dLas

REPRESENTING EXPRESSIVE TYPES IN
BLOCKS PROGRAMMING LANGUAGES

Marie Vasek ‘L
NEPLS

June 1, 2012 CI:/\

=Y 1 4

EXPANDING TEXTUAL TYPE SYSTEMS
TO BLOCK SYSTEMS

Problem: Current block languages aim to lower barriers to
programming but only make weak attempts at implementing a type
system.

Solution: Create blocks language where the shape of the block lends
to the use.

Overview:
Type systems 1n other blocks languages
TYPEBLOCKS:
Shape types
Polymorphism

... but no language 1in which they are embedded.

APP INVENTOR — DYNAMIC-ISH TYPING

?f as C cal make a list |
item d false

XS
item
)

ifelse test c
- 1 list lobal
|C, number 5 | = C; “" lengthof list C'. global yg ‘
then-do [~
call list c global -
item '
add items to list | | number o + (:Ji text , ‘
item (J_
y J
—

Ise-do
oee call list c global - |
additems tolist ™ '~ ¥ three

N

g

All types have the same plug shape
Basic type checking but not really

TIMING OF ERRORS

"“eal log c number 12V|

. cal ot pellow

This block cannot plug into this socket because hello is not a number.

The Troubleshooting Guide at http://appinventor.googlelabs.com/learn/troubleshooting.html

may provide further help.

"\ |0§ number 10 “‘ number 24V J

. call
S L s |

SCRATCH — WONKY TYPING

Three primitive types (boolean, string, number)
Three shapes (angle = boolean, rounded = string or number, box = any)

o
I

| T
false

b

~cs is fun!

GEl4y 'join (X8 G0]

TYPE CONVERSION

:;14\L [4} set * | to E: E

= 4 Efr; o

join [[T + 6} 13
x+ 8 -

B L, E

| o

con

Evaluates to false
Evaluate to true

TYPE CONVERSION - LISTS
add -= to X5

add .= to XS
add (X to s add 3/ #) to *s

< @ add [f] to xs

item PR of ¥S — itemof XS

add “fI= R to Xs xs + 3

add [to ¥s

item of Xs = item of ys

add o;" 8 to XS
add to XS

add xs to XS

+ length: 3~

BYOB — MORE WONKINESS

.'8 + 8'.

not .

Cic

not add3 H

set X [to true set Y |[to 3+ 8)

(ae

'vnot X

STARLOGO: TNG - POLYMORPHISM

Turtles Turtles Turtles
- Proci -~ Proc2 - Proc3
ol e, T — — S —
test true test true test true

et B otput =5 Foutput. 4 8 =5 Uoutput

ifelse o ifelse ifelse -

else I else T et s P
output output output yakabouch

- —

R — T
Turtles Turtles Turtles
Proci Proc2 Proc3

PROCEDURES

Turtles

Proc4

-
list ™ - XS

»
output add to list

item /fil’St listt™ = XS o~ +

-~

Turtles

wTurtles

Proc5 Proc5

- lists Shys
outputs s B add to lists < s = I
item r firstonlists S ys®

:Turtles

ys 4
X5 true

—

list (false
Proch —~

WHAT I DID

Blocks types inspired by SML

Base types + type constructors => ability to represent countably many types
Each arbitrarily complex type = unique connector shape

ML- style universal polymorphism

3 base types: number, boolean, string

@< 1+ Ja< J>b < (Cnot{ CifistofC

BUILD-A-TYPE

3 constructors:

- —

listof

L — 4

N\
/

function

listof int

listof

(listof string)

int * string

bool -> string

MORE EXAMPLE PLUGS

listof (string * boolean) (listof string) * boolean

boolean * (string -> listof number)

(boolean * string) -> (listof number)

ZIP AND MAP

TYPE CONSTRUCTION IN PRACTICE

SEE IT GO!

L
L

=4

ML-STYLE UNIVERSAL POLYMORPHISM

IMPLEMENTATION DETAILS

ScriptBlocks
in JavaScript using Google Closure Library
Represent recursive types by strings and objects

{”funD”: {“tupX”: “boolean”, “tup¥”: “string”},
! / “funR”: {“1listOf”: “number”}}

Represent poly types by objects

Ie {“poly” : “a”} or {“poly”: “b”} where “a” and “b” are like sml’s ‘a and ‘Db.

TYPES TO SHAPES

| Recursive drawing method
\ Draw:
, Bottom of arrow

Range argument
: S : Middle of the arrow
i § Domain argument
S Top of the arrow

Smallest type has size unit

2 arguments: take the max

POLYMORPHISM

On events plug and unplug

On Plug:
Unifies types of blocks

If type of plug / socket changes:

Change the other plug/sockets on current block to
reflect change

Do the same to the parent / children of the block

On Unplug:
“Reset” type
Propogate type changes to the parent / children

FOR A LATER DATE

A sml-like statically typed functional blocks language using these types
differentiating visually between ‘a and ‘b.
better visualization of polymorphic types
algebraic data types
pattern matching
Block Java
objects
“ad hoc” polymorphism
Usability
highlighting of all compatible connections
user testing \
Other representations of type
WATERBEAR — types as color
any others???

WATERBEAR

Inspired by Scratch

Represents type through color

4 basic types: boolean, number, string, array + “all” type
Explicit casting to convert types

4 [=4 [and‘truelti

4 [+ 3 [concatenate| tostring| 4 [+ 3 [with world

2 ([*2 [1+3 [

array newArray append array myArray reversed

IDEAS FOR COMPOSABLE TYPES -
COLOR

l any questions? l

' any questions? |

Iy QUEeSHONS e
any duves{lons? QXY

