental, but also isotropically incremental). 

To achieve this, reversible operations can be applied to the items 
to be shufed which change their position in a virtual “cohort” with 
a predetermined size (see Fig. 2). All of the component operations 
can be computed independently for each item in a cohort, so the 
algorithm is both incremental and isotropic. Additionally, any index 
in the shufed cohort can be reverse-shufed to fnd its index in 
the original cohort, which opens up new design possibilities. 

Te drawback of this approach is not immediately apparent, but 
is revealed by consideration of the combinatorics of the situation. 
No mater how many elements are being shufed, this reversible 
shufe algorithm produces a deterministic outcome for each dis-
tinct seed. Even ignoring the potential for two diferent seeds to 

result in the same shufe, in a 32-bit implementation, there are 
only 232 distinct seeds available, and so at most there are that many 
possible shufe results (and likely there are fewer). However, when 
doing a virtual shufe of 10,000 elements, the number of possible 
permutations (abstractly O(n!)) is much greater than 232, or even 
264. Because the number of possible shufed confgurations grows 
so fast (21! > 264), even when shufing a moderate number of 
elements, this reversible/incremental shufe algorithm is capable 
of producing only a small subset of all possible output orderings. 
Although there is no reason to expect that the subset of orderings 
produced has any kind of systematic bias (and in fact the perfor-
mance of the underlying PRNG on some of the relevant diehard 
tests suggests that it might be fne), I am still investigating the dis-
tribution of the produced orderings among the possible orderings, 
and intend to optimize the specifc operations and parameters of 
the reversible shufe to minimize biases that might occur. 

Te seven operations used for incremental shufing are as fol-
lows: 

interleave 
Puts the frst half of the cohort into even 
indices and the second half into odd indices 
in reverse order. 

fold(n) 
Swaps n items from the end of the cohort 
with items from the middle. 

flop(n) 

Divides the cohort into sections of size n, 
and swaps each even section with its odd 
neighbor. Elements that would end up out-
side the cohort are lef in place. 

spin(n) 
Moves every item n spaces towards the end 
of the cohort, wrapping around at the end. 

mix(n) 
Treats even and odd elements as separate 
half-sized cohorts and performs a spin op-
eration on each using diferent n values. 

spread(n) 
Divides the cohort into sections of size n, 
and puts the ith member of the jth section 
into the jth spot in the ith section. 

upend(n) 
Divides the cohort into sections of size n,
and reverses ordering within each section. 

Figure 3: Simplifed Python code for the interleave cohort 
operation and its inverse. 

def c o h o r t i n t e r l e a v e ( inner , c o h o r t s i z e ) : 
i f i nne r < ( c o h o r t s i z e + 1 ) / / 2 : 

return ( i nne r ∗ 2 ) 
e l se : 

return ( c o h o r t s i z e − 1 − i nne r ) ∗ 2 + 1 

def r c o h o r t i n t e r l e a v e ( inner , c o h o r t s i z e ) : 
i f i nne r % 2 : 

return c o h o r t s i z e − 1 − i nne r / / 2 
e l se : 

return i nne r / / 2 
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Figure 4: An example showing random distribution of four 
items among three three-item sections (result shown in the 
fourth row of the fgure). Using recursion, the sections are 
evenly divided while the items are randomly divided at each 
step, working from the top and bottom of the fgure towards 
the middle (numbers indicate recursion depth). When a sin-
gle section has been identifed, items are mapped to indices 
using a reversible shufle. 

Te specifc combination of these operations used for shufing 
can be optimized for purposes such as cycle length and adjacent-
seed correlation avoidance, but the idea of combining reversible 
operations to provide an incremental shufe can be implemented 
using various schemes. Besides the example of word distribution 
given in the next section, this incremental/reversible shufe algo-
rithm is potentially useful for a number of generative tasks. For 
example, as outlined in [15], I am already exploring the potential 
of these operations for the generation of family tree structures. 

Incremental Distribution 
In addition to shufing items, Anarchy includes routines for di-
viding n items randomly between s sections such that an item’s 
section index can be computed in logarithmic time, and given a 
section and in-section index, the original item index can also be 
computed in logarithmic time. Furthermore, the total number of 
items preceding any section can be computed in logarithmic time, 
allowing for indexing of the non-distributed items in each section. 
Fig. 4 illustrates the algorithm: at each step, the items that need as-
signment are divided in two randomly, while the available sections 
are divided evenly. Te algorithm then proceeds recursively with 
a smaller number of sections to assign to, ultimately performing 
1 + log2(s) recursive calls to compute the section for an individual 

item. When dividing the items, a random index is chosen under the 
constraint that the total number of items on either side must not 
exceed the available section slots on that side of the section division. 
Tis random division can be biased towards the midpoint of the 
items to create a smoother distribution of items among sections. 

A step-by-step description of this algorithm is as follows: 
(1) Split the available segments in half. 
(2) Split the items being distributed into two groups at a random 

point (subject to the constraint that we cannot pick a split 
which assigns more items into one of the groups than there 
are slots in the corresponding segment group). 

(3) Pick either the frst or second group for both segments and 
items, and recurse if there is more than one segment. 
• If we are trying to fnd which segment an item is assigned 
to, we compare the item index to the random item split 
point to determine which groups to use for the recursive 
call. 

• If we are trying to fnd out which item(s) are in a particular 
segment, we use the frst or second groups depending on 
whether the segment we’re interested in is in the frst or 
second half of the segments at this level. 

(4) When a single segment remains, use an incremental shufe 
to assign each item to a slot in the segment. In the extreme, 
a single segment could be entirely full or empty. 

Note that computing the section assignments for any set of n 
items takes O(n log(s)) time, independent of the size of the sections 
and the total number of items being assigned. Furthermore, by 
recursing according to the section division instead of the item 
division, the original item index of an arbitrary item within a section 
can be computed via the same method. Finally, by returning the 
sum of the items split of to the lef of a given section, the algorithm 
can compute the total number of items that are distributed prior to 
a section (again in logarithmic time), allowing the items which are 
not part of the distribution to be indexed contiguously. Te next 
section gives one example which shows why these properties are 
useful for procedural generation. 

Incremental Embedding 
To give an example of Anarchy in action, I have created a word-
fnding game that embeds leters into an indefnite hex grid (limited 
only by integer overfow issues). For each position in the grid, the 
system can quickly compute the corresponding leter, and these can 
be recomputed as necessary so that the grid contents do not have 
to be stored in memory. Te computation is seeded, so multiple 
players on diferent machines can access equivalent grids, and the 
system does not need to save grid contents between play sessions. 
In addition, the grid is flled in such a way that in each 86016 × 
86016 section of the grid, each word from a corpus of millions of 
words is present at least once, and extra slots are flled according 
to the frequency of each word in the corpus. Finally, some slots are 
excluded from the normal assignment mechanics, and are instead 
used to include words from other languages. To achieve all of this, 
the demo relies heavily on the features of the Anarchy library. 

First, the grid is divided into 37-hex supertiles, which each in-
clude a central hex and all hexes within three units of it (see Fig. 
6). Tese supertiles seamlessly tile the entire grid, and are divided 
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into six six-hex triangular regions, with the center tile unassigned. 
Each triangular region is paired with the adjacent region from a 
neighboring supertile to form an assignment socket, and the words 
from the corpus are distributed into these sockets. Fig. 6 shows 
the same region as Fig. 5, but with the socketed words highlighted. 
Each word is laid out randomly within its socket (words with more 
than 12 leters are handled using a diferent procedure). Afer as-
signing leters to socketed words, empty hexes are flled according 
to trigram, bigram, or unigram leter probabilities measured within 
the corpus. 

Figure 5: Te interface for the word-fnding example game. 
An indefnite hex grid is flled with letters, and the user can 
select valid words to unlock tiles to select more words. Te 
hex grid scrolls in all directions limited only by index inte-
ger overfow issues. Te bar on the right labeled ‘WORDS’ 
can be expanded to show a list of all words found so far, 
while the current selection is shown at the bottom. 

Figure 6: Te same region as in Fig. 5, but with assigned 
words highlighted. Te red border indicates a single super-
tile. Note how each word is packed into two triangular re-
gions from adjacent supertiles (e.g., the green word at the 
bottom of the highlighted supertile), although not all words 
fll their assigned regions. 

Tis algorithm can thus take an assignment of words to sockets 
and produce a hex grid, and that assignment step is where Anarchy 
comes in. First, supertiles are grouped into 12 × 12 parallelogram 
regions called ultratiles, and 1024 × 1024-ultratile regions are desig-
nated as ‘assignment regions.’ Each assignment region therefore 
contains 452,984,832 sockets, which is more than enough to accom-
modate even a very large corpus. To assign words to each socket, as 
reversible shufe is used on the 452 million sockets, and for a corpus 
of size n, the frst n shufed sockets are assigned to the n words 
of the corpus to ensure that each word occurs at least once. Tis 
leaves 452984832 − n sockets that need words assigned, and these 
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assignments should be made according to the relative frequency of 
each word. 

To accomplish this frequency-relative assignment, the words 
in the corpus are sorted by their frequencies, and the number of 
words of each frequency is tallied in a table (the ordering of words 
within each frequency bucket is unimportant, since the goal is to 
sampling at random). Tis table creates a virtual index space where 
each word is assigned a number of index slots equal to its frequency 
in the corpus. For example, if the corpus contains three words with 
frequencies 3, 3, and 10, virtual indices 0–2 would map to the frst 
frequency-3 word, indices 3–5 would map to the second frequency-
3 word, and the remaining indices (6–15) would all map to the 
frequency-10 word. Sampling uniformly from this virtual space will 
sample words according to their frequencies, so another reversible 
shufe is used to do so, shufing the remaining sockets and aligning 
them against this virtual index space. Using the aforementioned 
table of number-of-words-for-each-frequency, this alignment can 
be done in time proportional to the number of distinct frequency 
values that appear in the corpus (typically less than 1000 even for 
very large corpora). 

Te algorithm as described so far can assign a word to each 
socket, but the demo includes an additional feature: ‘inclusions’ of 
foreign words are scatered throughout the space to make things 
more interesting. To avoid interference with the just-described as-
signment scheme, sockets taken up by inclusions are removed from 
the available sockets, and assignment proceeds as before using 
a reduced number of sockets for each assignment region. Tis is 
made possible using Anarchy’s distribution procedures to spread 
a fxed amount of ‘inclusion’ material among the ultratiles in an 
assignment region, thus reducing the available sockets through-
out the region. For any given ultratile, the linear index among 
non-inclusion sockets can still be computed, however, because the 
number of prior inclusion sockets for that ultratile can be computed 
in logarithmic time, as described above. Tis linear index is used 
with the base assignment scheme, allowing inclusions to coexist 
with frequency-based word assignments. Within each ultratile, the 
specifc location of inclusions and the resulting specifc indices of 
each non-inclusion socket are cached in memory for quick access, 
but can be recomputed from the ultratile parameters if necessary. 

Advantages of the Incremental Approach 
Te embedding scheme described above ofers several advantages 
over a simpler scheme which could just use a normal PRNG to 
assign a word from the corpus probabilistically to each socket. First, 
by using a shufe instead of probabilistic assignment, each word is 
guaranteed to appear somewhere, where using probabilistic assign-
ment, many words would be “unlucky” and never appear. Tere is 
even a guarantee of the exact number of times each word appears, 
and this shows how shufe-based assignment schemes can be help-
ful when dealing with models that include rare events or features. 
However, shufe-based assignment using an in-memory shufe 
would create a performance problem given the approximately 450 
million sockets that need to be flled. Tis is where Anarchy’s ability 
to provide an incremental shufe shines: only the parts of the shuf-
fe that show up on the player’s screen must be computed, which 
can be done in constant time per unit. 

Te embedding is not only incremental, but it is also reversible, 
and this enables designs that are impossible under a simpler assign-
ment scheme. For example, in this game it would be possible to 
assign a quest for the player to fnd a certain word, and not only 
would that word be guaranteed to be present, but the system could 
reverse the assignment algorithm to fgure out where that word 
was located, without computing the locations of all assigned words. 
With classic irreversible assignment schemes, fguring out where 
a specifc word appears (or even whether it appears at all) would 
in the worst case require enumerating the entire assignment space. 
However, with a reversible algorithm, each appearance of a given 
word can be tracked to its location on the grid in constant time 
by simply running the assignment algorithm backwards from the 
word index to a position. 

In terms of broader applicability to diferent kinds of computa-
tionally creative systems, Anarchy’s robust shufing and distribu-
tion algorithms can potentially be applied in a number of ways. 
Examples include: 

• Constant time reversible and incremental shufing allows sam-
pling from huge possibility spaces to be carried out in a manner 
that guarantees an exhaustive process. Tis could be leveraged to 
ensure that, for instance, each product of a generative algorithm 
is unique, without the chance that the same output occurs twice 
at random (up to limitations based on the fnite generative space 
the algorithm is capable of producing). Of course, that can al-
ready be achieved by non-reversible techniques, but reversibility 
provides the additional property that seeds which will lead to 
specifc output confgurations can be located without searching 
the whole generative space. For example, if potentially millions 
of generated characters had pseudorandomly colored capes, a 
reversible assignment of these colors using Anarchy would allow 
efcient enumeration of all of the seeds which resulted in pink 
capes. Tis in turn could enable new ways of interacting with 
generative systems, for example the ability for the system to 
respond to a request to “Show me more like this.” While such 
a design is achievable by other means, Anarchy makes such 
a query possible without much extra work on the part of the 
system designer because it includes reversibility by default. 

• Te distribution algorithms outlined above allow for arbitrary 
smoothing of output distributions across output spaces, which 
can provide guarantees that pseudorandomly-distributed con-
tent does not become too thick or thin just due to chance. For 
example, if one distributed an important feature such as villages 
in a Minecraf-like world using a fxed probability per unit of 
map area, arbitrarily-dense clusters of villages could occur. Al-
though such clusters can in many systems be a good thing, as 
they represent a relatively novel outcome from the player’s per-
spective, they can also be seen as unrealistic or a failure of the 
generative system if they are too frequent or too dense. Using 
Anarchy’s distribution functions, an equivalent distribution in 
terms of villages-per-unit-area could be constructed with strict 
guarantees on the maximum possible density, without requiring 
extra computational resources or context when generating map 
segments piecewise. 
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CONCLUSION 
Tis paper illustrates the advantages of reversible and incremental 
chaotic systems via an example word-fnding game. By provid-
ing Anarchy as an open-source library (available at github.com/ 
solsword/anarchy) and reporting on it here, I hope to encourage 
its use and enlist others to fnd more applications for these algo-
rithms. Te word-fnding demo app is also open-source, and can be 
accessed at github.com/solsword/words. 

Te main advantage provided by these algorithms lies in re-
moving memory- and time-related constraints from shufing and 
distribution algorithms when only a subset of results is required 
at once. In generative systems where the user observes only part 
of a huge implicit possibility space, these criteria are met exactly, 
and such systems are likely to be the most natural users of this 
library. However, as evidenced by the work cited here, many ar-
eas of computer science fnd use for pseudo-random values, and 
it is my hope that the Anarchy library can also prove useful for 
simulation systems, although more work needs to be done on the 
exact distribution of the permutations it creates to avoid potential 
biases. Te beginnings of the application of this work to family-tree 
generation for just that purpose has already been described in [15]. 

Future Work 
As may already be apparent, both Anarchy and the word-fnding 
demo app are still under active development. One key area of future 
work is the optimization of all of Anarchy’s algorithms to avoid 
paterns in the sequences produced both via repeated invocations 
using a single seed and via single invocations using sequential 
seeds (an unfortunately common use-case). Establishing guaran-
tees for the period of the various generation components is also 
important, and both of these properties can be tweaked by altering 
the specifc reversible primitives used for the PRNG and for shuf-
fing. Finally, although unsuitable for cryptographic purposes by 
nature, the properties of the shufing algorithm could be tweaked 
for use in simulation or statistical applications where certain kinds 
of balance are required. If these properties could be guaranteed, 
Anarchy would be potentially applicable to biological or chemical 
simulations where its incremental and reversible properties could 
prove quite useful. 

Te demo application is also in the process of being made into a 
fully-fedged game, with the idea to encourage language learning 
through various design choices. For example, since the corpus used 
is arbitrary, specifc vocabulary from a lesson plan could be used 
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to populate the space and provide language students with a game-
based tool for vocabulary practice. For these purposes, the ability of 
the system to locate specifc words allows it to do things like provide 
hints that would otherwise be extremely difcult to implement. 
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