
REPRESENTING EXPRESSIVE TYPES IN
BLOCKS PROGRAMMING LANGUAGES

Marie Vasek
NEPLS
June 1, 2012

1

Problem: Current block languages aim to lower barriers to
programming but only make weak attempts at implementing a type
system.

Solution: Create blocks language where the shape of the block lends
to the use.

Overview:
• Type systems in other blocks languages
• TYPEBLOCKS:
• Shape types
• Polymorphism
• … but no language in which they are embedded.

EXPANDING TEXTUAL TYPE SYSTEMS
TO BLOCK SYSTEMS

2

APP INVENTOR – DYNAMIC-ISH TYPING

•  All types have the same plug shape
•  Basic type checking but not really 3

TIMING OF ERRORS

4

SCRATCH – WONKY TYPING
•  Three primitive types (boolean, string, number)
•  Three shapes (angle = boolean, rounded = string or number, box = any)

5

TYPE CONVERSION

6
Evaluate to true

Evaluates to false

TYPE CONVERSION - LISTS

7

BYOB – MORE WONKINESS

8

STARLOGO: TNG - POLYMORPHISM

9

PROCEDURES

10

WHAT I DID

11

• Blocks types inspired by SML
• Base types + type constructors => ability to represent countably many types
• Each arbitrarily complex type = unique connector shape
• ML- style universal polymorphism

3 base types: number, boolean, string!

BUILD-A-TYPE

12

3 constructors:

listof! pair! function!

listof int bool -> string listof (listof string) int * string

MORE EXAMPLE PLUGS

13

listof (string * boolean)! (listof string) * boolean!

boolean * (string -> listof number)!

(boolean * string) -> (listof number)!

14

ZIP AND MAP

TYPE CONSTRUCTION IN PRACTICE

15

SEE IT GO!

16

ML-STYLE UNIVERSAL POLYMORPHISM

17

IMPLEMENTATION DETAILS

18

{“funD”: {“tupX”: “boolean”, “tupY”: “string”},!
 “funR”: {“listOf”: “number”}}!

• Represent poly types by objects
o Ie {“poly” : “a”} or {“poly”: “b”} where “a” and “b” are like sml’s ‘a and ‘b.

• ScriptBlocks
• in JavaScript using Google Closure Library
• Represent recursive types by strings and objects

TYPES TO SHAPES

¢ Recursive drawing method
¢ Draw:

�  Bottom of arrow
�  Range argument
�  Middle of the arrow
�  Domain argument
�  Top of the arrow

19

¢ Smallest type has size unit
¢ 2 arguments: take the max

POLYMORPHISM
¢ On events plug and unplug

20

On Plug:
¢ Unifies types of blocks
¢  If type of plug / socket changes:

�  Change the other plug/sockets on current block to
reflect change

�  Do the same to the parent / children of the block

On Unplug:
¢  “Reset” type
¢ Propogate type changes to the parent / children

FOR A LATER DATE

21

• A sml-like statically typed functional blocks language using these types
o  differentiating visually between ‘a and ‘b.

•  better visualization of polymorphic types
o  algebraic data types
o  pattern matching

• Block Java
o  objects
o  “ad hoc” polymorphism

• Usability
o  highlighting of all compatible connections
o  user testing

• Other representations of type
O  WATERBEAR – types as color
o  any others???

22

• Inspired by Scratch
• Represents type through color
• 4 basic types: boolean, number, string, array + “all” type
• Explicit casting to convert types

WATERBEAR

23

IDEAS FOR COMPOSABLE TYPES -
COLOR

24

